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Abstract

sound localization.

A tensor is used to describe head-related transfer functions (HRTFs) depending on frequencies, sound directions,
and anthropometric parameters. It keeps the multi-dimensional structure of measured HRTFs. To construct a
multi-linear HRTF personalization model, an individual core tensor is extracted from the original HRTFs using
high-order singular value decomposition (HOSVD). The individual core tensor in lower-dimensional space acts as
the output of the multi-linear model. Some key anthropometric parameters as the inputs of the model are selected
by Laplacian scores and correlation analyses between all the measured parameters and the individual core tensor.
Then, the multi-linear regression model is constructed by high-order partial least squares (HOPLS), aiming to seek a
joint subspace approximation for both the selected parameters and the individual core tensor. The numbers of
latent variables and loadings are used to control the complexity of the model and prevent overfitting feasibly.
Compared with the partial least squares regression (PLSR) method, objective simulations demonstrate the better
performance for predicting individual HRTFs especially for the sound directions ipsilateral to the concerned ear. The
subjective listening tests show that the predicted individual HRTFs are approximate to the measured HRTFs for the
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1 Introduction

The generation of virtual three-dimensional (3D) audio
based on head-related transfer functions (HRTFs) be-
comes important in many applications, such as PC
entertainment, hearing aids, multimedia, and virtual real-
ity, with spatial and immersive feelings in 3D auditory
space. Its key technique is to recover the location informa-
tion of a sound source by HRTFs. HRTFs describe the
spectral changes of sound waves from the sound positions
to a listener's ear carnal, due to the diffraction and reflec-
tion properties of the anthropometric structures. The
corresponding representations in the time domain are
head-related impulse responses (HRIRs). HRTFs not only
vary with sound source locations (elevations and azimuths)
and frequencies but also depend on external physiological
structures uniquely from one listener to another. The
tiny difference of anthropometric structures can create
a significant influence on HRTFs for sound localization.
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Perceptual distortions may occur in spatial sound
localization with non-individual HRTFs. Unfortunately,
individual HRIR measurements for each listener are very
time consuming and difficult to implement with specific
instruments. So, it is not practical and economical for
various applications. It is essential to obtain individual
HRTFs fast and effectively.

Some theoretical calculation methods were used to
generate individual HRTFs based on a snowman model
[1] and the boundary element method (BEM) [2], which
are unsuitable for the individual HRTF estimation at high
frequencies. They also need a large amount of calculations
and have a high request for computers [3]. To customize
HRTFs more easily and effectively, some researchers
attempted to explore the effect resulting from the differ-
ence of anthropometric structures on HRTFs [4-6] and
further study the relationship between HRTFs and an-
thropometric parameters [7,8]. Zotkin et al. measured the
pinna size of a new subject and used the similarity of
pinna structures between the new subject and the listeners
in a known HRTF database to select the best matching
HRTFs as the individual HRTFs of that subject [9]. Zeng
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et al. applied a hybrid algorithm for selecting the individ-
ual HRTFs based on the similarity of anthropometric
structures [10]. These HRTF personalization methods
based on database matching were limited by the sizes of
the existing databases and the matching criteria. Conse-
quently, individual modeling based on anthropometric
measurements is a big breakthrough in HRTF customiza-
tion. HRTF estimation has three indispensable parts in-
cluding the dimension reduction of original HRTFs, a
reasonable selection of anthropometric measurements,
and the mapping relation between the compacted HRTFs
and the selected anthropometric measurements.

HRTFs depend on frequencies, sound directions (azi-
muths and elevations), and listeners. The collection of
high-spatial-resolution HRTFs of each listener makes up
a large dataset with a multi-dimensional structure and
complex characteristic. It is difficult to directly apply the
original HRTFs into learning and storing. Due to the
high dimensionality, it is necessary to extract the indi-
vidual factors with lower dimension from the original
HRTFs and get rid of non-individual features. Principal
component analysis (PCA) was popularly applied to get
individual weight coefficients and basis vectors before
the HRTF customization [11-15]. Sodnik et al. found a
suitable representation for the weight variations of the
HRTF amplitudes by PCA [16]. Wang et al. applied PCA
for the HRTF compression [17] and interpolation [18],
respectively. Xie presented to recover the high-spatial-
resolution HRTFs from the individual weight coefficients
by a small set of measurements [19]. Kistler and Wightman
modeled the HRTF matrix by PCA [20]. PCA successfully
reduces the dimensionality of HRTF datasets and it is
based on the so-called vector space model. Under this
model, the HRTFs of a subject at different source loca-
tions are modeled as a vector and the collection of indi-
vidual HRTFs is modeled as a matrix. It cannot capture
the variations among different sound source directions
and the interaction of multiple variables in HRTFs. To
overcome the weakness of the vector model, Grindlay and
Vasilescu modeled HRTFs using a multi-factor (tensor)
representation [21]. The tensor framework is used to learn
the interaction of the multi-variable for HRTF representa-
tion and can achieve the dimensionality reduction of the
HRTF dataset along each variable separately. Rothbucher
et al. used multi-way array analysis to customize HRTFs
[22]. There is no specific selection of anthropometric pa-
rameters in combination with the HRTF tensor. However,
the key parameter selection is important for the accuracy
of HRTF model estimation.

A number of anthropometric parameters (head, torso,
pinna, etc.) affect the immersion of listener's spatial
hearing and show different influence on HRTFs. It is un-
desirable to apply all the anthropometric measurements
for modeling the individual HRTFs. A reasonable selection
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of the anthropometric measurements is necessary to the
individual HRTF customization. Xu et al. [5] found that
ear parameters were significantly correlated with the mag-
nitudes of HRTFs at high frequencies. Chen et al. studied
the influence of the neck and torso parameters on the
near-field HRTFs [23]. Rothbucher et al. [7] developed a
measurement system that was capable to scan a human
body for the anthropometric measurements. Hu et al.
used correlation coefficients twice for the parameter selec-
tion and retained eight parameters for the HRTF estima-
tion [12,24,25]. Zeng et al. [10] also selected 13 reference
physiological parameters utilizing correlation analyses be-
tween the measured HRTFs and all the anthropometric
parameters for matching the best HRTFs. Xu et al. [26]
used a weighted correlation method and selected eight sig-
nificant parameters. Hugeng and Gunawan [27] analyzed
the correlation among anthropometric parameters and
three physical quantities (interaural time difference,
interaural level difference, and pinna notch frequency).
However, correlation analyses only describe the linear re-
lationship among anthropometric parameters and cannot
evaluate the significance of a single parameter. These
existing methods for the parameter selection did not con-
sider the relation between the anthropometric parameters
and the multi-dimensional HRTFs. In order to avoid the
HRTF vector modeling, it is necessary to keep the multi-
dimensional structure of the original HRTFs and on this
basis to select the key parameters.

Once the individual HRTF factors with lower dimen-
sion and a few key parameters were obtained, some
methods were widely used to construct the relationship
between them. The anthropometric parameters were
treated as the inputs and lower-dimensional HRTFs as
the outputs. Many researchers constructed the HRTF
prediction model based on an assumption of a linear re-
lation between the HRTF vectors and anthropometric
parameters [11-13,24,28,29]. In [12,24,28,29], the rela-
tion between the HRTFs and physical sizes of the head
and ear was investigated by the multiple regression ana-
lysis and optimized by the least squares method. The
performance of the estimated HRTFs was evaluated by
objective and subjective ways. The results indicated that
good performance was obtained with no significant dif-
ference between the measured and estimated HRTFs
with respect to perception when the bandwidth ranged
from 0 to 8 kHz. To get rid of trivial anthropometric
measurements and improve the performance of the
HRTF estimation, Hu et al. used partial least squares re-
gression (PLSR) to model the linear relation [24]. Subse-
quently, to further describe the scattering of the incident
sound by the physical structures, many researchers ex-
plored some non-linear multivariable statistical estima-
tion methods to improve the performance of HRTF
customization [25,30-32]. In [25], a three-layer back-
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propagation artificial neural network (ANN) was used to
HRTF personalization. Huang et al. applied support vec-
tor regression (SVR) to model personalized HRIRs
[30,31]. All these linear or non-linear HRTF personaliza-
tion methods were based on the vector model to cus-
tomize HRTFs. They are unable to establish the
mapping from anthropometric parameters to a HRTF
tensor. In order to predict the individual HRTFs of dif-
ferent sound directions, it requires a separate regression
model for each sound direction. A high-spatial-resolution
HRTF prediction based on the tensor model requires only
one regression. Therefore, it is necessary to consider the
HRTF data involving multiple variables as multi-way data
structures [33] and a multi-linear extension for modeling
a HRTF tensor using a small set of anthropometric
measurements.

The above considerations motivate us to construct a
multi-linear model for predicting an individual HRTF
tensor. To learn HRTFs of any listener from a measured
database, we present a HRTF customization through
three steps. First, to keep the inherent interaction of dif-
ferent variables in HRTFs, a tensor is used to describe
measured HRTFs, and the individual core tensor (ICT)
with lower dimension in tensor subspace is extracted by
high-order singular decomposition (HOSVD). Then,
combining with the lower-dimensional ICT, a few an-
thropometric parameters are selected in consideration of
the local geometric structure and global information in
the parameter data space. Last, we use a multi-linear
subspace regression to model the multi-linear relation-
ship between the ICT and the selected key parameters.
Section 2 presents the data processing including the di-
mension reduction of the HRTF tensor and the selection
of key anthropometric parameters. The multi-linear sub-
space regression between the compacted HRTF tensor
and the selected key parameters is developed in Section
3. The proposed method can realize the direct multi-
linear mapping from the anthropometric parameters to
the HRTF tensor. In Section 4, we give the results and
discussions of the proposed HRTF personalization
method. The conclusions are given in the last section.

2 Data processing

2.1 Notations and basic multi-linear algebra

In order to facilitate the distinctions of scalars, matrices,
and tensors, the following notations are used. Scalars are
denoted by italic letters, e.g., a; vectors by lowercase
boldface letters, e.g., a; matrices by uppercase boldface
letters, e.g., A; and tensors by boldface calligraphic let-
ters, e.g., A. The ith entry of the vector a is denoted by
a;, the (i, j)-element of the matrix A is denoted as a;,
the column-#n vector of the matrix A as a,, and the
element (i}, iy, ..., iny) of an Nth-order tensor Ae
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Rl xIn by g, . The indices range from 1 to

their corresponding capital versions, e.g., ix=1, 2, ..., In.
The n-mode unfolding operation of the tensor A is de-
noted by A<n>eRI”XUI“"“*II"“"'IN). The nth factor matrix is

denoted by A™eR!"*!"_ The I, x I, unitary matrix is de-
noted by I .

The superscripts T and + are used for representing the
matrix transposition and the Moore-Penrose pseudoin-
verse, respectively. ® represents the Kronecker product.
Since the following sections in this paper mainly focus on
the data of a third-order HRTF tensor, let us introduce the
fundamental of a third-order tensor AeR! 2%/ It has
three modes with size I, along mode n. The Frobenius
norm of A is computed as

L I, I3

ZZZ |ai1izi3|2 (1)

i1=1 ir=1 i3—1

Al =

The n-mode vectors of A are obtained by varying the
nth index and keeping all other indices fixed. The n-mode
product of the tensor .A and a matrix UeR/»*/» is denoted
by B=Axn U. It is calculated by multiplying all n-mode
vectors from the left-hand side by the matrix U. For ex-
ample, if n =2, B = A x 2UeR!"/2*% s calculated as

I
bi1i2i3 = E :ai1i2i3u/2i2 (2)
=1

The HOSVD of a third-order tensor .A is denoted as
follows:

A=38x,UY x,u® x 3u(3) =[s:; U(l)7 U(Z), Uu®]
(3)

where SeR1*22%Is g the core tensor [34]. UM eR!*r jg
the unitary matrix and can be calculated by performing
a matrix singular value decomposition (SVD) on the A,
[35]. The last term is the simplified notation [36].

2.2 Data processing

The structure of the data processing and the individual
HRTF modeling are shown in Figure 1 along the solid
arrows. BF represents basis function. Firstly, a tensor is
used to model the measured HRTFs. The individual core
tensor can be extracted from the HRTF tensor. Sec-
ondly, the key parameters are selected in combination
with the individual core tensor by correlation analyses
and Laplacian scores. The selected anthropometric pa-
rameters and the individual core tensor are prepared for
the latter multi-linear learning by high-order partial least
squares (HOPLS) in Section 3. The prediction of HRTF
magnitudes can be achieved after the data processing
along the dotted arrows.
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Figure 1 The framework of the data processing and the
individual HRTF modeling.

2.2.1 Dimension reduction of the HRTF tensor

Each measured HRIR can be transformed into the corre-
sponding complex HRTF by fast Fourier transform
(FFT). The HRTF is defined as the ratio of the sound
pressure

Hip.r.6..0) = 220000 @

where f is the frequency and r is the distance from the
sound source to the center of a listener's head. The
spatial direction of the sound source is marked by azi-
muth 6 and elevation ¢. The individual factors are em-
bodied in the first variable p on behalf of different
subjects. P(p, r, 0, ¢, f) represents the sound pressure at
the left or right ear, and Py(r, f) is the sound pressure at
the center of the listener's head with the listener absent.
In the following section, r is omitted because HRTFs are
asymptotically independent of distance in the far field (r >
1 m) [37].

Even in the far field, HRTFs are functions of frequen-
cies and sound directions uniquely from one person to
another. To keep the interaction of different variables, a
third-order tensor is used to describe the HRTFs of dif-
ferent subjects. Due to the high dimension of each
mode, a core tensor in a lower-dimensional subspace is
extracted from the original HRTF tensor by HOSVD. It
still keeps the multi-dimensional structure and contains
the individual characteristic of the measured HRTFs.

A tensor H e R”*P*F denotes the HRTF magnitudes
without phases of P subjects at D sound directions,
where F is the number of frequencies. In order to extract
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the individual factors, the dimensions of the frequency
and the direction should be reduced and the subject
mode is unchanged. HOSVD is the extension of conven-
tional SVD for higher-order tensor decomposition [34].
Using HOSVD on the latter two modes, we can get the
decomposition of the high-order tensor H as

H =W x,U? x3u® (5)

where U is the left singular matrix of the m-mode
unfolding matrix of H, m equals 2 or 3 corresponding
to the 2- (direction) or 3-mode (frequency) of H, respect-
ively, UP erP*P U® eRF*E and WeRP*P*F has the
same sizes as those of H. The main variations of the
HRTF tensor can be explained by parts of the basis vec-
tors of U™, So, a truncation on U" can achieve an ap-
proximate representation of the original HRTF tensor.
The projection on the HRTF tensor subspace spanned by
the truncated matrices [38] is obtained as

W = H x 2fj(z)T % 3l"J(S)T (6)

where WeRP*P xF (D' < DandF < F) is the ICT and
U denotes the truncated matrix of U"” called the
basis function. The ICT has lower dimension for each
mode excluding the subject mode compared to the ori-
ginal HRTFs. The characteristic of the individual core
tensor will be discussed in Section 4. Figure 2 shows the
HRTF tensor decomposition. The approximate recon-
struction of the original HRTFs is through

H =W x,U0% x,006 (7)

with a controllable error, where H is the approximation
of the original HRTF tensor. The error analysis of the
HRTF approximation is introduced in the following ex-
periments of Section 4.1.

2.2.2 Selection of key anthropometric parameters
combining with the ICT

HRTFs describe the responses resulting from the diffrac-
tion and reflection of listener's anthropometric struc-
tures and are related to anatomy concentrating on the
head, torso, and pinna. Each listener has his specific an-
thropometric shape and size. The parameter data space
can be obtained by anthropometric measurements of the

~N
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Figure 2 The decomposition and dimension reduction of the HRTF tensor.
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physiological structures from each subject [7,39]. There
is correlation among all the different anthropometric pa-
rameters. The correlation coefficients are not equal or
close to one. So, the anthropometric parameters cannot
replace each other, and it is better to select a group of
necessary anthropometric measurements for approxi-
mately reflecting the fundamental property of HRTFs.
How to select such a group of anthropometric parame-
ters is a key work. We can take the following three pro-
cedures to select the key anthropometric parameters for
the latter multi-linear personalization modeling.

First, in order to measure the influence of parameters
on HRTFs, the correlation analyses are performed be-
tween all the measured parameters and the individual core
tensor. The parameters with larger correlation coefficients
are reserved as the results of the first selection procedure.

Then, we use a Laplacian score to further select appro-
priate parameters. It can measure the importance of each
anthropometric parameter. In order to avoid the unbal-
ance selection of similar parameters, the reserved parame-
ters are divided into three classes before calculating the
Laplacian score. We examine the intrinsic properties of
the parameter space to evaluate each parameter after the
correlation analysis. For each parameter, its Laplacian
score is computed to reflect the locality preserving power.
Laplacian score is based on the local observation and an
assumption that two parameters are probably related to
the same topic if they are close to each other [40].

Suppose there are P subjects and K parameters of each
subject. Let a,; denote the kth anthropometric parameter
of the pth subject, k=1, 2, ..., K, p=1, 2, ..., P. All the pa-
rameters can be denoted by A, = [ay, a, -, ap] eR” * X,
The vector a, contains all the elements a,; with k=1,
2, ..., K. It is treated as a data point which represents
all the anthropometric measurements of the pth subject
and corresponds to the pth node of a graph. In order
to model the local geometric structure of the measured
parameters, a nearest neighbor graph with P nodes is
established. If a, is close to another parameter vector
a,(p =1,2,-,P,p'#p), an edge is put between these
two nodes p and p’. If nodes p and p’ are connected, a
weight is assigned to the edge as

Spp = M (8)

where ¢ is an appropriate constant. Otherwise, S,, = 0.
All the weights on the graph model the local structure
of the parameter space. For a parameter we choose, it is

reasonable to minimize the following objective function

pr' (“pk _“p'k)zsp '

var(by)

Ly = 9)

Page 5 of 14

where by = [a1z, do, -+, ap] * consists of the kth param-
eter of all P subjects and var(-) is the variance computa-
tion. Ly is the Laplacian score of the kth parameter,
which concerns two aspects of the reserved anthropo-
metric parameter. One is the variance of the parameter
that reflects its representative power. The other relates
to the local geometric structure of the parameter data
space. It seeks the anthropometric parameters which
best reflect the underlying manifold structure and are
probably better for predicting HRTFs. Thus, we select
these parameters with lower Laplacian scores, which
have significant influence on HRTFs at the same time.
Last, correlation analysis is applied to delete some of
the above selected parameters that have strong correl-
ation with the others. Through the above selection
process, K’ key parameters for P subjects are selected as
the inputs of the multi-linear HRTF model. It is denoted

by a matrix AcRP*K

3 Multi-linear personalization modeling by HOPLS
When the individual core tensor and a few key parame-
ters are obtained, a multi-linear HRTF personalization
model can be learned by HOPLS regression. HOPLS is a
generalized multi-linear regression model with the aim
to predict a tensor from a tensor through projecting the
data onto the latent space and performing regression on
corresponding latent variables [41]. Moreover, it is par-
ticularly suitable for small sample sizes [42]. HOPLS re-
gression is used to explore the multi-linear subspace
approximation for both the selected parameters and the
HRTF tensor. It is employed to learn the relation be-
tween the parameter matrix and the individual core
tensor. The complexity of the regression model is con-
trolled by the hyperparameters which are the numbers
of orthogonal loadings denoted by J,, /3, I and latent vec-
tors denoted by R in Figure 3. Figure 3 shows the frame-
work of a joint subspace approximation for the ICT and
the anthropometric parameters by the HOPLS model.
After the regression model is constructed from training
data, the individual HRTFs for a new subject can be pre-
dicted by his anthropometric measurements.

Consider a second-order tensor AeR”*K containing
the selected parameters and a third-order tensor We

RPXD xF including all the individual factors of the HRTFs,
having the same size in the first mode. The objective is to
find an optimal joint subspace approximation for the an-
thropometric parameters and the individual core tensor
based on the latent variables obtained from maximizing
the tensor covariance of A and W. Back to the PLS
method, it is to search for the common latent variables
from dependent variables X and independent variables Y
with the constraint that these common components ex-
plain as much as possible the covariance between X and Y
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Figure 3 Schematic diagram of the individual HRTF model based on HOPLS.

[24,43]. Here, based on the property, do a high-order ex-
tension to find common latent variables for explaining the
covariance between A and W, as illustrated in Figure 3.
The mathematical model can be expressed as [41,42]

R

W = ZY, X 1t x 9QY x 3Q¥) + F
=t (10)

A= d, x 1t, x v, + E

r=1

where R is the number of latent vectors, t,eR” is the
rth latent vector, and QYeRP*/2(J,<D') and Q¥e
RE 5 (J3<F ) are the loading matrices corresponding to
the latent vector t, on the mode of the sound direction
and the frequency, respectively; similarly, v,eRX >
(I <K ) is the loading vector of the parameter matrix A,
and F and E are the residuals. Use the rank-(1, /5, /5) de-
composition of the individual core tensor W to get the
core tensor Y,eR2x /s corresponding to the rth latent
vector. d, € R'*! is the core of the anthropometric par-
ameter tensor by the rank-(1,I) decomposition. The
model in (10) is boiled down to a concise form as

W=y><1T><2Q(2) ><3Q<3>+-7'_

(11)
A:DX1TX2V+E

where T=[t;, ty, ..., tg] €R"*® is the latent matrix,
VeRF*R2xR3 s 3 block-diagonal tensor containing the
tensor Y, (r=1, 2, ..., R) on the diagonal line; simi-
larly, the core d, (r=1, 2, ..., R) is contained in a
block-diagonal matrix D eR®**  direction loading

matrix Q% = [QP,Q&Z), -~~,Q§?>}GRD’XRIZ, frequency
loading matrix Q(g) = {Q?), §3>, ~-,Q1(33) }GRF 'XR’3, and

the anthropometric parameter loading matrix V = [vy,
v, “‘,VR}ERK ><R1'

Observing Figure 3, how to choose R and estimate the
loading matrices from W and A is the key optimization
of the multi-linear subspace regression for individual
HRTF customization. There are two different ways for
extracting the latent variables: sequential and simultan-
eous methods. We choose to obtain the latent vectors in
sequence since it provides better performance [42]. If
the first latent vector is obtained, the other latent vectors
can be estimated by the deflation of W and A. There-
fore, we firstly find the latent vector t; and the corre-
sponding loading matrices Q<1m> (m=2,3) and v;. The
subscript r is omitted to simplify the notations in the fol-
lowing discussions. The whole optimization is based on
the strategy for the simultaneous minimization of the
Frobenius norm of residuals  and E, while keeping a
common latent vector t. Assume that Q®, Q®), v, and t
are given; then, the cores in (10) can be calculated as

Y =W x tf x, Q7T x , QBT 12)
d=Ax 1 tT X 9 VT
In [42], minimization of the Frobenius norm of the re-
siduals F and E under the orthonormality constraint is
converted to maximize a cross-covariance tensor. Zhao
et al. defined a cross-covariance tensor of independent
variables and dependent variables. Then, the optimization
problem for loading matrices can be finally formulated as

2
max [€:Q¥7. QY v7}
{Q(Z) Q® 7v}
s.t. QPTQY =1,,Q¥TQR =1;,,vTv =1,

(13)
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where C = cov(A,W)eRK *DXF s a 1-mode cross-
covariance tensor [41]. We try to find a rank-(Z, 5, J3)
tensor decomposition of C by employing HOSVD [34].
When the loading matrices of the parameters and the in-
dividual core tensor are estimated, the latent vector t
should explain the variance of the anthropometric pa-
rameters as much as possible estimated by
t= arg mtinHA—D;t,vH% (14)
When the latent vector t is fixed, the cores Y and d
are obtained by (12).
Once the latent vectors and loading matrices are esti-
mated, the prediction of the individual core tensor for a

new subject using the corresponding anthropometric
measurements a”*" can be predicted as

Thew — aneWVD+

~ _ _ T
Wrew — revy (Q<3> ®Q(2>) (15)

4 Experimental results

In the section, the performance of the proposed method
is measured by objective evaluation and subjective sound
localization based on a large number of HRTF measure-
ments. The Center for Image Processing and Integrated
Computing (CIPIC) database provides high-spatial-
resolution HRIR measurements of 45 different subjects.
It contains measured HRIRs for both left and right ears
at 1,250 sound directions (25 azimuths and 50 eleva-
tions) [44]. The azimuths vary from —-80° to 80°, and the
elevations range from -45° to +230.625°. Moreover, 27
anthropometric parameters of 45 subjects are measured
in the CIPIC database including 17 for the head and the
torso from x; to x;; and 10 for the pinna expressed by
d, - dg, 61, and 6, [44]. The CIPIC database is used to
evaluate the performance of our proposed regression
model based on HOPLS.

4.1 Simulations of the data processing

4.1.1 HRTF tensor compaction

In the simulations, the HRTFs of the left ears are chosen
to construct the model. The HRIRs in CIPIC of each sub-
ject are transformed into HRTFs by a 200-point FFT. Col-
lect the HRTFs of random 30 subjects acting as the
training samples denoted by a third-order tensor H €
RE*P>FE yhere P is the number of subjects (30), D is the
number of the sound source elevations (50), and F is the
frequency points (100). The other subjects are used for
testing the model. When the high-dimensional HRTF ten-

sor is acquired, an individual core tensor WeR” xD'xF
can be extracted from the original data via HOSVD. The
following discussions focus on how to determine the
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dimensions D" and F’ of the ICT and the performance of
the HRTF tensor subspace approximation:

1. The selections of D' and F' depend on the energy
loss of the original HRTF tensor in each mode,
respectively. The energy contained in the HRTF
tensor is calculated by the squared Frobenius norm
of H. It also equals the sum of the squared m-mode
singular values [34] expressed by

2N () N (@) N ()
1= (") = (o) = ()
=1 =1 =1
(16)
where agm)(m = 1,2, 3) is the singular value

corresponding to the m-mode of the HRTF tensor.
The square of the m-mode singular value is called
the m-mode eigenvalue denoted by )Lgm). The
eigenvalue magnitudes and their cumulative
distributions are shown in Figure 4. The loss of
energy with the selected D' and F' is proportional to
the sum of the corresponding singular values of the
discarded singular vectors contained in U"”. The
ratios of the retained energy to the total energy for

. 2 D2 D (2
different modes ;re EEat)io =F Zi:1A§ ) / Zi: I)LE )

3 3 3 '
and El(rat)iO = 1:1/11( )/Zizl)tg ). D' and F are less
than the original D and F. The dimension reduction
of the original HRTF tensor H € R”*?** brings
corresponding compression ratio (CR) as
DxFxP

CR = ; ; ; ;
DXD+FXF +D xF xP

(17)

According to Figure 4, the numbers of singular
vectors are kept in each mode, and the different CRs
are shown in Table 1. Similar amount of energy is
kept in each mode with the same E,;,, but the
dimension reduction of each mode is quite different.
This indicates that the redundancy of these two
modes is different. The eigenvalue cumulative
distributions in Figure 4 show different redundancy
between the frequency mode and the sound
direction mode, resulting in different selections of D’
and F'. Although with the same E.,,, similar
amount of variations is kept in each mode, the
amount of dimension reduction in the frequency
mode (80% for the azimuth -80°, 64% for the
azimuth 0°, and 64% for the azimuth 80°) is different
from that in the sound direction mode (90%, 48%,
and 70% for those three azimuths -80°, 0°, and 80",
respectively). After dimension reduction of H, the
individual core tensor with lower dimension still
captures most of the variations in the original
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=80°.

individual core tensor, the signal-to-distortion ratio

(SDR) is defined in decibels as

HRTFs. Figure 5 shows the ICT for some subjects. It
can be seen that the main energy of the ICT is
concentrated in the upper left corner areas.

2. To measure the quantitative error of the

F

> M. 0,6.0)

1

SDR(p, 6, ¢) = 101g—

reconstruction using the basis functions and the

2

(18)

) 9, ¢7f)_%(;n: 07 d)vf)

Do [He

f

1

Table 1 The selections of D' and F' for three azimuths

(3)
E ratio

)
ratio

CR
286

F

D'

Azimuth
-80°

0°

where H(p, 6, ¢,f) and H(p, 9, p,f) represent the

20
37

0.98

0.98

44

26
15

original and the reconstructed or predicted HRTE,

respectively. The average of SDR (ASDR) defined as

7.1

37

80°
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(b) The ICT of subject 018 at azimuth —80°, 0° and 80°, respectively
Figure 5 The ICT of different subjects (a) 003 and (b) 018 at azimuths —80°, 0°, and 80°, respectively, obtained by HOSVD.

P
ASDR(0, ¢) = 1 SDR(p, 0, ¢) is used to measure
P

pr=1 .
the mean performance for the reconstruction or
prediction in the following discussions.

Figure 6a shows the ASDR for P =30 subjects and the
reconstruction with the corresponding D’ and F’ selection.
In most cases, ASDR exceeds 20 dB. The average of ASDR
over all the azimuths and elevations is 24.3 dB. The results
imply that the reconstructed HRTFs can approximate the
original HRTFs accurately via selecting appropriate D’ and
F'. For example, the reconstruction of the subject 003 at
three sound directions (-80°, 0°), (0°, 0°), and (80°, 0°) are
shown in Figure 6b,c,d compared to the original measured
HRTFs. Moderate deviations between the original HRTFs
and the reconstructed HRTFs occur at the frequencies of
the spectral notches. These reconstruction errors imply
that the information loss of the lower-dimensional HRTF
tensor may affect the subsequent modeling.

4.1.2 Selecting anthropometric parameters

There are 27 parameters measured in the CIPIC data-
base. The detailed definitions of these parameters can be
referred in [44]. To avoid the loss of some important pa-
rameters, a mass of correlation analyses are done be-
tween all the parameters and the ICT instead of the
original HRTFs. Three steps for selecting parameters are
used in the following simulation:

1. In order to reduce the amount of computation and
make correlation analyses more effectively, it is

desirable to sample the upper left corner areas of the
ICT for correlation analyses. In this procedure, the
compacted ICT denoted by W.eR”? *F (D" < D'
and F' < F') is reshaped to a matrix W .eR” x(D'F),
Then, the absolute values of Pearson correlation
coefficients are calculated and stored in a matrix
Ry AER”X(D ) There are 25 compacted ICTs
corresponding to 25 azimuths, so 25 correlation
analyses are constructed for the different azimuths.
The significance of all the anthropometric parameters
on the HRTFs can be shown by the correlation
coefficient matrices with elements larger than 0.35
and plotted in Figure 7. The results in Figure 7 show
that all the anthropometric measurements affect the
HRTFs with different levels. It is necessary to delete
unimportant parameters. After 25 correlation
analyses, 22 parameters shown more important to the
HRTFs are reserved for the next selection step. The
parameters x,, x4, %5, %7, and d, have the weak
correlation with the HRTFs and they are deleted in
this step.

. After the correlation analyses, we model the

intrinsic geometric structure of the reserved
parameter space by the nearest neighbor graph.
These reserved parameters (x1, x3, Xs, X3 — %17, d1,
ds —dg, 01, 0,) are arranged to three different classes
shown in Table 2. Combining (8) and the graph, each
parameter is evaluated by a Laplacian score. These
parameters of each class are arranged by their
corresponding scores in an ascending sequence. By
this means, 17 parameters are reserved as the results
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Table 2 Reserved parameters arranged by Laplacian
scores in an ascending order

Class Reserved anthropometric parameter

Class 1 (head and torso)  xy7, Xi5, X12, Xe X14, Xo, X13, X11, X3, X10, Xa, X16/ X1
ds, dg, da, d7, dy, de, ds

01,0

Class 2 (pinna)

Class 3 (pinna angle)

of the Laplacian score procedure. They are x3, xg, xg —
X15, X17, A1, d3, da, dg — dg, and 0 with the Laplacian
score less than 0.4.

3. The selected parameters are fed into the training of
the individual HRTF modeling by HOPLS. The last
step performs the correlation analysis among the
reserved parameters. Similarly in order to show the
dependent relation among those parameters, the
gray image in Figure 8 presents the correlation
coefficients of the reserved parameters larger than
0.5. From Figure 8, x¢, %9, X12, 14, and x;7 have
strong correlation with others and are deleted. Thus,
the parameters xs, X109, X11, X13, ¥15, d1, d3, dy, dg, d7,
dg, and 6 are selected as the final necessary
measurements for the individual HRTF prediction.
All the final reserved parameters are selected by the
procedures of the correlation analysis and the
Laplacian score. We select these 12 parameters as
the key parameters. However, the significance of
each selected parameter on the HRTFs is still not
clear. Since measurements of the anthropometric
parameters need special instruments, we cannot
implement the anthropometric measurements at
present.

4.2 Objective evaluation and subjective localization
experiment

Through the simulations in Section 4.1, we can obtain the
individual core tensor and key anthropometric parameters.
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The goal of our proposed HRTF personalization is to
model the multi-linear relation between the key parame-
ters and the individual core tensor. In this section, the ex-
periments are implemented to evaluate the feasibility of
the proposed individual HRTF customization by objective
evaluation and subjective perception. It is important to se-
lect the appropriate hyperparameters for preventing over-
fitting and controlling the complexity of the HRTFE
estimation model.

4.2.1 Selecting the numbers of loadings and latent vectors
for the individual HRTF prediction

The different selections for the numbers of loadings and
latent vectors can control the personalization model
complexity and improve the predicting performance. In
order to simplify the selection, we define ,=/3=7=1. 1
and R are chosen based on cross-validation [43]. The re-
sults of the optimal hyperparameters are shown in
Table 3.

The optimal R and A of five predicted subjects at three
azimuths are different. These optimal R and A bring
good predicted performance. The ASDR is larger than
12.46 dB, but lower ASDR is obtained by other selec-
tions of R and A. This implies that the performance of
the individual HRTF prediction model can be adjusted
by these two hyperparameters.

Compared with the PLSR method, the same 12 se-
lected parameters are treated as the inputs and the ICT
unfolded in 1-mode as the output. The optimal number
of the latent variables in PLSR for the individual HRTF
linear model is also chosen by cross-validation. The
SDRs of the individual HRTF prediction for subject 124
at all the measured elevations of three different azimuths
are shown in Figure 9. It can be seen that the proposed
HRTF model has achieved larger SDRs than the PLSR
method in all the elevations at azimuth —80° and 0°, ex-
cluding the high elevations of azimuth 80°. The complex

XX X X X
&5

jaNaGaNaTal
PON-O

Anthropometric parameter
X
~

0.8
0.6

0.4

. 0.2

Figure 8 Correlation coefficients of the reserved parameters.
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Table 3 The selected numbers of latent vectors and
loadings of HOPLS

Azimuth Subject HOPLS

—-80° 003 1 1
033

0° 003 1

80° 003 1

N
N
o
O W N U W N

property of the measured HRTFs for the contralateral
ear especially at the rear directions near the horizontal
plane leads to predict the individual HRTFs more diffi-
cultly. The performance for predicting the individual
HRTFs by HOPLS model is much better than that of the
PLSR method especially for the sound directions

Page 12 of 14

ipsilateral to the concerned ear. In Figure 10, the dis-
crepancy between the original HRTFs and the individual
HRTFs may be caused by the information loss in the di-
mension reduction for the HRTF tensor and the inher-
ent defect of the HOPLS model. In general, the
predicted HRTFs can approximate the measured HRTFs
based on the HOPLS method more accurately than the
predicted HRTFs by PLSR.

4.2.2 Subjective localization experiment

The desirable individual HRTF modeling provides the
accurate sound localization by the predicted HRTFs.
The purpose of the subjective hearing experiment in this
section is to compare the sound localization perform-
ance of the original HRTFs and the predicted HRTFs.
Subjective tests, using five pink noises repeated five
times, with 0.5-s silence between each repetition are
constructed by headphone listening binaural signals. The
used pink noises have 22.05-kHz bandwidth and 44.1-
kHz sample ratio. Five test subjects participate in the
subjective listening experiment with five test stimuli.
The five test stimuli are pink noise samples of duration
1 s with 50 ms onset and offset time [45]. Each pink
noise sample is rendered using the predicted HRTFs as
well as the measured ones at randomly chosen azimuths
in the horizontal plane. Then, each rendering testing
stimulus is played back through a headphone. The par-
ticipating subjects are asked to mark the level of sound
localization using the grades in Table 4. Figure 11 shows
the results of the listening tests with the virtual sounds

SDR (dB)

©— PLSR
8 T T
-50 0 50

(2)

100 150

Elevation (°)

250

(c) Elevation (°)

Figure 9 SDR performance of the individual HRTF prediction for subject 124 at three azimuths. (a) 6 =-80°, (b) 6=0°, and (c) 6 =80".
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Figure 10 The individual HRTF prediction by HOPLS and PLSR compared with original HRTFs.

by convolving the stimuli with the predicted HRTFs and
the measured HRTFs of the subjects 003, 033, 124, 134,
and 153. For the sound localization, the predicted
HRTFs are approximate to the original HRTFs.

5 Conclusions

High-dimensional HRTFs and redundant anthropomet-
ric parameters greatly affect the individual HRTF
customization. We construct a multi-linear regression
model between the HRTFs and the anthropometric pa-
rameters. The individual core tensor as the output vari-
able of the regression model is firstly extracted from the
measured HRTFs. Then, the key parameters are selected
as the input variables of the multi-linear model based on
the individual core tensor. The appropriate hyperpara-
meter selection can achieve good prediction perform-
ance for the multi-linear model. Experimental results
demonstrate the better performance for predicting the

Table 4 Localization impairment scale in the subjective
tests

Grade Localization similarity

1 Very different
Slightly different
Slightly similar

Very similar

v~ W N

No difference

individual HRTFs in comparison to the PLSR method
especially for the sound directions ipsilateral to the con-
cerned ear. The listening tests show that the predicted
HRTFs are approximate to the original ones for the
sound localization. The performance of the individual
HRTF prediction is relatively not good in the region of
the high elevations to the contralateral ear. In our future
work, we will further implement the anthropometric
measurements to predict the individual HRTFs and
focus on the improvement of the prediction perform-
ance of the contralateral HRTF personalization. At the
same time, the non-linear methods for the HRTF tensor
estimation will be our future task based on the current
work.

Similarity grade
w

|
0 1 2 3 4 5 6
Listeners in the listening tests

Figure 11 Listening test results using the predicted HRTFs.
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