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Abstract

In this paper, a fuzzy logic-based recursive least squares filter (FLRLSF) is presented for maneuvering target tracking
(MTT) in situations of observations with unknown random characteristics. In the proposed filter, fuzzy logic is
applied in the standard recursive least squares filter (RLSF) by the design of a set of fuzzy if-then rules. Given the
observation residual and the heading change in the current prediction, these rules are used to determine the
magnitude of the fading factor of RLSF. The proposed filter has an advantage in which the restrictive assumptions
of statistical models for process noise, measurement noise, and motion models are relaxed. Moreover, it does not
need a maneuver detector when tracking a maneuvering target. The performance of FLRLSF is evaluated by using a
simulation and real test experiment, and it is found to be better than those of the traditional RLSF, the fuzzy
adaptive α-β filter (FAα-βF), and the hybrid Kalman filter in tracking accuracy.

Keywords: Maneuvering target tracking; Adaptive filter; Recursive least squares filter; Fading factor; Fuzzy logic;
Heading change
1 Introduction
Maneuvering target tracking (MTT) is always a critical
problem in target tracking area [1-5]. In the literature on
MTT in sensor network, its survey primarily consists of
target dynamic models, observation models and tech-
niques, decision-based methods, multiple-model methods,
and nonlinear filtering methods. The adaptive filters are
popular to apply in MTT as a nonlinear-type filter; they
are mainly classified as follows [2]: structured adaptive fil-
ters, such as the interacting multiple model (IMM) and
the variable structured model; parametric adaptive filters,
such as the Singer model, the current statistical model,
and the adaptive acceleration model. Structured adaptive
filters, usually with more computation, require sufficient
prior knowledge such as all possible motion models of a
moving target. So, they are less suitable for real situations
with limited prior knowledge. Parametric adaptive filters,
generally with less computation, describe maneuver char-
acteristics as unknown random parameters with certain
probability distribution functions (pdf) and estimate man-
euver models jointly by both the parameters and the target
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states [2]. Recently, particle filters are broadly adopted in
various applications, such as location estimation [6-8].
However, their tracking performances are combined in
proportion to the number of the corresponding particles
in target tracking. Moreover, the computation of these fil-
ters is generally complicated. Hence, they are unsuitable
to apply in real-time tracking [9-11]. In real sensor net-
works, observations or state estimates are generally trans-
mitted without their covariances. They are processed in
sensor nodes or fusion centers. To relax transmission bur-
dens and save communication bandwidths, the filters de-
signed need to possess good performances in both
computational and time complexity. For the above rea-
sons, this paper is only concerned with parametric adap-
tive filters.
Maneuver modeling which is a usual prerequisite for

MTT has a direct influence on tracking results [5]. Sev-
eral techniques have been introduced to overcome dif-
ferent maneuver modeling. MTT methods based on
statistical models often need to establish motion models
exactly and obtain the target position timely. Unfortu-
nately, these requirements are difficult to satisfy because
of unknown maneuver characteristics in real situations.
To solve the problem, one of the most popular tech-
niques has been applied in MTT. Fuzzy logic with
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intelligent adaptation capabilities has been widely used
to relax or avoid the restrictive assumptions of motion
models [12-16]. Due to the limitation of the standard
IMM algorithm in real applications, the adaptive fuzzy
IMM filter (AFIMMF) proposed in [12] defines several
basis sub-models and time-varying mode transition
probabilities to reduce its computational complexity.
Nevertheless, it suffers from a deficiency originated in
expensive computation of the time-varying mode transi-
tion probabilities. Moreover, its performance depends on
the assumptions on the basis sub-models. Two different
modified Kalman filters proposed in [13] and [14] tend
to extend the standard Kalman filter for MTT. Nonethe-
less, their computation is still expensive, and the pro-
posed hybrid Kalman filter (HKF) in [14] is mainly
applied to track an accelerating target. To track a target
making sharp turns or accelerating at nonuniform rates
in stressful environments, the fuzzy gain α-β filter (FGα-
βF) is proposed in [15]. It can avoid any assumptions on
statistical models by utilizing fuzzy rules to determine
the magnitudes of α and β. However, its tracking result
in the case where sharp turns appear is not improved
markedly. For perfect tracking accuracy, the fuzzy adap-
tive α-β filter (FAα-βF) proposed in [16] can detect ma-
neuvers. However, its tracking result is still undesirable.
In practice, the standard recursive least squares filter

(RLSF) [17,18] is quite well received in linear models
with the unknown random characteristics of observa-
tions. In this case, it has less computational complexity
than the standard Kalman filter. Unfortunately, its per-
formance degrades seriously during maneuvering. For
perfect output results in nonlinear models, the trad-
itional fuzzy adaptive filters make the relationship be-
tween the input and output variables maps into a set of
fuzzy rules, and these rules determine the control pa-
rameters of the filters. So, their performances depend on
whether the rules can describe maneuver characteristics
exactly and completely. Due to the unknown motion
models during real tracking procedures, a complex non-
linear relationship exists between observations and state
estimates. For this reason, the fuzzy rules are usually dif-
ficult to establish by directly utilizing the relationship
between the observations and the state estimates. There-
fore, the traditional fuzzy adaptive filters are restricted
in the applications of MTT.
Applying fading factors and fuzzy logic into traditional

filters are popular because of some practical concerns in-
cluding easy implementation and effectiveness. In this re-
spect, it provides a direction to design a filter for MTT
[19]. Considering these facts, a novel fuzzy logic-based re-
cursive least squares filter (FLRLSF) is proposed to deal
with the problem mentioned above. First, the proposed fil-
ter utilizes observation residuals and heading changes to
describe maneuver characteristics of a maneuvering target
and employs the fading factor of RLSF to express the mag-
nitude of the target maneuver. A set of fuzzy rules is de-
signed according to the relationship of the fading factor
with observation residuals and heading changes over time.
Next, given the observation residual and the heading
change in the current prediction, these rules are applied
to determine the magnitude of the fading factor. Then,
the fuzzy system designed based on the rules is utilized to
adjust the fading factor in response to the changes in
speed and direction without maneuver detectors. Finally,
FLRLSF is applied to estimate the target state. Its perform-
ance is evaluated by using a simulation and real test ex-
periment, compared with the existing filters mentioned
above.

2 Analysis of maneuvering target motions
Target motion models form two categories, the linear
and maneuver (nonlinear) models. In linear models, the
motion and observation model of a moving target are
defined as follows:

xkþ1 ¼ Φkxk þ vk ð1Þ
zk ¼ Hkxk þ wk ð2Þ

where xk denotes an n-dimensional state vector about
the target at time k and zk denotes an m-dimensional
observation vector. Φk is an n × n state transition matrix,
and Hk is an m × n observation transition matrix. The
process noise vk is assumed to be Gaussian white noise
with zero mean and covariance Qk, while the observa-
tion noise wk is assumed to be the zero-mean Gaussian
noise with the covariance Rk.

E vkvt½ � ¼ Qkδkt ð3Þ
E wkwt½ � ¼ Rkδkt ð4Þ

where is δkt the Kronecker delta function.
Though targets often move at constant velocity, they

are easy to maneuver suddenly. In this respect, maneu-
ver modeling is a key problem of MTT. To solve this
problem, many methods have been proposed on the re-
strictive assumptions of the motion models [17,20]. Con-
sidering the aforementioned facts, these assumptions are
often inconsistent with real environments. Then, two
strategies of motion modeling exist with unknown man-
euver information: describe the target trajectory as sev-
eral typical motion models with known parameters or
their combination [3] or incorporate control variables in
the target motion equation as the random variables with
the certain pdf [20]. Unfortunately, it is difficult to ob-
tain the prior information in real situations, and various
uncertainties generally exist in maneuver motions during
real tracking procedures [16]. So, the methods based on
the statistic framework are complicated and difficult due
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to establishing the accurate motion models or obtaining
the exact pdf by using the probability and statistics the-
ory. Nowadays, fuzzy systems with the universal ap-
proximation capabilities have been widely applied in
nonlinear complicated system [21,22]. Incorporation of
fuzzy logic in fuzzy systems is easy and flexible to de-
scribe various uncertainties or random variables by the
use of linguistic terms. From this point of view, it is a
good idea that fuzzy systems are designed to adjust the
filter parameter for MTT.
In addition, observations from a target contain much

information of kinematics characteristics, whether the
target maneuvers or moves at constant velocity. Theoret-
ically, applying characteristic information into filter esti-
mation can help the maneuvering modeling and improve
the performances of tracking results. In various charac-
teristics, observation residuals and heading changes are
two important characteristics of the motion model. They
can perfectly reflect the relationship between observa-
tions and maneuvers. On the one hand, if observation
residual or heading change is large, the target is strongly
maneuvering with high probability. On the other hand,
if the observation residual or heading change is small,
the target is weakly maneuvering with high probability.
In addition, incorporation of them in tracking methods
may lead to an immediate detection and a less delay
about maneuvers [2,14,16]. Considering this fact, obser-
vation residuals and heading changes are usually com-
bined to detect maneuvers. They can be calculated with
the following relations:

Δzk ¼ zk−HkΦk x̂k−1ð ÞT zk−HkΦk x̂k−1ð Þ
h i1=2

ð5Þ

Δθk ¼ φk−ϕk−1j j ð6Þ
where Δzk and Δθk denote observation residual and
heading change; φk is the angle between the observation
vector zk and the state estimate vector, while ϕk − 1 is the
angle between the state estimate vector and the state es-
timate vector ; and the superscript T denotes transpose.
Here, φk and ϕk − 1 are obtained from the following
forms:

φk ¼ arctan yk−ŷk−1
� �

= xk−x̂k−1ð Þ� � ð7Þ

ϕk−1 ¼ arctan ŷk−1−ŷk−2
� �

= x̂k−1−x̂k−2ð Þ� � ð8Þ
where xk, x̂k−1, and x̂k−2 are the components of zk, x̂k−1,
and x̂k−2 in the x-axis direction respectively, while yk,
ŷk−1 , and ŷk−2 are their corresponding components in
the y-axis direction. To simplify both computation and
discussion, Δzk and Δθk are necessary in normalization
processing with the following forms: Δzk' =Δzk/Δzmax

and Δθk' =Δθk/Δθmax instead of Δzk and Δθk. Here,
Δzmax and Δθmax are their corresponding maximum
values, and they are usually related with the target's type
and the sensor's performance.

3 Traditional RLSF method
RLSF is an effective estimate method in a linear motion
model, and it is widely used to estimate the target state
in target tracking [17,18]. Using Equation 2, one can ob-
tain at time k

zk ¼ Hkxk þ wk ð9Þ
where zk = (z1, z2, …, zk)

T, Hk = (H1, H2, …, Hk)
T, and wk =

(w1, w2, …, wk)
T.

Give the quadratic error function Ck as follows:

Ck ¼ zk−Hkxk
� �T

Fk zk−Hkxk
� � ð10Þ

where Fk is a diagonal matrix, whose main diagonal ele-
ments are λk

k-1, …, λk, 1. Here, λk is called the fading fac-
tor lied in (0,1]. The least squares estimate vector equals
the corresponding value xk when Ck obtains its mini-
mum value. To obtain x̂k , the function (10) is differenti-
ated for xk to yield

∇xk Ck ¼ ∂
∂xk

zk−Hkxk
� �T

Fk zk−Hkxk
� � ð11Þ

so that x̂k is derived by solving Equation 11 for xk

x̂k ¼ Pk Hk
� �T

Fkz
k ð12Þ

where Pk is the estimate error covariance at time k, cal-
culated in the following form:

Pk ¼ Hk
� �T

FkH
k

h i−1
ð13Þ

As a result, Equations 12 and 13 can be rewritten in
the recursive formularies, respectively,

x̂k ¼ Φk x̂k−1 þ PkH
T
k zk−HkΦk x̂k−1ð Þ ð14Þ

Pk ¼ λ−1k ΦkPk−1Φ
T
k −λ

−2
k ΦkPk−1Φ

T
k H

T
k

� I þ λ−1k HkΦkPk−1Φ
T
k H

T
k

� �
−1HkΦkPk−1Φ

T
k

ð15Þ
for k ≥ 3. Equations 14 and 15 are called RLSF for xk
[18]. The initial state is determined with the observa-
tions z1 and z2 at time k = 1, 2 as follows:

x̂2 ¼ P2 H2
� �T

z2 ð16Þ

P2 ¼ H2
� �T

H2
h i−1

ð17Þ

From Equations 14 and 15, x̂k is the sum of the state
prediction and the deviation between the observation
and the predicted position at time k on the one hand,
and the magnitude of x̂k depends on how large the
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deviation is modified by Pk on the other hand. Mean-
while, Pk can vary with λk. From this point of view, x̂k
can be indirectly modified by adjusting λk. While the
modification of x̂k becomes weaker with the increase of
λk, it becomes greater with the decrease of λk. In this re-
spect, if one can obtain the right λk according to maneu-
ver information, it implies that x̂k can be exactly
expressed as the modified value by adjusting λk at each
discrete time. Therefore, RLSF can be applied to esti-
mate the target state by employing λk to describe man-
euver characteristics.
4 FLRLSF method for MTT
As the results in Sections 2 and 3 show, Δzk' and Δθk'
can be combined to detect maneuvers, and λk can be
employed to describe maneuver characteristics. Consid-
ering this fact, FLRLSF can be applied in MTT. It is il-
lustrated in Figure 1. In the figure, block 1 calculates
Δzk' and Δθk' based on zk and x̂k−1 . Blocks 2 to 5 com-

pose a fuzzy system to obtain the optimum ~λk , elabo-
rated in Section 4.1. Block 6 is RLSF, which can obtain

the optimal state estimate x̂k by the optimum ~λk calcu-
lated by the fuzzy system. For clarity and perception, the
fading factor is defined as a fuzzy variable, viz. replacing

λk with ~λk . Here, the main functions of the fuzzy system

give as follows: first, map the relationship of ~λk with Δzk'
and Δθk' into a set of fuzzy rules; then, according to
these rules, take Δzk' and Δθk' as the input variables of
the fuzzy system and express its output variable as the

value of ~λk ; finally, estimate the target state by adjusting
~λk to modify x̂k .
Figure 1 FLRLSF method.
4.1 Design of the fuzzy system
As shown in Figure 1, the design procedure of the fuzzy
system, which consists of four blocks, includes the fol-
lowing: first, utilize a singleton fuzzifier as block 2; next,
design the fuzzy rules of block 3 according to the rela-
tionship between the input and output variable of block
4; then, determine the reference engine of block 4, which
maps the spaces of all variables into the fuzzy spaces
and gives their membership functions; finally, select a
defuzzifier of block 5. Each step is elaborated in detail as
follows.
The values of two input variables are mapped into four

fuzzy sets, respectively, which are expressed as ~Ai and ~Bj ,
i, j = 1, 2, 3, 4, defined in the universe of Δzk' and Δθk'.
These fuzzy sets are labeled in the linguistic terms of zero
(ZE), small positive (SP), medium positive (MP), and large
positive (LP). To ensure the probability of each input data
point of Δzk' or Δθk' falling into each fuzzy set be roughly
equal, each fuzzy set is assigned to an interval of equal
width and similar rules. In addition, triangular functions
can simplify the computation of fuzzy reference engines
and suppress the noise of input variables. So, they are used
to define the membership functions of Δzk' or Δθk' in the
corresponding universe for each fuzzy rule shown in
Figure 2. The output consequence of the fuzzy system is

expressed as the value of ~λk . It turns out that the perform-
ance of RLSF for MTT is more comfortable when the

optimum ~λk is found more often in the interval (0, 0.3].

Based on the fact, to obtain the optimum ~λk , the region of
~λk is divided into six different fuzzy sets, ZE, SP, MP, VP,
large positive (LP), and extremely large positive (EP),
expressed as ~Cm , m = 1, 2,…, 6. The membership function



Figure 2 Membership functions of Δθk′ or Δzk′.
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of Δzk' in each fuzzy set is determined in the following
formula:

μ~Al
i
Δz′k
� � ¼ 1−

Δz′k−c
l
i

�� ��
bli

;Δz′k∈ cli−b
l
i; c

l
i þ bli

� � ð18Þ

where bli and cli are the control parameters. The mem-
bership functions of Δθk' and ~λk are similarly defined as
Δzk', as shown in Figures 2 and 3, respectively.
Utilize the fuzzy rules to establish the fuzzy model of

the relationship of ~λk with Δzk' and Δθk':

Rl : IF Δz′k ∈ ~Al
i AND Δθ′k ∈ ~Bl

j THEN ~λk ∈ ~Cl
m

ð19Þ
where i, j = 1, 2, 3, 4, l = 1, 2, …, M, and M = 16. The re-
quirement for adjusting ~λk is given below: if Δzk' or Δθk'
increases, then it indicates that the maneuver gets stron-
ger and ~λk needs to be set relatively small; otherwise, if
Δzk' or Δθk' decreases, then it indicates that the maneuver
Figure 3 Membership functions of ~λk .
gets weaker and ~λk needs to be set relatively large. The
fuzzy rule base is designed as shown in Table 1.
Due to less computation and more explicitness of both

the minimal reference engine and the center average
defuzzier, they are usually combined to establish a fuzzy
system. The minimal reference engine and the center aver-
age defuzzier are expressed in the following forms [21]:

μ~Cl
m

�λ
l
k

� �
¼ min μ~Al

i
Δz′k
� �

; μ~Bl
j
Δθ′k
� �� �

ð20Þ

~λk ¼

XM

l¼1

�λ
l
mμ

l
~Cm

�λ
l
k

� �

XM

l¼1

μl~Cm

�λ
l
k

� � ð21Þ

As a result, the fuzzy system is given as follows:

f Δz′k ;Δθ
′
k

� � ¼

XM

l¼1

�λ
l
m min μ~Al

i
Δz′k
� �

; μ~Bl
j
Δθ′k
� �� �h i

XM

l¼1

min μ~Al
i
Δz′k
� �

; μ~Bl
j
Δθ′k
� �� �h i

ð22Þ
where μ~Al

i
, μ~Bl

j
, and μl~Cm

denote the membership func-
tions of Δzk', Δθk', and ~λk , respectively; �λ

l
k at each

discrete time is equivalent to the corresponding value of
~λk when the membership function of ~λk is maximized at
each fuzzy set defined on.

4.2 FLRLSF method
As described at the beginning of Section 4, FLRLSF is
able to detect the target maneuver and estimate its state
by the fuzzy system. Based on the above conclusions,
the recursive form of FLRLSF is expressed as

x̂k ¼ Φk x̂k−1 þ PkH
T
k zk−HkΦk x̂k−1ð Þ ð23Þ

Pk ¼ ~λ−1k ΦkPk−1Φ
T
k −~λ

−2
k ΦkPk−1Φ

T
k H

T
k

� I þ ~λ−1k HkΦkPk−1Φ
T
k H

T
k

� �
−1HkΦkPk−1Φ

T
k

ð24Þ
Table 1 Fuzzy rules on Δθk′, Δzk′, and ~λk
Δθk′

ZE SP MP LP

Δzk′ ZE EP EP LP MP

SP EP VP MP SP

MP LP MP SP ZE

LP MP SP ZE ZE



Table 2 Computational complexity for each filter

Filter Computational complexity

RLSF 14n3+ (4m − 1)n2 + (12m2 + 2m − 1)n + 2m3 −m2 + 4

FLRLSF 14n3+ (4m − 1)n2 + (12m2 + 2m − 1)n + 2m3 −m2 + 3M + 3

Fα-βF 2n2 + (2m − 1)n + 3M − 1

HKF 4n3 + (12m + 6)n2 + (12m2 + 2)n + 4m3 + 2m2 − 4m + 3M
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where

~λk ¼

XM

l¼1

�λ
l
m sup

Δz′k∈
~Al
i ;Δθ

′
k∈~B

l
j

min μ~Al
i
Δz′k
� �

; μ~Bl
j
Δθ′k
� �� �

XM

l¼1

sup
Δz′k∈

~Al
i ;Δθ

′
k∈~B

l
j

min μ~Al
i
Δz′k
� �

; μ~Bl
j
Δθ′k
� �� �

ð25Þ

The FLRLSF flow chart in each period is illustrated in
Figure 4.

4.3 Computational complexity analysis
Computational complexity for an algorithm is an im-
portant index whether the algorithm provides processing
capability in real time, and it is crucial for real-time sys-
tems. Hence, many filters with good performances in ac-
curacy are limited in target tracking area due to their big
computation. Here, computational complexity mainly
denotes the times in terms of multiplications, divisions,
additions, and subtraction for each run of an algorithm
under no consideration of the process of generation,
move, and measure for a target.
As described in Section 2, a state vector is assumed to

be n-dimensional, and an observation vector is assumed
to be m-dimensional, generally m < n. In addition, M is
the number of fuzzy rules utilized as mentioned in Section
4.1. The computational procedure for FLRLSF mainly
consists of three steps: the update of the state, covariance,
and fading factor corresponding to Equations 23, 24, and
Figure 4 FLRLSF flow chart.
25, respectively. The computation of three steps is (4m +
2)n2 + (2m− 1)n, 14n3− 3n2 + (12m2− 4m)n+ 2m3−m2 +
4, and 3M − 1, respectively. As a result, the computational
complexity for FLRLSF is 14n3 + (4m − 1)n2 + (12m2 + 2
m − 1)n + 2m3 −m2 + 3M + 3. Similarly, the computa-
tional complexity for other three types of filters is shown
in Table 2. Here, M is related to the number of fuzzy rules
for each filter, generally different with one another. From
Table 2, the order of computational complexity for four
filters from small to large is Fα-βF, RLSF, FLRLSF, and
HKF, respectively.

5 Experimental results and analysis
A stimulation experiment and a real test experiment
have been carried out to evaluate the performance of the
FLRLSF method in comparison with the other three
existing methods, the traditional RLSF [18], FAα-βF
[16], and HKF [14] for MTT.

5.1 Simulation experiment
In the simulation experiment, single radar is assumed to
track a maneuvering target, and the following assump-
tions and the radar performance parameters are used.
The radar initial position is located at (0 m, 0 m), and its
performance parameters are as follows: the system trans-
mission delay τ = 0 s, sampling interval T = 5 s, range
error σr = 50 m, and azimuth error σβ = 0.01°. In the
simulation scenario, the target moves in the air surveil-
lance of 2-D Cartesian xy-plane according to the given
Figure 5 Ideal target trajectory in maneuver motion.



Figure 6 Δθk′, Δzk′ and ~λk estimate in maneuver motion.
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Figure 8 Δθk′, Δzk′, and ~λk estimate in maneuver motion.

Fan et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:53 Page 7 of 9
http://asp.eurasipjournals.com/content/2014/1/53
trajectory below. Its initial state is given by x0 = [800 m,
200 m/s, 900 m, 346 m/s]T, and its trajectory is formed
by 100 observations collected by the radar, which is di-
vided into five phases: constant velocity motion, turn
rate motion (0.2 rad/s), constant velocity motion, turn
rate motion (−0.2 rad/s), and constant velocity motion,
as shown in Figure 5. The turn rate model of the target
motion is characterized by the following equation:

xk ¼
1

sinωkT
ωk

0 −
1− cosωkT

ωk
0 cosωkT 0 − sinωkT

0
1− cosωkT

ωk
1

sinωkT
ωk

0 sinωkT 0 cosωkT

2
666664

3
777775
xk−1 þ vk

ð26Þ
where ωk is the turn rate and vk is the zero-mean white
Gaussian noise with an unknown covariance. The simu-
lation experiment is conducted by using a computer
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time(Ts)

.

)
m(

n oit isopte grat
fo
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Figure 7 Estimate errors for four filters.
with a dual-core CPU of Pentium 4 2.93 GHz, 1-GB
RAM. The programs are performed by using the Matlab
2009a version software.
Figure 6 shows that the variational curves of Δzk', Δθk',

and ~λk are obtained according to the target motion in
the ideal (noiseless) and noisy case, respectively. Figure 7
provides the root mean squared errors (RMSE) for the
target positions using three methods for 100 Monte
Carlo simulation runs. As can be shown from Figure 6,
it is verified that the curves of Δzk' and Δθk' are able to

reflect the maneuver changes exactly, and ~λk can also be
adjusted dynamically with their magnitudes by using the
fuzzy system in this case. It can be seen from Figure 7
that the RMSE of FLRLSF is smaller than those of RLSF,
FAα-βF, and HKF when the target moves at both con-
stant velocity and turn rate, discussed as follows. Due to
the perfect capability of FLRLSF to detect maneuver
quickly and obtain its magnitude exactly, FLRLSF is able
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Figure 9 True trajectory and tracking results.
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to estimate the target state timely and accurately. The
average RMSE of the target positions by using FLRLSF,
RLSF, FAα-βF, and HKF are 8.8, 21.8, 13.5, and 10.8 m
respectively, and the corresponding average run time of
CPU is 0.0089, 0.0083, 0.0047, and 0.0163 s. Hence, the
results on average run time are consistent with the ana-
lysis for four filters in Section 4.3. Here, the average run
time of FLRLSF is more than that of RLSF since the exe-
cution of the fuzzy system needs to consume a certain
time. In addition, to compare with PF, the additional
conditions are assumed to satisfy its run requirements
[11]. The number of particles is given as 1,000. The aver-
age run time for PF is 0.8632 s, much longer than the
four types of filters mentioned above.

5.2 Real test experiment
The real test experiment is evaluated by using real track-
ing data generated from some type of single radar. The
radar performance parameters are represented as fol-
lows: the sampling interval T = 2 s, maximum detection
range rmax = 21 km, range error σr = 20 m, and azimuth
error σβ = 0.5°. The initial position of the target is z0 =
[800 m, 900 m]T, and its trajectory is formed by 32 ob-
servations gathered by the radar. Figure 8 shows that the

variational curves of Δzk', Δθk', and ~λk are obtained ac-
cording to the real tracking data. Figure 9 shows the real
trajectory and the tracking results by using the proposed
filter. The results in Figures 8 and 9 are analyzed below.
Due to the rapid flight velocity, long flight time, and
large azimuth error, the maneuver changes of the target
are relatively complicated in the real test scenario. As

can be known from Figure 8, ~λk is able to estimate the
maneuver magnitudes based on Δzk' and Δθk'. Because
of the capability of a triangular function to suppress
noise of the inputs, the proposed filter is still able to de-
tect maneuvers exactly by using the fuzzy system. As
can be seen from Figure 9, FLRLSF is able to track the
maneuvering target accurately in the real situation. As a
result, it is verified that the proposed filter is feasible in
real MTT.

6 Conclusion
In this paper, considering the properties and drawbacks
of the traditional adaptive filters, FLRLSF is proposed
for MTT in the situation of observations with unknown
random characteristics. The paper employs the fading
factor of RLSF to describe maneuver characteristics of
the motion model, analyzes the relationship of the fading
factor with observation residuals and heading changes,
and maps the relationship into a set of fuzzy rules. By
applying fuzzy logic in the standard RLSF and designing
the fuzzy system, the fading factor is allowed to be ad-
justed adaptively based on the fuzzy rules. These rules
determine the fading factor dynamically according to the
magnitudes of the observation residual and heading
change in the current prediction. Therefore, FLRLSF is
able to detect maneuvers timely and estimate their mag-
nitude accurately. The effectiveness of the proposed fil-
ter is evaluated by using the simulation and real test
experiment. Its performance in terms of tracking accur-
acy and the average run time is compared against those
of RLSF, FAα-βF, and HKF. The results of the simulation
experiment show that the proposed filter can track a
maneuvering target adaptively, and it achieves better
performance in tracking accuracy than the other three
methods. In addition, the real test experiment validates
its feasibility in real environment.
In future work, we will extend the proposed filter in

tracking multiple targets in cluster in distributed multi-
sensor system. Furthermore, we will also explore FLRLSF
for the state estimates of global tracks after local track-to-
local track fusion in the fusion center of the system.
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