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Abstract

In this paper, we exploit the non-linear relation between a speech source and its associated lip video as a source of
extra information to propose an improved audio-visual speech source separation (AVSS) algorithm. The audio-visual
association is modeled using a neural associator which estimates the visual lip parameters from a temporal context of
acoustic observation frames. We define an objective function based on mean square error (MSE) measure between
estimated and target visual parameters.

This function is minimized for estimation of the de-mixing vector/filters to separate the relevant source from linear
instantaneous or time-domain convolutive mixtures. We have also proposed a hybrid criterion which uses AV
coherency together with kurtosis as a non-Gaussianity measure. Experimental results are presented and compared in
terms of visually relevant speech detection accuracy and output signal-to-interference ratio (SIR) of source separation.
The suggested audio-visual model significantly improves relevant speech classification accuracy compared to existing
GMM-based model and the proposed AVSS algorithm improves the speech separation quality compared to reference

ICA- and AVSS-based methods.

Independent component analysis
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1 Introduction
Audio-visual speech source separation (AVSS) is a grow-
ing field of research that is developed in recent years.
It is derived from mixing audio-visual speech processing
(AVSP) and blind source separation (BSS) techniques.
Speech is originally a bimodal audio-visual process. Per-
ceptual studies on human audition have revealed that
visual modality has effective contributions in speech intel-
ligibility [1], perception [2] and detection [3] especially
in the noisy and multi-source (cocktail party) situations.
According to the McGurk-McDonald effect [4] (that is,
sensing the auditory part of a phonetic sound with visual
part of another one, results in illusion of perception of a
third one), it is evident that there is an early stage inter-
action between audio and visual stimuli in the brain. This
is confirmed in [5] that early integration of audio and
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visual modalities can help in the identification and hence
enhancement of speech in noisy environment. The perfor-
mance of automatic speech processing systems degrades
drastically in the presence of noise or other acoustic
sources. Thus, researchers have tried to incorporate visual
modality to automatic speech processing systems upon
the perceptual findings.

Both audio and visual modalities of speech originate
from gestures and dynamics of articulators along the
speaker’s vocal tract. Hence, there is an intrinsic rela-
tion between these two speech cues. Although among all
articulators, just the lip and, partially, jaws are visually
observable. This partial observation bears a stochastic but
exploitable relation between audio and visual cues.

It is inspiring to consider AV relation as two coher-
ent and complementary components. In the automatic
speech processing community, there has been early noti-
fication and interest (since 1984 [6]) for exploiting the
complementary (orthogonal) portion of AV information
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prior to its coherent (non-orthogonal) portion. The com-
plementary information of AV data is truly adopted in
audio-visual speech recognition (AVSR) in either of early-
(feature), middle- (model), or late- (decoding) stage fusion
schemes to enhance robustness against acoustic distor-
tions. In recent years (since 2001 [7]), researchers have
proposed methods based on exploiting the coherent com-
ponent of AV processes for applicable tasks like speech
enhancement [7-9], acoustic feature enhancement [10],
visual voice activity detection (VVAD) [11], and AV source
separation (AVSS) [11-24].

In [12], a statistical AV model based on Gaussian mix-
ture models (GMMs) is presented for measuring the
coherency of audio and its corresponding video and is
used for extracting speech of interest from instantaneous
squared mixtures on a simple French logatoms AV corpus.
They have extended their method in [14] and assessed it
on a more general sentence corpus and also for degen-
erate mixtures. Wang et al. [15] have exploited a sim-
ilar GMM model (but using different AV features) as
a penalty term for solving convolutive mixtures. That
method seems to be inefficient because it should con-
vert the separating system from frequency to time domain
repeatedly. Rajaram et al. [13] have incorporated visual
information in a Bayesian AVSS for separation of two-
channel noisy mixtures. Their method adopts a Kalman
filter with additional independence constraint between
the states (sources). Rivet et al. [16] have adopted the AV
coherency of speech (measured by a trained log-Rayleigh
distribution) for resolving the permutation indeterminacy
in the frequency domain separation of convolutive mix-
tures. They have also proposed another method [11] for
convolutive AVSS based on developing a VVAD and using
it in a geometric separation algorithm using sparse source
assumption.

Sigg et al. in a pioneering work [17] have proposed a
single microphone AVSS method by developing a non-
negative sparse canonical correlation analysis (NS-CCA)
algorithm. Their method jointly separates audio signals
and localizes their corresponding visual sources. Follow-
ing them, Casanovas and Monaci et al. [18-21] have pro-
posed single microphone AV separation and localization
methods by sparse and redundant atomic representation
of AV signals. They use cross-modal correlations between
AV atoms as similarity measure to cluster visual atoms for
localizing visual sources and then separating audio signals.

Liang et al. [22] have incorporated visual localization to
improve the fast independent vector analysis (FastIVA) as
a frequency domain convolutive method. They use loca-
tion of sources for smart initialization of FastIVA to solve
its block permutation. Liu et al. [23] have proposed an
AV dictionary learning method (AVDL) and have used it
for AV-BSS via bimodal sparse coding to estimate time-
frequency (TF) masks.
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Khan et al. [24] have proposed a video-aided separation
method for two-channel reverberant recordings which
estimates direction of sources via visual localization to be
used in probabilistic models which are refined using EM
algorithm and evaluated at discrete TF points to generate
separating masks.

In this paper, we develop a visually informed speech
source separation algorithm called MLP-AVSS which con-
siders temporal dependency between consecutive AV
frames. We have suggested to model AV coherency using
a multi-layer perceptron (MLP) for AV association. This
model with lower number of parameters can capture AV
coherency significantly better relative to the GMM AV
model of [12,14,15]. We have also proposed a hybrid
measure of kurtosis and visual coherency and based on
that a time domain convolutive AVSS algorithm. We have
assessed quality of suggested AV model and its induced
AVSS methods on two discrete (alpha-digits) and contin-
uous (poet-verses) audio-visual corpora. The former is a
corpus of Persian and English alpha digits and the later is
a corpus of poem verses from about 20 Persian poets.

The rest of this paper is organized as follows: In
Section 2, we briefly review BSS and AVSP background
and then focus on the relevant AVSS work. Section 3
illustrates the proposed MLP-based AV model and AVSS
algorithm. Section 3.3 presents a hybrid AV coherent and
independent criterion, and based on that, we move toward
a time-domain convolutive extension. In Section 4, audio-
visual materials including AV corpus, parametrization and
modeling procedures is considered. In Section 5, experi-
mental set-up and the experimental results are illustrated
and analyzed. Finally, the paper is concluded in Section 6.

2 Background review

AVSS has emerged from mixing BSS and audio-visual
speech processing techniques [16]. In this section, after
a brief review of BSS and AV speech processing back-
ground, we explain the speech separation in terms of
standard source separation problem and then discuss the
suggested AV separation approach as an improved solu-
tion for this problem.

2.1 Blind source separation problem

Commonly, a blind source separation problem is briefly
defined by its forward mixing model. In this paper, we
consider the problem of source separation from a linear
instantaneous mixture defined as

x(2) = A(®)s(1), (1)

where s(¢) =[s1(8),...,sn®)]T € RN is vector of source
samples, x(t) =[x1(2),...,xpx(®)]T € RM is vector of
mixed signals and A(¢) € R™¥ is mixing matrix at the
time instance t. It should be noticed that both s(¢) and
A are unknown. Hence, the problem is designated to BSS
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that is estimation of unmixed signals y(t) = B(t)x(t)
from mixed signals x using an unknown de-mixing matrix
B such that they are as similar as possible to unknown
sources s.

In (1), both sources s(¢) and the mixing process A(¢) are
considered non-stationary in time. In speech processing,
sources (i.e. speech signals) are naturally non-stationary
since (i) phonemes (and even sub-phonemes) have dif-
ferent waveform statistics and (ii) a speaker may either
speak or be silent over the time. Also, the mixing model
may be non-stationary in time because speakers may have
motion relative to sensors (microphones). It is hard to
solve the problem in this case; however, if sources and
mixture can be considered piecewise stationary, a solution
is to divide signals to batches and solve the BSS on each
batch separately:

X (8) = Arsc(2)

2
Yo (£) = Bexc (8) @)

where 7 is the batch index iterating over all batches of
the signals. In this case, the mixing and de-mixing mod-
els (A;,B;) are time invariant during each batch. Another
solution is to consider adaptive source separation tech-
niques which is beyond the scope of this paper.

Independent component analysis (ICA) is the most well-
known family of solutions for BSS problems in which
algorithms such as Infomax [25], FastICA [26] and JADE
[27] (to name famous ones) try to estimate sources by
adopting the statistical independence assumption. The
solution of most ICA algorithms is based on optimizing
their specific objective functions J(B;x) which measure
the independence via different orders of signal’s statistics.
De-mixing matrix is then estimated by:

B, = argmin{J(B; x;)} (3)
B

2.2 Audio-visual speech processing

Before explaining AV source separation methods, it is nec-
essary to review some issues in AV speech processing
which also inherently arises in AV source separation:

e The speech signal and lip video are non-stationary in
time.

e The rate of speech samples and video frames is
significantly different. In this study, the speech signal
is recorded by Fs = 16,000 Hz while the video frame
rate is Fr = 30 fps.

e Speech signal and video frames have large numbers of
samples (pixels) containing sparse information. This
prevents creating audio-visual models directly from
these signals.

To cope with first two issues, in most speech process-
ing problems, speech is processed frame-wise with frames
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of 20 — 30 ms length where speech signal can be consid-
ered stationary. In AV speech processing, it is convenient
to choose speech frame length such that audio and video
frame rates are equal.

For handling the third issue, the routine solution is to
extract compact and informative acoustic and visual fea-
tures from speech and video frames such that each frame
is represented with a few number of parameters. Frame-
wise processing of speech is practical in most speech pro-
cessing tasks, but the amount of speech signal in a single
frame may be insufficient for source separation algorithms
to perform accurately. Hence, a couple of consecutive
frames must be used in each batch .

2.3 Audio-visual source separation

Consider problem of speech source separation in the case
of instantaneous mixture of Equation (2). Most solutions
(including ICA-based ones) have two major drawbacks
which limit their applicability. The major problem is that
ICA-based methods can estimate sources just up to a scale
D and permutation P

Y- ® = Drprgr ®) (4')

that is signal’s amplitude gain and their order cannot be
determined using these algorithms. The permutation of
estimated sources may also change within consecutive
frames, because sources are non-stationary in time and
space. Having true or at least stable ordering of sources is
crucial in most automatic speech processing applications.
Furthermore, ICA-based methods do not consider or per-
form weakly in case of noisy and degenerate mixtures (i.e.,
mixtures with M < N).

Incorporation of visual modality of speech as a source
of extra information, can help to solve these problems.
The permutation problem can be simply resolved and
enhancement in the separation performance is gained in
regular and degenerate mixtures.

Most AVSS algorithms work based on maximization of
AV coherency between unmixed signals y and their cor-
responding video streams. It is shown in [12] that given
coarse spectral envelope of sources, one can solve a system
of equations for calculation of de-mixing matrix in regu-
lar mixtures. Moreover there exists a stochastic coherent
relation between the speech spectral envelope and the
lip visual features [9,12]. These two facts have guided
researchers toward capturing AV relation using different
models and adopt it for AVSS tasks.

In [12] and [14], authors have proposed a joint statistical
distribution p,y (S, V) as an AV model which measures the
coherency between the acoustic spectral (S) and lip visual
(V) features of the speech in each frame. The distribution
Pav(S,V) is modeled by the GMM and is trained using a
corpus of corresponding AV streams via the Expectation
Maximization (EM) algorithm.
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Suppose that one of sources, say s!, is a speech signal for
which we have a video feature stream V! extracted from
the corresponding speaker’s lip region. Then, the AVSS
algorithm of [12,14] tries to estimate the first row of de-
mixing matrix B! for which the output y' = B!x produces
spectral features ))! as coherent as possible to the video
features V1. This can be done by minimizing the AV inco-
herency score of the following AV model which is defined
on each AV frame k:

Maemm (Vi VY = —log(p(Vi, V) (5)

However, due to the viseme-phoneme ambiguity problem
[28,29], it is possible that video features V! in some frames
be associated to many spectral configurations. Hence, the
single frame criterion (5) will result in very poor separa-
tion. Consequently, they have proposed a batch-wise AV
criterion which integrates joint log-likelihood on all the T'
frames of current batch t:

T
Jvamm(Bixe, V) = Y Mamm(V; k), VEK)  (6)
k=1

The summation in (6) is based on the assumption that AV
frames in consecutive frames are independent from each
other.

In the rest of this text unless mentioned otherwise, we
always consider a single row de-mixing vector denoted by
B corresponding to a single visual stream. For the sake
of brevity we omit the superscript (.)! of variables. It is
clear that in case of existence of multiple video streams
corresponding to more than one speech sources, all the
described methods can be repeated for each video stream.

3 Audio-visual speech source separation using
MLP AV modeling

Here, a method is proposed for separation of the source of
interest s from M mixed signals x. The goal is to estimate
B such that y = Bx be similar as possible to the original
source s. s is unknown but we have the visual stream V
corresponding to it, we can estimate B such that v (the
estimated visual stream corresponding to y), be as close as
possible to V.

A problem with objective function (6) of [12] and [14] is
that it does not efficiently model the non-linear AV rela-
tion (as is discussed later in this section). Also it considers
independence (i.i.d) assumption in modeling relation of
consequent AV frames. We suggest to improve the AV
criterion via more realistic assumptions.

Consider the batch-wise separation problem of equation
(2) where every batch t consists of T frames. It is ideal
to model and measure the degree of AV coherency on
the joint whole sequences of audio S;(1 : T) and visual
V:(1:T) frames considering the true dependency among
the variables. Let Mpr,(S;, V;) be such an ideal model
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which measures the degree of incoherency between AV
streams. Then, the de-mixing vector B; may be estimated
by minimizing the ideal AV criterion JayipL(B; X7, Vr) =
MipL (Y, Vo).

However, training such an ideal model is not practical
due to the need for large amount of AV training data and
also due to its train and optimization complexity. Hence,
considering some relaxation assumptions which factor-
izes the model to a combination of some reusable factor(s)
is inevitable. The independent and identically distributed
(i.i.d) assumption considered in GMM model of (6) is not a
fit assumption for modeling the speech AV streams. Thus
we propose an enhanced model with a weaker indepen-
dence assumption. Instead of considering absolute inde-
pendence between AV frames, we consider a conditional
independence assumption that is the coherency of an AV
frame can be estimated independent of other frames given
a context of a few (K) neighbor frames.

An extension of p.y(S,V) to model joint probability
density function (PDF) of K consecutive AV frames is
not efficient. GMM and Gaussian distributions with full
covariance matrices are not suitable for modeling large
dimensional random vectors since the number of free
parameters of these models is of order O(d?) relative to
the dimension d of input random vectors. Increasing the
input dimension by concatenation of K AV frames will
result in a very complex model with huge number of free
parameters that are not used effectively.

We propose to use a MLP instead of GMM and mean
square error (MSE) criterion instead of negative log prob-
ability (as incoherency measure) to provide an enhanced
AV criterion. The number of free parameters of an MLP
with narrow hidden layer(s) is of order O(d; + d,) relative
to dimensions d; and d, of its input and output. More-
over, MLP makes efficient use of its free parameters in
learning non-linear AV relation, according to its hierar-
chical structure compared to shallow and wide structure
of GMM. MLP, like GMM, is differentiable relative to its
input. Hence, an objective function defined based on MLP
can be optimized with fast convergence using derivative
based algorithms.

3.1 MLP audio visual model

Having acoustic and visual streams of feature frames S
and V extracted from pairs of corresponding AV signals
s and V (see Section 4.1), a context-dependent AV asso-
ciator can be trained using a suitable non-linear function
approximator: f/(k) = h(Sc(k)), where Se(k) = E(S(k—
K/2—1: k+K/2)) is an embedded vector obtained from a
context of K audio frames around frame k. An option for
embedding E, is to stacks the center frame of the context
and the first-order temporal difference of other frames. In
this paper, we adopt an MLP with K input audio frames,
one hidden layer of Ny neurons and a single visual frame
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as output, to approximate the AV mapping /4(.). The MLP-
based AV incoherency model Mpyp is then defined as

My (Ve(k), V(k)) = [V (k) — h(Ve(k)||? 7)

3.2 Audio visual source separation algorithm

To compensate for phoneme-viseme ambiguity, the MLP
model must be used in a batch-wise manner. Hence, as
in (6), AV criterion is boosted by integrating incoherency
scores of T frames in each batch t:

T
oML (BiXe, Vo) = Y Mip(Ver (k), Ve (k) (8)
k=1

Beside the difference in negative log probability and mean
square error, another difference between AV objective
functions (6) and (8) is the form of independence assump-
tion in measuring the incoherency. The former considers
absolute independence (i.e., i.i.d.) between the frames
while the later assumes conditional independence.

For each batch 7 of mixed signals and having a visual
stream )V, corresponding to one of the speech sources,
the goal of separation is to find the de-mixing vector B;.
As in (3), this can be achieved by minimizing AV contrast
function:

B; = argmin{]avMLP(B§ Xz, Vr)} )
B

This can be done via first- or second-order derivative-
based optimization methods. For example, using the delta
rule of gradient decent, we have

0JayMLP (B; X1, Vo)
0B

where 71 is the learning rate which either is set to a
fixed small number or is adjusted using line search. The
gradient of J,ymLp with respect to B (omitting constant
parameters for brevity) is calculated as:

Be(i) =B:(i—1) —n (10)

dJavmrr(B) 3 IMmLp (Ve, (k)
B 3B

P
—_

(11)

i ML Ve, (k) 3V, (k)

= Y. (k) 0B

—_

In the last summation, the first term is gradient of MLP
AV model with respect to its input acoustic context ), (k)
and the second term is gradient of acoustic features with
respect to the de-mixing model B. Gradient-based algo-
rithm iteratively minimizes the problem (9). Starting from
an initial point B; (0), at each iteration i, the gradient (11)
is calculated, and using (10) or a quasi-Newton method,
the improved de-mixing vector B; (i+1) is estimated. This
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continues until the change in the norm of B; or Joy MmLp (Br)
becomes smaller than a pre-defined threshold.

Since the AV contrast function is not convex, the opti-
mization algorithm is prune to local minima. Thus, selec-
tion of a good initialization point B;(0) is important. A
simple option may be to start from random initial points
multiple times. Most ICA algorithms (including FastICA
[26] and JADE [27]) start from uncorrelated or white sig-
nals. Thus, another suggestion for initial point B, (0) is to
apply PCA on mixed signals x; of the current batch t and,
among eigenvectors, select a vector W that produces a sig-
nal y = Wx which is most coherent with the visual stream
V; and use it as the initial point B; (0).

Both the proposed and existing AVSS algorithms do
not suffer from the permutation ambiguity due to the
informed nature of AV contrast functions. Nevertheless,
the scale indeterminacy should be considered in design of
AV contrast function and optimization method. AV model
must be invariant regarding a constant gain to audio sig-
nal; that is, it must comply with the following constraint:

JavmiLp(@B; X, V) = Jaymrp (B; X, V) (12)

3.3 AVSS using AV coherency and independence criterion
Although the existing and the proposed AV coherency-
based methods provide improvements in speech source
separation, but these methods totally neglect the useful
constraint of independence of the sources. The statistical
independence criteria used by ICA methods has been suc-
cessful in many BSS methods. In this section, we consider
the benefit of using AV coherency and statistical inde-
pendence together to gain more enhancement in speech
source separation.

3.3.1 Video-selected independent component

Due to permutation indeterminacy (4), separated signals
from ICA methods can not directly be used in real speech
processing applications. Further, to calculate output signal
to interference ratio (SIR) performance of ICA methods,
it is required to know which of the de-mixed signals is
related to the source of interest.

AV incoherency scores from AV models may be incor-
porated to introduce loosely coupled video-assisted ICA
[14]. For that, in each batch of signals, sources are esti-
mated by ICA method, and the source with minimum
incoherency relative to the visual stream is selected as
speech of interest. JADE [27] is one of the most success-
ful ICA methods because of its accurate separation and
its uniform performance (equivariance property). In this
paper, we use JADE algorithm together with MLP audio-
visual model (for relevant source selection) as the video
assisted JADE (denoted by JADE-AV).
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3.3.2 Hybridvideo coherent and independent component
analysis

Contrary to the previous section where a sequential and
loose combination of ICA and AV coherency model was
considered, here we propose a parallel and tight com-
bination using a hybrid criterion which benefits from
normalized kurtosis as a statistical independence measure
in conjunction with the AV coherency measure.

Kurtosis and neg-entropy are used in ICA methods
such as FastICA [26] which work by maximizing the non-
Gaussianity. The first kurtosis-based BSS method was
presented in [30] to separate sources via deflation. It starts
by pre-whitening the observed signals. Then the first
source is estimated as y = Bx' from white observations
x’ using a normalized de-mixing vector B. It is estimated
by maximizing the kurtosis of y, defined as kurt(y) =
E{y*} — 3(E{9*}))? (for zero-mean y) that is done via a
gradient-like method. The kurtosis value is zero for Gaus-
sian signals while it is positive or negative for signals with
super- or sub-Gaussian distributions. If both super- and
sub-Gaussian sources are expected to be extracted, then
absolute or squared value of kurtosis must be maximized.

In [26], Hyvarinen et al. proposed a fast fixed point
algorithm for solving the constrained optimization of the
kurtosis and a family of other neg-entropy-based criteria
under the normalized constraint for B which resulted in
the well-known FastICA algorithm.

The reason for pre-whitening and forcing normalized
constraint on B is that the kurtosis is not scale invariant
(i.e. kurt(ey) = a*kurt(y)) and hence it depends both on
energy and non-gaussianity of the signal. In [31] and [32]
normalized kurtosis defined as

kurt(y)

—_— 13
(E{y*H)? 3

kurt,(y) =

is adopted on direct observations. The normalized kurto-
sis is scale invariant (i.e. kurt,(ay) = kurt,(y),Va # 0).
Hence, it eliminates the necessity for pre-whitening and
normalization constraint on the de-mixing vector B. To
gain further improvement, we propose a hybrid criterion
based on combination of the AV criterion (8) and the
normalized kurtosis:

JavicaB; Xz, V) = Javmrp (B; X, V) — Akurt, (Bx;)
(14)

where A is a positive regularization coefficient. Since
speech signal is known to have super-Gaussian distribu-
tion [33,34], the kurtosis term is added with negative sign
such that it tends to be maximized during minimization
of (14).

It must be noted that, in short time durations, the
kurtosis score is not robust and does not provide signif-
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icant improvement. Thus, (14) is developed to be used
for convolutive case where quite large batches are con-
sidered. In fact, our tests revealed that for small batch
sizes used in instantaneous mixtures, the performance of
the AV method using kurtosis penalty does not improve
compared to the pure AV method.

3.4 Toward a time domain AVSS for convolutive mixtures
Here, we consider convolutive mixtures defined by a
MIMO system of M x N FIR filters A =[ A;]. The mixture
system can be represented in the the Z-domain as

X(2) = A(2)S(2) (15)
We are interested in estimation of a 1 x M row vector
B(z) of de-mixing FIR filters which separates the source
S(z) = B(z)X(2) that is as coherent as possible with the
video stream V!, In [31], a time domain algorithm based
on maximizing (normalized) kurtosis is presented which
deflates sources one-by-one using non-causal two-sided
FIR filters. We consider it as our baseline audio-only con-
volutive method in our experiments. Following [35], we
define an embedded matrix notation which transforms
the convoltive mixture (15) to an equivalent instantaneous
mixture. Let X' (#) be an embedded column vector defined
in each time step # as:

X () = [x'(n+1L), -, x'(n—=1L), - ,dMm+1L),- -,

Mn—10)]"
(16)

It contains M(2L + 1) observation samples and using it
the convolutive de-mixing process for separation of signal
s! can be expressed as y(n) = BxX'(n) where B is a row
vector containing coefficients of M de-mixing FIR filters
each one having 2L + 1 taps. This is just an instantaneous
mixture with M (2L + 1) virtual (embedded) observations
and can be solved using the kurtosis-based method of [31]
or using our proposed criteria (14).

As a final note, it should be mentioned that the refer-
ence method of [31], can estimate de-mixing filters up to a
scale and time delay. Thus, a cross-correlation step is nec-
essary to fix the possible delay of filters. For further details
please refer to [31]. When dealing with convolutive mix-
tures, it is necessary to calculate the objective scores on
longer segments of signals since there are larger number
of parameters to estimate.

4 Audio-visual data and models

Audio-visual corpus and model are building material
toward realization and evaluation of the proposed AVSS
algorithm which is a data-driven method. In the following,
we look at AV corpus creation and models training.
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4.1 Audio-visual data

To evaluate the proposed algorithm, we have recorded a
proper AV corpora which is comparable in (size and com-
plexity) to the corpora used in former research. Unlike
[11,12], we have not used lip blue make-ups in data
recordings since we do not need lip segmentation for
extraction of geometric features such as width and height.
Instead, the pixel gray values of speaker’s mouth region are
used to extract the visual parameters. We have recorded
two different types of corpora. The first corpus consists
of discrete Persian and English alphabet and digits with
a vocabulary size of 78 words (32 + 10 Persian and 26 +
10 English alpha-digits). The second corpus is continuous
and consists of 140 verses of Persian poets. Both corpora
are uttered by a male speaker. Each corpus is recorded two
times. The first recording is used for training AV models
and the second recording is used in evaluation phase.

In each recording, camera is focused on the speaker’s
mouth and a video stream together with a mono audio
stream is recorded. The raw video is captured in VGA size,
true-color format (RGB 24 bits/pixel 8 bits/color) and at
the frame rate of F, ~ 30 fps and audio is recorded using
16 bits/sample and at sampling frequency of F; =
16,000 Hz. The final mouth region video used in the
experiments of this paper, is stored in true-color 160 x
120 resolution frames. Sample lip region images from
audio-visual corpus are shown in Figure 1a.

4.2 Audio and video parameter extraction
As discussed before, speech signal and lip image frames
are high-dimensional data with sparse information related
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to our task. Thus, parametrizing audio and visual frames
to compact vectors is necessary. Here, we clarify the
methods for audio and visual feature extraction.

4.2.1 Audio parametrization
In most speech processing tasks, log spectral envelope
(cepstral) features are utilized as effective features. We
use PCA projected (whitened) log power spectral den-
sity for the speech frames parametrization. Let Y (k) =
f(y(k)) = f(Bx(k)) be acoustic feature mapping func-
tion which extracts k, spectral envelope features ) from
every frame k of the estimated signal y. In practice, audio
features ) are extracted from the spectrum Y of the de-
mixed signal y. Since for the separation algorithm we need
to efficiently calculate ) and its derivative with respect
to the de-mixing vector B, we define an alternate audio
feature extractor function F(.) which efficiently extracts
features from the frequency domain representation of y:
Y(k) = F(Y(K)) = F(BX(K)) (17)
where Y = % {y} and X = .% {x} are the fast Fourier trans-
form (FFT) of y and x, respectively. In the right-hand side
(RHS) of (17), we have used the linear property of FFT that
is, for every matrix B, % {Bx} = B.%{x}. Thus, we can
pre-calculate X using FFT and then for any value of the
de-mixing vector B the frequency domain de-mixed signal
Y (and its derivative) can be efficiently obtained without
FFT recalculation. As in [14], we have considered n = 32
spectral coefficients in the range [0, 5,000] Hz as Y (k) for
each frame. Power spectrum vector of each frame Y (k)

V(64)  V(128)  V(256)

V(512)

V(2048) V(4096)

V(1024)

(b)
30 WVl 2O’|VVl %HWI fiv +O'|W1 JrQGNVl +501W1

(c)
Figure 1 Visual modality: data and parametrization. (a) Shows some frames (k = 64, 128, 256, 512, 1024, 2048 and 4096) of visual input V(k)
from train set of the poet verses corpus. (b) Shows top seven eigen-lips W/, with largest eigenvalues. (€) Demonstrates the effect of varying the
average image of all frames in the direction of the major principal axis (W) with —3,—2,—1,0,1,2 and 3 times of square root of the corresponding
eigenvalue (o) which has resulted in synthetic opening and closing of lips.
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is then defined as PSy (k) = [Y (k) ® Y*(k)]T, where ®,
()* and ()T are element-wise product, complex conju-
gation and transpose operators. Although the lip and the
speech spectral envelope shapes are correlated, but there
is not any meaningful relation between the lip shape and
speech loudness (energy). Thus, it is important to normal-
ize the energy of power spectrum in each frame resulting
in power spectral density (PSD). The PSD coefficients are
then converted to decibels (dB) using logarithm

PSy (k)

log PSDy (k) = log <||Y(k)||2>

(18)
Finally, whitening is applied to reduce the dimension
of acoustic feature vectors to k, elements. The acous-
tic whitening matrix W, € R"*k is computed from the
train data using eigen-value decomposition and is used to
project train and test feature vectors to k,-element com-
pact spectral acoustic vectors. The overall acoustic feature
extraction function F(Y) is defined as follows:

— (B _ w7 [(BX(K)) ® (BX(k))*]”
Y(k) = F(B; X(k)) = W log ( BXCOE )

(19)

The Jacobian of F with respect to B is derived in the
Appendix in Equations 22, 23 and 24. The derived for-
mulas are efficient and do not need FFT recalculation
for different values of B. It is also worth to mention that
the mapping F is invariant regarding a scalar multiplica-
tion (i.e. F(aB; X(k)) = F(B;X(k)), Vo # 0). A property
that entails gain invariance property (12) in AV contrast
functions (6) and (8).

4.2.2 Video parametrization

In previous works, such as [11,12,14], authors have used
geometric lip parameters that need lip contour detection
to estimate the width and height of interior lip contour.
We extract holistic visual features from all pixels of the
mouth region. This requires less computation and does
not require contour fitting. Let function g(.) be visual fea-
ture mapping function which extracts k, visual features
from any video frame. We assume that mouth region can
be extracted from video using detection and tracking algo-
rithms. There exists efficient parametric head tracking
algorithms such as [36] which can be adopted for this task.
The corpus used in this paper simply provides lip region
in each frame. To extract k, visual features, the mouth
region of each frame is shrunk to 32 x 24 pixels and
then reshaped to 768 x 1 image vectors. Finally, a PCA
transform is applied to extract visual features. The PCA
matrix W, € R768*% is computed from the train data and
is used to project train and test mouth region images to
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ky-element visual parameter vectors. Figure 1b represents
top major eigen-vectors (eigen-lips) in order.

The overall visual feature extraction function is defined
as normalized projected gray values of mouth region:
V(k) = g(Vk)) = Q‘Zw WVT V(k), where Q,, is the diagonal
scaling matrix calculated from square root of correspond-
ing eigen-values.

To assess and understand the virtue of visual features, a
simple yet insightful simulation is illustrated in Figure 1c.
In PCA, the eigenvector with largest eigenvalue captures
most of the variance of dataset. Most variance of lip
images during speaking is along opening and closing of
lips. Thus, it is expected that the principal eigenvector
W! will model this direction of variation. To check this,
we calculated mean vector p, of all video frames in poet-
verses train corpus and illustrated its variations along
the principal eigenvector W! with negative and positive
integer multiplies of square root of corresponding eigen-
value o7. Results presented in Figure 1c show that this
has resulted in synthesized opening and closing of lip
images.

Figure 2a,c demonstrates two segments of discrete and
continuous speech from alpha-digits and poet-verses cor-
pora and Figure 2b,d shows the corresponding first visual
feature (before normalization). In discrete or slow speech,
first visual feature shows a quasi-periodic shape corre-
sponding to the periodic lip opening and closing. In con-
tinuous or fast speech, lip opening and closing is partial
and this makes it more complex.

4.3 Building audio-visual models

In addition to estimation of transforms W, and W, that
are part of the AV feature mapping functions f(.) and g(.),
the train set of each corpus is used to learn the AV mod-
els. The training set consists of synchronous sequences
of AV pairs (S(k), V(k)) extracted from the raw AV data.
For training models with K > 1, first, the embedded
acoustic stream S, is formed by K-fold embedding of
frames of acoustic stream S. Instead of stacking the K
frames of context, it is better to stack the center frame
together with temporal difference of other frames. This
reduces the redundancy in the embedded vector. Then,
embedded pairs (S.(k),V(k)) are used to train models.
Both GMM and MLP models are trained with differ-
ent context sizes for fair comparison. But as experimen-
tal results of Section 5.1 shows, GMM degrades with
K>1.

For training GMM models, AV components of each pair
are concatenated and considered as samples of joint PDF
Pav(.,.). These samples are used for estimation of GMM
parameters using maximum likelihood via expectation
maximization (EM) algorithm [37]. GMM distributions
with various configuration of parameters (k,, k,, Ny, K)
are trained. To assure good training, for each setting,
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Figure 2 Sample segments of speech signal and first visual feature corresponding to them. (a,c) discrete and continuous speech segments

from alpha-digits and poet-verses corpora. (b,d) First visual feature corresponding to (a,c).

GMM distribution is trained 20 times using EM with ran-
dom initialization and the best model is selected based
on a validation subset of training data. Regularization by
adding a small positive number in range [ 1071%,1072] to
diagonal elements of covariance matrices was adopted to
hold positive definiteness where necessary (specially for
models with larger random vector dimensions).

MLP AV models are also trained on AV pairs
(Se(k), V(k)) with S.(k) as input and V(k) as output.
MSE criterion between true and estimated outputs V (k)
and )>(k) is used as the performance measure in train-
ing. This is the same criterion as what is used in contrast
function (8). Networks were trained using the Levenberg-
Marquardt algorithm [38] and via early stopping based
on validation subset to avoid over-fit. As for GMM, MLP
models with various configuration of parameters (k;, ky,
N, K) are trained. To avoid local minima in training, each
model is trained 20 times with random initialization and
the best model is selected based on the validation subset.

5 Experiments and results

For evaluation of the proposed method, we have con-
ducted four sets of experiments at different stages. First
fitness of AV models in capturing AV coherency is evalu-
ated with some initial experiments providing enough data
for hyper-parameter selection of models. Then, multiple
source separation experiments on regular (N x N) and
degenerate (M x N, M < N) cases are conducted to com-
pare performance of proposed MLP-based AVSS method
with GMM-based AVSS and JADE-AV method (defined
in Section 3.3.1). Finally, experiments on convolutive 2 x 2
mixtures with filters of different length are presented to
compare performance of the audio-only and the proposed
hybrid method.

5.1 Audio-visual models assessment and selection

In this experiment, we pre-evaluate fitness of AV models
and explore the effect of different parameters on their per-
formance. Both MLP- and GMM-based AV models need
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training and have hyper-parameters to be selected. We
should choose proper dimensions k, and &, of acoustic
and visual parameters, the embedding context size K, the
number of hidden neurons Ny of MLP and the number of
Gaussian components N of GMM models. Although val-
idation scores of trained models can be used to select best
GMM and MLP models, but selection of models based on
their capability of discrimination between coherent and
incoherent speech is more reasonable since models are
aimed to be used for source separation. Furthermore, such
an experiment provides insights in virtual potentials of
coherency-based AVSS methods.

5.1.1 Audio-visual pure relevant source detection

In this experiment, we compare incoherency scores
between a visual stream V! and two pure audio signals:
a coherent signal s' and an irrelevant signal s2. For each
frame in the test set, the signal which produces minimum
incoherency score is recognized to be coherent with
VL. Experiments are performed for both AV models
Maevm (S, V) (5) and Mpyp(S,V) (7). For each model,
different values of hyper-parameters k, € {2, 4, 6, 8, 10, 12},
k, € {2,4,6,8), Nu,Ny € {4,8,12,16,20,24,28}, K €
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{1,2,3,4,5,6} are examined. Finally, the percent of all
frames which signal s! is truly selected is reported as
classification accuracy for different values of batch size T.

In [14], authors have evaluated the classification rate
just against a single irrelevant signal which is uttered by
a different male speaker. Our initial experiments revealed
that classification accuracy for different irrelevant signals
is variable depending on the speaker, the speech content
of signal and alignment of silent parts of coherent and
incoherent signals. Thus, to provide classification rates
with high confidence, we conducted multiple simulations
by performing coherency classification on the relevant
signal s'y against six distinct speech signals for s> and
reported the average recognition rate as the performance
of models.

Furthermore, it is possible that AV models, in addition
to AV coherency of speech, capture some parts of AV
identity of speaker. To check for this, we chose coher-
ent and irrelevant speech signals both from the same
speaker. As much as AV models have captured speaker
identity, this provides a classification problem which is
more confusing and complex for them relative to choosing
irrelevant signals from different speaker(s).

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
g i
e —e— MLP T=16
g | | —*—mMLP T=8
g —=— MLP T=4
8 ---0--- GMM T=16
g =< GMM T=8
g 8--- GMM T=4
o J
R
G. L=
70 “E'__E‘n“* i
hal
S S S T S S S S S S S S T S A S R R SRR
224 6 8 1012) 424 6 8 1012) 6:24 6 8 1012) 824 6 8 1012)
kv:(ka)
(a)
T T T T T T T T T T T T T
| ! + )
$ o5t N
3 %
= s ! —e— MLP T=16
Ty H WA
42 4 6 8 10 12) 62 4 6 8 10 12) 82 4 6 8 10 12)
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Figure 3 Video coherent speech detection on pure relevant and irrelevant signals. (a) Results for different configurations of model type
(MLP,GMM), ka (2,4,6,8,10,12), kv (2,4,6,8) and T (4,8,16). (b) Error bars (95% confidence interval) for curves with T = 16. Other free parameters are
marginalized by maximum selection (see text for more details).
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Table 1 Optimal embedding context size (K) and model
sizes (Ny of GMM and Ny of MLP)

GMM (K /Nar) MLP(K /Ny)
ke k2 4 6 8 2 4 6 8
2 14 116 1/28  1/8 420 4/16 420 6/28
424 124 124 1720 420 3/16  2/24  3/16
6 1/28 1/20 1/24 /24 48 224 316 2/8
8 /8 1/8 1/28 1/28 220 2/16  2/28  2/16
10 1/24 128 1/28  1/24 216 2/28 216 2/16
12 1/8 116 1/20 1720 44 216 220 4/8

Optimal values are selected using cross validation for different values of kg4
and k.

Comprehensive classification rates are presented in
Figure 3 for both GMM and MLP models and for differ-
ent values of k,, k, and T as free parameters. In this figure,
other parameters (Ny of MLP, Ny of GMM and K of
both models) are marginalized by selecting the maximum
accuracy among them.

Table 1 presents optimal values for hidden (marginal-
ized) parameters (Ny, Njs and K) of Figure 3 for different
k, and k, configurations in both GMM and MLP models.

The common trends in classification rates of Figure 3
reveals following points:

1. Accuracy of both MLP and GMM models is
enhanced by increasing the number of batch frames
T, acoustic features k, and visual features k.

2. Among these factors, batch size T has the highest
impact and this is followed by kg; finally, &, has the
lowest impact.

Comparing the trends in Figure 3 for MLP and GMM
models, also reveals interesting points:

1. MLP model performs significantly better relative to
GMM in various AV dimensions.
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2. In lower visual dimensions (k, = 2), MLP
outperforms with a 10 — 15% gap relative to GMM
model. In this case, even performance of MLP with
worst condition (batch size T = 4) is 5 — 6% higher
than GMM with best condition (batch size T = 16).

3. In higher visual dimensions (k, = 6, 8), the difference
between GMM and MLP is somewhat reduced.

4. The improvements by increasing number of features
k, and k, is bounded. For k, > 8, in MLP, k, > 6 in
GMM and k, > 8 in both models, no more
significant enhancement is achieved. The model
complexity increases in O(K.k; + k) for MLP and
O((K .k, + ky)?) for GMM and in some point, this
results in over-complex models for the problem
(considering the amount of available training data).

5. Contrarily, improvements by increasing batch size
(T) continues upward and may reach perfect
accuracy for enough large T values. This is because
the value of T does not change the model size while
increasing it introduces more information for
decision making. However, it is important to
mention that for real AVSS tasks, we cannot increase
T arbitrarily. This makes the stationary assumption
considered in the mixture model (2) invalid. Hence,
there is a trade-off on the value of T between the AV
model accuracy and the mixing model fitness.

Finally, results of optimal K, Ny and Ny values pre-

sented in Table 1 reveals that

1. Invarious k, and k,s, GMM always has performed
better with K = 1 frames in embedded context
which means GMM can not capture temporal
dynamics by frame embedding due to quadratic
order of parameters.

2. MLP always has performed better with K = 2 frames

(for greater k) or K = 4, 6 frames (for smaller k,) in
embedded context showing that it can capture some
temporal dynamics.

Classification Rate (%)

55
224 6 8 1012) 424 6 8 1012)

Figure 4 Video coherent speech detection on mixed relevant and irrelevant signals. Both relevant and irrelevant signals are mixed at different
but close SIR levels. Other configurations are the same as in Figure 3 (see text for more details).

624 6 8 1012)
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824 6 8 1012)
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Table 2 Average input (mixed) SIRs in decibels for both
corpora and for different M x N mixing matrices

Ch.i Alpha digits Poet verses

2x2 2x3 3x3 5x5 2x2 2x3 3x3 5x5
Ch.1 06 =25 =32 -90 —-07 =39 —45 =102
Ch.2 —-18 —-48 —-59 -86 -32 —-61 =73 =99
Ch.3 - - 04 —8.8 - - —-09 =101
Ch.4 - - - —82 - - - —94
Ch.5 - - - —6.7 - - - —-80

SIRs values are calculated with respect to s’ (SIR(x|s')) and they are averaged
over all simulated input random matrices and all frames for each corpus.

3. Both GMM and MLP models exploit maximum
average number of latent units in k, = 6 which
seems to be efficient optimal visual dimension size
according to results of Figure 3.

5.1.2 Audio-visual mixed relevant source detection

Recall that classification results in Section 5.1.1 are based
on comparing the incoherency scores between pure rel-
evant and irrelevant speech signals. This entails that AV
models are well suited for selection of a clean relevant
source among multiple available irrelevant signals. For
example, it will perform well for relevant source selection
in AV-assisted ICA-based source separation method (i.e.
JADE-AV) discussed in Section 3.3.1.

In AV separation algorithms, models must provide
scores for signal of relevant source which is more or less
contaminated by other sources specially during first iter-
ations of the optimization algorithm. Hence, a good AV
model must be such that it provides decreasing inco-
herency scores for increasing amounts of SIR. Therefore,
we conducted another experiment to assess how well AV
models comply with this property. Let & = s + a;s? be a
mixed signal composed of source s' coherent with visual
stream V! and an irrelevant speech or acoustic signal s2.
Mixed signals at different SIRs can be generated using dif-
ferent values for mixing coefficient «;. We generated a set
of mixed signals & with SIRs in range [—5,30] dB and
performed classification using incoherency score compar-
isons between signal pairs (&;, £;+1) at different SIR levels.
Here, the classification accuracy is defined as percent of
all frames which the signal with higher SIR is selected.

Table 3 Average output SIRs in decibels for 2x 2 case
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Figure 4 shows average classification accuracy measured
at different SIR levels for all GMM and MLP models tested
in previous experiment.

Generally, trends of Figure 4 shows similar properties as
was discussed for Figure 3. The major point is that classi-
fication accuracies of best models on mixed signals &;,&;+1
is something about 10% less relative to classification of
pure relevant and irrelevant signals. Such a degradation is
predictable since signals &; and &;4; are very similar. But
the interesting note is that superior models in the pure
classification have approximately kept their superiority in
the mixed case. This means that optimal model configu-
rations which are better for classification task, may keep
their position in separation task. As before MLP models
are superior to GMM models but the large gap between
them is somewhat reduced.

5.2 Source separation experiments

5.2.1 Separation performance criterion

In our experiments, we will simulate the mixing pro-
cess using some mixing matrices. Thus, we have original
source signals and it is possible to calculate the SIR of
each acoustic source specially the source of interest (s')
in all mixed and de-mixed signals. Let e(s’) be the energy
of source i and « be the i mixed signal produced by the
mixing matrix A. Then SIR of s! in each of input-mixed
observations can be calculated as

N
SIR(x'|s") = 10log,g(afie(s")/ D age(s))
j=2

(20)

where a;; is the element of mixing matrix at positions i, ;.
The input SIR is useful for analysis of complexity of mixing
matrices utilized in simulations. Similarly, consider B as
estimated de-mixing vector for source s! and let G = BA
be the global mixing and de-mixing vector for this source.
Then output SIR of s! in estimated de-mixed signal y can
be calculated as:

N
SIR(y|s!) = 1010g10(gfle(sl)/ ngje(s/)) (21)

j=2

The output SIR criterion is widely used in performance
evaluation of source separation algorithms when original
source signals or mixing systems are available [39]. Since

T Alpha digits Poet verses
JADE-AV GMM-AVSS MLP-AVSS JADE-AV GMM-AVSS MLP-AVSS
4 183 24.0 27.7 7.1 1.9 133
8 287 295 35.1 229 194 214
16 329 359 399 30.8 30.2 321
32 37.1 396 438 36.3 36.5 385
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T Alpha digits Poet verses
JADE-AV GMM-AVSS MLP-AVSS JADE-AV GMM-AVSS MLP-AVSS
8 182 19.9 238 1.0 9.0 10.1
16 228 253 29.1 1838 18.2 19.8
32 27.1 287 31.6 257 254 26.7

in our experiments, we perform batch-wise separation,
the output SIR is averaged over all batches in the test set.
It is worth to mention that in convolutive mixtures, the
SIRs must be calculated up to an allowed arbitrary filter-
ing of the sources. This can be accomplished, using the
decomposition method of Vincent et al. [39].

5.2.2 Separation in regular N x N mixtures

In this experiment, we consider regular N x N mixtures
with equal number of sources and sensors. Simulations
are performed for mixtures of different sizes N = 2,3,5
and separation performance in terms of output SIR (21)
is presented. Experiments are conducted on the test set
of both alpha-digits (Persian and English) and poet-verses
(Persian) corpora (see Section 4.1 for corpus details). Each
corpus consists of a pair of synchronous audio and visual
streams of frames. From each corpus, 3,000 frames are
exploited in separation simulations. The audio stream
from test corpus is considered as the relevant source s!
and for other N — 1 sources, speech signals of the same
length are used. These speech signals are selected from a
supplementary corpus recorded from other speakers with
the same sampling frequency.

Since the performance of GMM- and MLP-based AVSS
methods is not uniform in different mixture matrices, we
have conducted Monte-Carlo (MC) simulations with 20
different random mixing matrices for each mixture size
N x N. Table 2 summarizes the average mixed input SIR of
each sensor with respect to s! in various mixtures. Input
SIRs are also useful in analysing the gained SIR specially in
degenerate mixtures where output results is very sensitive
to chosen mixing matrices. Mixing matrices are kept the
same for both corpora. For each corpus and mixture size,
input mean SIRs are obtained by calculating average on all
the simulated random mixing matrices.

For each corpus and mixture size, speech source sep-
aration using, JADE-AV, GMM-AVSS and MLP-AVSS

Table 5 Average output SIRs in dB for 5x5 case

methods are conducted to all simulation matrices in order
to estimate the de-mixing vectors. Then, the average out-
put SIRs is calculated over all estimated de-mixing vectors
and all batches of separated signals. Results are presented
in Tables 3 (for N = 2), 4 (for N = 3) and 5 (for N = 5).
Since in this experiment, mixing matrices are squared and
invertible, relatively high-output SIRs are achieved in all
tested configurations. Analysis and comparison of results
in terms of separation algorithms, batch integration size,
mixture size and corpus reveals the following points:

Effect of discrete and continuous speech: The perfor-
mance of all methods is higher on alpha-digits corpus
compared to poet-verses. Alpha digits corpus is discrete
and poet-verses corpus is continuous. It is obvious that
continuous speech is more complex for AV modeling since
lip formations are not well expressed due to speech speed
(co-articulation) and also since in continuous corpus there
is much number of different words and phonetic contexts
which increases the phonetic complexity.

Relative separation performance of methods: In lower
mixture sizes (N = 2,3), MLP-AVSS method provides
higher output SIRs relative to GMM-AVSS and both of
them are superior to JADE-AV for alpha-digits corpus. In
N = 3,5 and for poet-verses corpus, the performance
enhancement gap between AVSS methods and JADE-AV
is reduced. In this case, performance gain of GMM-AVSS
is marginal and some times worst relative to JADE-AV.
The superiority of MLP-AVSS relative to GMM-AVSS
is consistent with classification accuracies of MLP and
GMM-based AV models presented in Section 5.1.

Effect of batch integration time (T): The performance
of all methods increases with increasing the number of
frames in each batch. Increasing the integration time
enhances accuracy of contrast functions (6) and (8) (see
Section 5.1) and also reduces spurious local minima in
the optimization landscape. For JADE-AV algorithm, in
addition to improved accuracy of AV contrast, increasing

T Alpha digits Poet verses
JADE-AV GMM-AVSS MLP-AVSS JADE-AV GMM-AVSS MLP-AVSS
8 49 1.9 13.8 —1.2 04 22
16 16.1 219 24.3 10.1 103 1.7
32 20.3 26.2 294 17.0 17.2 19.1
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T Alpha digits Poet verses
JADE-AV GMM-AVSS MLP-AVSS JADE-AV GMM-AVSS MLP-AVSS
16 39 4.7 59 —05 —038 1.1
32 4.1 52 74 —06 —07 29
64 4.5 6.5 89 1.6 2.8 6.7

integration time allows better estimates of higher order
statistics of signals which affect separation quality of JADE
algorithm. But recall that in real applications with non-
stationary mixtures, there is a trade-off for increasing
number of frames in each batch (see Section 5.1).

5.2.3 Separation in degenerate M x N, M < N mixtures
In this experiment, we performed Monte Carlo simula-
tions with 20 random matrices of size M x N = 2 x 3.
Average mixed input SIRs of two channels on all simulated
random matrices and for all test frames of each corpus is
presented in the corresponding columns of Table 2. Like
before, de-mixing matrices are estimated by running the
proposed and baseline source separation methods. Results
are presented in Table 6.

In this case, the mixing matrices are degenerate and
have not exact inverse. Hence, the perfect recovery of
sources is not possible and SIRs are worse relative to
regular N x N simulations. AVSS methods show slight
improvements relative to JADE-AV methods. The perfor-
mance of MLP-AVSS is again superior to GMM-AVSS
as is predicted. In this experiment, results were highly
dependent on mixing matrix. In some mixtures, output
SIRs near to 10 dB were achieved while in some others
negative output SIRs were observed.

5.2.4 Separation of convolutive 2 x 2 mixtures

In this experiment, we considered separation of 2 x 2 con-
volutive mixtures using methods described in Section 3.4.
We generated random mixing systems for each filter size
(2L + 1) and simulated the mixtures. The separation was
conducted with the same number of (2L + 1) taps for each
de-mixing filter. Due to the complexity of the convolutive
problem, it is necessary to use large batch sizes. So we con-
sidered batches of 5 s. Results in terms of output SIR are
presented in Table 7.

For L = 0, the mixture is instantaneous and separa-
tion is possible with high SIR. But for L = 2 (filters with
five taps) and for higher degree of mixing and de-mixing
filters, the SIR decreases to about average 9 dB for audio-
only method of [31] and 11 dB for the hybrid AV coherent
and independent method proposed in Section 3.4.

6 Conclusion
In this paper, we proposed an improved AV associa-
tion model using an MLP which exploits the dependency

between AV frames and is superior to the existing GMM
AV model. The MLP model makes efficient use of its
parameters relative to the GMM model. Hence, unlike
the GMM model, it can capture temporal dynamics from
a limited context of frames around the current frame
to enhance the coherency measure. We also proposed a
hybrid criterion which exploits AV coherency together
with normalized kurtosis as an independence measure
and, based on that, moved toward a time-domain convo-
lutive AVSS method. Experimental results for comparison
of the methods are presented in terms of the relevant sig-
nal classification accuracy and also the separation output
SIRs. Results, confirms the contribution of the proposed
neural-based AV association model in enhancement of
AV incoherency scores and hence in improvement of the
separation SIRs compared to the existing GMM-based
AVSS algorithm and the visually assisted ICA (JADE-
AV) method. Also, results of the time-domain convolutive
method, using hybrid AV criterion shows improvement
compared to the reference audio-only method.

For visual parametrization part, we have used normal-
ized PCA-projected (whitened) lip appearance features.
PCA features do not need exact lip contour detection and
hence require less computation compared to extraction of
lip geometric (width and height) parameters. But it also
has the drawback of being more sensitive to the speaker
and segmentation of the lip region. The fitness of PCA
features for AV modeling and AVSS task is justified by
qualitative illustrations and numerical results. However,
the proposed AVSS method is not coupled to the PCA
visual features and it can be adopted with more robust and
accurate visual features.

Although proposed model improves quality of AV mod-
eling, but further enhancements is both required and
predictable to make these methods applicable in more
complex phonetic contexts and speaker-independent sit-
uations. AV relation is both non-linear and stochastic.

Table 7 Average output SIRs in dB for 2x 2 convolutive
case

Method/L L=0 L=2 L=5 L=10 L=15 L=20 L=25

kurt, [31] 362  10.1 9.6 9.7 89 85 8.6
Javica (14) 435 117 109 1.5 109 10.7 10.8

Results for various mixing/de-mixing filter sizes (2L + 1) are presented. Batch size
is about 5 seconds.



Kazemi et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:47

http://asp.eurasipjournals.com/content/2014/1/47

GMM benefits from its capability in probabilistic model-
ing. But GMM fails to efficiently handle the non-linearity
and temporal dependency. On the other hand, MLP seems
to benefit from its relatively deep structure and effi-
cient use of its parameters, but it does not truly consider
stochastic property of AV relation. Further improvements
may be gained by introducing a model which can effi-
ciently handle both the non-linear and the stochastic
relations of the two modalities as well as the temporal
dependency. Also, it seems promising to consider more
essential combinations of ICA- and AV coherency-based
methods to jointly gain benefits of both informed and
blind methods.

Finally, it is worth to mention that in this paper, we
did not consider the inter-batch temporal dynamics of
de-mixing vectors and separated signals. It is possible
to adopt this temporal information for example using a
Bayesian recursive filtering approach to improve the per-
formance and speed of proposed methods. Also, it is pos-
sible to adaptively determine the working batch size based
on the amount of inter-batch variations of the de-mixing
vectors.

Appendix

Here, we derive the gradient %ng) which is required in
calculation of (11). The embedded acoustic vector )V, (k)
is composed from individual acoustic frames )Y (k). So
we first need to calculate the gradient aja]—l(gk) which is a
Jacobian matrix of the size k, x M. Starting from (17) and
(19), we have

aY(k) _ dF(BX(k))
B 0B
_ oW [ log(PSDgx 1)) (22)
N dB
dPSD
=w’ [agx(k) %) PSDBX(k)]

where (Wg)kax,, is the PCA (whitening) transform,
(PSDpx(k))nx1 is the power spectral density vector of

aPSD
frame k, (87;3%)
nxM

respect to B and @ is the element-wise operator which
divides each column of the left matrix by the right vector.
The Jacobian of PSD is also calculated as:

is Jacobian of PSD vector with

PSBx(k)
0PSDpx(ky _ ZiPShxgy
9B 9B
3PSpx(k ; DSy «
_ a%()ziP%X(k)_PSBX(k)Ei aBé(()
(Eipsjgx(k)ﬂ
(23)

Page 15 0of 16

where (PSpx(x))nx1 is the power spectrum vector,
3PSBX(k) ) .
— is
9B nxM
Jacobian matrix of the PS vector with respect to B and

(EiPSEX(k))lxl is sum of its elements, (

aPS} . . .
(% 3‘2‘(") )1xa is the sum of rows of the Jacobian matrix.

Finally, the Jacobian of PS is calculated as

OPSpxy _ 0 [(BX(K) ® (BX(k)*]"
B dB
2 217
_ 3 [Re{BX(k)} ; Im{BX(k)}?] 24

2 [Re{X(k)} ® Re{BX(k)}]”
+ 2 [Im{X(k)} ® Im{BX (k)}]*

A where Re{.} and Im{.} are real and imaginary part
operators. Equations 22, 23 and 24 are derived for the cal-
culation of Jacobian of a single frame. In our MATLAB
implementation, we have derived more complex matrix
forms which allows calculation of Jacobian of multiple
acoustic frames (i.e. all frames in a batch) using effi-
cient vectorized computing. Having Jacobian of individual
acoustic frames ) (k), we combine the theme to obtain the
Jacobian of embedded acoustic vectors Y, (k). This is done
according to the definition of the embedding method E.
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