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Abstract

The objective of this paper is to compare the performance of singular value decomposition (SVD), expectation
maximization (EM), and modified expectation maximization (MEM) as the postclassifiers for classifications of the
epilepsy risk levels obtained from extracted features through wavelet transforms and morphological filters from
electroencephalogram (EEG) signals. The code converter acts as a level one classifier. The seven features such as
energy, variance, positive and negative peaks, spike and sharp waves, events, average duration, and covariance are
extracted from EEG signals. Out of which four parameters like positive and negative peaksand spike and sharp
waves, events and average duration are extracted using Haar, dB2, dB4, and Sym 8 wavelet transforms with hard
and soft thresholding methods. The above said four features are also extracted through morphological filters. Then,
the performance of the code converter and classifiers are compared based on the parameters such as performance
index (PI) and quality value (QV).The performance index and quality value of code converters are at low value of
33.26% and 12.74, respectively. The highest PI of 98.03% and QV of 23.82 are attained at dB2 wavelet with hard
thresholding method for SVD classifier. All the postclassifiers are settled at PI value of more than 90% at QV of 20.

Keywords: EEG signals; Morphological operators; Wavelet transforms; Code converter; Singular value
decomposition; Expectation maximization; Modified expectation maximization
1 Introduction
The electroencephalogram (EEG) is a measure of cumu-
lative firing of neurons in various parts of the brain [1].
It contains information regarding changes in the elec-
trical potential of the brain obtained from a given set of
recording electrodes. These data include the characteris-
tic waveforms with accompanying variations in ampli-
tude, frequency, phase, etc., as well as brief occurrence
of electrical patterns such as spindles, sharps, and spike
waveforms [2]. EEG patterns have shown to be modified
by a wide range of variables including biochemical,
metabolic, circulatory, hormonal, neuroelectric, and be-
havioral factors in [3]. In the past, the encephalographer,
by visual inspection, was able to qualitatively distinguish
normal EEG activity from either the localized or gener-
alized abnormalities contained within relatively long
EEG records [4]. The most important activity possibly
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detected from the EEG is the epilepsy [5]. Epilepsy is
characterized by an uncontrolled excessive activity or
potential discharge by either a part or all of the central
nervous system [5]. The different types of epileptic
seizures are characterized by different EEG waveform
patterns [6]. With real-time monitoring to detect epi-
leptic seizures gaining widespread recognition, the
advent of computers has made it possible to effectively
apply a host of methods to quantify the changes occur-
ring based on the EEG signals [4]. The EEG is an im-
portant clinical tool for diagnosing, monitoring, and
managing neurological disorders related to epilepsy
[7]. This disorder is characterized by sudden recurrent
and transient disturbances of mental function and/or
movements of body that results in excessive discharge
group of brain cells [8]. The presence of epileptiform
activity in the EEG confirms the diagnosis of epilepsy,
which sometimes may be confused with other disor-
ders producing similar seizure-like activity [9]. Be-
tween seizures, the EEG of a patient with epilepsy may
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be characterized by occasional epileptic form transients-
spikes and sharp waves [10]. Seizures are featured by short
episodic neural synchronous discharges with considerably
enlarged amplitude. This uneven synchrony may hap-
pen in the brain accordingly, i.e., partial seizures can
be visible only in few channels of the EEG signal or
generalized seizures, that are seen in every channel of
the EEG signal involving the whole brain [11]. Epileptic
seizure is an abnormality in EEG gathering and is
featured by short and episodic neuronal synchronous
discharges with severely high amplitude. This anomal-
ous synchrony may happen in the brain locally (partial
seizures) and is visible only in fewer channels of the
EEG signal or including the entire brain, i.e., visible in
all the channels of the EEG signal [12].

1.1 Related works
In the last three decades, the analysis and classification
of epilepsy from EEG signal has become a fascinating
research. A huge volume of research has already been
performed which includes spike detection, classification
epilepsy seizures, ictal and inter ictal analysis, nonlinear
and linear analysis and soft computing methods. Gotman
[9] discussed the improvement of epileptic seizure detec-
tion and evaluation. Pang et al. [10] summarized the history
and evaluation of various spike detecting algorithms. The
authors in [13] have discussed the different neural networks
as a function approximation and universal approximation
for epilepsy diagnosis. Rezasarang [14] encapsulated the
performance of spike detecting algorithms in terms of sen-
sitivity, specificity, and average detection. Rezasarang [14]
orders the performance of spike detecting algorithms in
terms of good detection ratio (GDR). McSharry et al. [8]
discussed and enumerated the nonlinear methods and its
relevance to predict epilepsy by considering EEG samples
as time series. Majumdar [15] reviews various soft comput-
ing approaches of EEG signals which emphasize more on
pattern recognition techniques. The paper [15] mainly fo-
cuses on dimensionality reduction, SNR problems, linear
and soft computing techniques for EEG signal processing.
Majumdar concludes that the neural network and Bayesian
approaches are two popular choices even though linear
statistical discriminants are easier to implement. Great
deals of support vector machines (SVM) are also discussed
in this paper for their classification accuracy. Hence, the
EEG signal occupies a great deal of data regarding the work
of the brain. However, classification and estimation of the
signals are inadequate. As there is no explicit category sug-
gested by the experts, visual examination of EEG signals in
time domain may be deficient. Routine clinical diagnosis
necessitates the analysis of EEG signals [13]. Hence, auto-
mation and computer methods have been utilized for this
reason. Current multicenter clinical analysis indicates con-
firmation of premonitory symptoms in 6.2% of 500 patients
with epilepsy [16]. Another interview-based study found
that 50% of 562 patients felt ‘auras’ before seizures. Those
clinical data provide a motivation to search for pre-
monitoring alterations on EEG recordings from the brain
and to employ a device that can act without human inter-
vention to forewarn the patient [17]. On the other hand,
despite decades of research, existing techniques do not
yield to better performance. This paper addresses the ap-
plication and comparison of singular value decomposition
(SVD), expectation maximization (EM), and modified
expectation maximization (MEM) classifiers towards
optimization of code converter outputs in the classifi-
cation of epilepsy risk levels.
Weber et al. [18] have proposed the three-stage design

of an EEG seizure detection system. The first stage of
the seizure detector compresses the raw data stream and
transforms the data into variables which represent the
state of the subject's EEG. These state measures are re-
ferred to as context parameters. The second stage of the
system is a neural network that transforms the state
measures into smaller number of parameters that are
intended to represent measures of recognized phenom-
ena such as small seizure in the EEG [9,10]. The third
stage consists of a few simple rules that confirm the ex-
istence of the phenomena under consideration. Similarly,
this paper also presents a three-stage design for epilepsy
risk level classification. The first stage extracts the seven
required distinct features from raw EEG data stream of the
patient in time domain. The next stage transforms these
features into a code word through a code converter with
seven alphabets which represents the patient's state in five
distinct risk levels for a 2-s epoch of EEG signal per chan-
nel. The last stage is a SVD, EM, or MEM which optimizes
the epilepsy risk level of the patient. The organization of
the paper is as follows. Section 1 introduces the paper and
materials, and its methods are discussed in Section 2.
Section 3 describes about the SVD, EM, and MEM as post-
classifiers for epilepsy risk level classification. Results
are discussed in Section 4, and the paper is concluded
in Section 5.

2 Materials and methods
2.1 Data acquisition of EEG signals
For a comparative study and to analyze the performance
of the pre- and postclassifiers, we have obtained the raw
EEG data of 20 epileptic patients in European data for-
mat (EDF) who underwent treatment in the Neurology
Department of Sri Ramakrishna Hospital, Coimbatore.
An issue that has been given great attention is the pre-
processing stage of the EEG signals because it is import-
ant to use the best technique to extract the useful
information embedded in the nonstationary biomedical
signals. The obtained EEG records were continuous for
about 30 s, each of them were divided into epochs of 2-s



Harikumar and Vijayakumar EURASIP Journal on Advances in Signal Processing 2014, 2014:59 Page 3 of 15
http://asp.eurasipjournals.com/content/2014/1/59
duration. A 2-s epoch is long enough to detect any signifi-
cant changes in activity and presence of artifacts and also
short enough to avoid any redundancy in the signal [19].
For a patient, there are 16 channels over three epochs.
Having a frequency of 50 Hz, each epoch was sampled at a
frequency of 200 Hz. Each sample corresponds to the
instantaneous amplitude values of the signal, totaling to
400 values for an epoch. Figure 1 shows the model of the
flow diagram of epilepsy risk level classification system.
Four types of artifacts were present in our data. They
included eye blink, electromyography (EMG) artifact, and
chewing and motion artifacts [20]. Approximately, 1% of
the data was artifacts. We did not make any attempt to
select certain number of artifacts and of a specific nature.
The objective of including artifacts was to have spikes
versus nonspike categories of waveforms. The latter could
be a normal background EEG and/or artifacts [21]. In order
to train and test the feature extractor and classifiers, we
need to select a suitable segment of EEG data. In our
experiment, the training and testing were selected through
a short sampling window and all EEG signals were visually
examined by a qualified EEG technologist. A neurologist's
decision regarding EEG features (or normal EEG segment)
was used as the gold standard. We choose a sample
window of 400 points corresponding to 2 s of the EEG data.
This width can cover almost all types of transient epileptic
patterns in the EEG signal, even though seizure often lasts
longer [22].
EM, MEM and SVD u
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Figure 1 Flow diagram for epilepsy risk level classification system.
In order to classify the risk level of the patients, certain
parameters were chosen which are detailed below:

1. For every epoch, the energy is calculated as [4]

E ¼
Xn
i¼1

x2i ð1Þ

where xi is the signal sample value and n is the number
of such samples.
2. One of the simplest linear statistics that may be used

for investigating the dynamics of underlying the
EEG is the variance of the signal calculated in
consecutive nonoverlapping windows. The variance
(σ) is given by

σ2 ¼

Xn
i¼1

xi−μð Þ2

n
ð2Þ

where μ is the average amplitude of the epoch.
3. For the average variance, the covariance of duration

is determined by using the equation below:

CD ¼

Xp
i¼1

D−tið Þ2

pD2 ð3Þ
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The following are the four parameters which are ex-
tracted using morphological filters and wavelet transforms:

1. The total number of positive and negative peaks is
found above the threshold.

2. For a zero crossing function, if it lies between 20to
70 ms, then the spikes can be detected. If the zero
crossing function lies between 70to 200 ms then the
sharp waves are detected when the zero crossing
function lies between 70 to 200 ms.

3. After having detected, the total number of spikes
and sharp waves were determined as the events.

4. The duration for these waves is determined by the
relation:

D ¼

Xp
i¼1

ti

p
ð4Þ

where ti is the peak to peak duration and p is the num-
ber of such durations.

2.2 Wavelet transforms for feature extraction
The brain signals are nonstationary in nature. In order
to capture the transients and events of the waveforms,
we are in dire state to visualize the time and frequency
simultaneously. Hence, the wavelet transforms are the
better choice to extract the transient features and events
from the EEG signals. The wavelet transform-based fea-
ture extraction is discussed as follows:
Let us consider a function f (t). The wavelet transform

of this function is defined as [23]

wf a; bð Þ ¼
Z∞
−∞

f tð Þψ�
a;b tð Þdt ð5Þ

where ψ* (t) is the complex conjugate of the wavelet
function ψ (t).
With the set of the analyzing function, the wavelet

family is deduced from the mother wavelet ψ (t) by [24]

ψ�
a;b tð Þ ¼ 1ffiffiffi

2
p ψ

t−b
a

� �
ð6Þ

where a is the dilation parameter and b is the translation
parameter.
The feature extraction process is initialized by studying

the effect of simple Haar threshold. The Haar wavelet
function can be represented as [25].
ψ tð Þ ¼
1; 0≤t < 1=2

−1; 1=2 ≤ t < 1

0 : otherwise

8><
>: ð7Þ

Wavelet thresholding is a signal estimation technique
that exploits the capabilities of wavelet transform for sig-
nal denoising or smoothing. It depends on the choice of
a threshold parameter which determines to a great ex-
tent the efficacy of denoising.

ρT xð Þ ¼ x; if xj j>T
0; if xj j ≤ T

�
ð8Þ

where T is the threshold level.
Typical threshold operators for denoising include hard

threshold, soft threshold, and affine (firm) threshold.
Hard threshold is defined as [24]. Soft thresholding
(wavelet shrinkage) is given by

ρT xð Þ ¼
x − T ; if x ≥ Tð Þ
xþ T ; if x ≤ Tð Þ

0; if xj j<−T

8<
: ð9Þ

Haar, Db2, Db4, and Sym8 wavelets with hard thresh-
olding and four types of soft thresholding methods such
as heursure, minimax, rigsure, and sqtwolog are used to
extract the parameters from EEG signals. With the help
of an expert's knowledge and our experiences with the
references [5,20,26], we have identified the following
parametric ranges for five linguistic risk levels (very low,
low, medium, high, and very high) in the clinical de-
scription for the patients which is shown in Table 1.
The output of code converter is encoded into the

strings of seven codes corresponding to each EEG signal
parameter based on the epilepsy risk levels threshold
values as set in Table 1. The expert defined threshold
values as containing noise in the form of overlapping
ranges. Therefore, we have encoded the patient risk level
into the next level of risk instead of a lower level. Like-
wise, if the input energy is at 3.4, then the code con-
verter output will be at medium risk level instead of low
level [26].

2.3 Code converter as a preclassifier
The encoding method processes the sampled output
values as individual code. Since working on definite al-
phabets is easier than processing numbers with large
decimal accuracy, we encode the outputs as a string of
alphabets. The alphabetical representation of the five
classifications of the outputs is shown in Table 2.
The ease of operation in using characteristic represen-

tation is obviously evident than that in performing cum-
bersome operations of numbers. By encoding each risk
level from one of the five states, a string of seven charac-
ters is obtained for each of the 16 channels of each



Table 1 Parameter ranges for various risk levels

Normalized
parameters

Risk levels

Normal Low Medium High Very high

Energy 0 to 1 0.7 to 3.6 2.9 to 8.2 7.6 to 11 9.2 to 30

Variance 0 to 0.3 0.15 to 0.45 0.4 to 2.2 1.6 to 4.3 3.8 to 10

Peaks 0 to 2 1 to 4 3 to 8 6 to 16 12 to 20

Events 0 to 2 1 to 5 4 to 10 7 to 16 15 to 28

Sharp waves 0 to 2 1 to 5 4 to 8 7 to 11 10 to 12

Average duration 0 to 0.3 0.15 to 0.45 0.4 to 2.4 1.8 to 4.6 3.6 to 10

Covariance 0 to 0.05 0.025 to 0.1 0.09 to 0.4 0.28 to 0.64 0.54 to 1

Table 3 Output of code converter for patient 2

Epoch1 Epoch2 Epoch3

WYYWYYY WYYWYYY WZYYWWW
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epoch. A sample output with actual patient readings is
shown in Table 3 for eight channels over three epochs.
It can be seen that channel 1 shows low-risk levels

while channel 7 shows high-risk levels. Also, the risk
level classification varies between adjacent epochs. There
are 16 different channels for input to the system at three
epochs. This gives a total of 48 input and output pairs.
Since we deal with known cases of epileptic patients, it
is necessary to find the exact level of epilepsy risk in the
patient. This will also aid towards the development of
automated systems that can be precisely classify the risk
level of the epileptic patient under observation. Hence,
an optimization is necessary. This will improve the
classification of the patient and can provide the EEG
with a clear picture [20]. The outputs from each epoch
are not identical and are varying in condition such as
[YYZXXXX] to [WYZYYYY] to [YYZZYYY]. In this
case, energy factor is predominant and thus results in
the high-risk level for two epochs and low-risk level for
middle epoch. Channels 5 and 6 settle at high-risk level.
Due to this type of mixed state output, we cannot come
to a proper conclusion. Therefore, we group four adja-
cent channels and optimize the risk level. The frequently
repeated patterns show the average-risk level of the
group channels. Same individual patterns depict the con-
stant risk level associated in a particular epoch. Whether
a group of channel is at the high-risk level or not is
identified by the occurrences of at least one Z pattern in
an epoch. It is also true that the variation of the risk
level is abrupt across epochs and eventually in channels.
Hence, we are in a dilemma and cannot come up with
the final verdict. The five risk levels are encoded as Z >
Table 2 Representation of risk level classifications

Risk level Coded representation

Normal U

Low W

Medium X

High Y

Very high Z
Y > X >W>U in binary strings of length five bits using
weighted positional representation as shown in Table 4.
Encoding each output risk level gives us a string of seven
alphabets, the fitness of which is calculated as the sum
of probabilities of the individual alphabets. For example,
if the output of an epoch is encoded as ZZYXWZZ, its
fitness would be 0.419352.
The performance index of the code converter is given

as [19].

PI ¼ PC‐MC‐FA
PC

� 100 ð10Þ

Where PI is the performance index, PC is the perfect
classification, MC is the missed classification and FA is
the false alarm.
The performance of code converter is 44.81%. The

perfect classification represents when the physician
agrees with the epilepsy risk level. Missed classification
represents a high level as low level. False alarm repre-
sents a low level as high level with respect to the physi-
cian's diagnosis. The other performance measures are
also defined as below:
The sensitivity Se and specificity Sp are represented

as [19]

Se ¼ PC= PCþ FAð Þ½ � � 100
0:5=0:6ð Þ � 100 ¼ 83:33%

ð11Þ
YZZYXXX YYYYXXX YYYXYYY

ZZZYYYY YYYYYYY YYYYYYY

YYZXYYY XZZXYYY YYYYYYY

ZZZYYYY WYYYXXX YYYXYYY

YYZXXXX WYZYYYY YZZYYYY

ZZZYYYY YYYYYYY ZZZYYYY

YYYYXXX YYYYXXX YYYXZYY



Table 4 Binary representation of risk levels

Risk level Code Binary string Weight Probability

Very high Z 10000 16/31 = 0.51612 0.086021

High Y 01000 8/31 = 0.25806 0.043011

Medium X 00100 4/31 = 0.12903 0.021505

Low W 00010 2/31 = 0.06451 0.010752

Normal U 00001 1/31 = 0.03225 0.005376

11111 = 31 Σ = 1

Table 6 Rhythmicity of code converter for wavelets with
hard thresholding

Wavelets Number of categories
of patterns

Rhythmicity

R = C/D

Haar 31 0.032292

Db2 41 0.042708

Db4 30 0.03125

Sym8 45 0.046875
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Sp ¼ PC= PCþMCð Þ½ � � 100
0:5=0:7ð Þ � 100 ¼ 71:42%

ð12Þ

Average detection ADð Þ ¼ Sensitivity þ Specificityð Þ=2
AD ¼ 78:875:

ð13Þ
Relative risk ¼ Sensitivity=Specificity
1:166

ð14Þ

The relative risk factor indicates the stability and sensitiv-
ity of the classifier. For an ideal classifier, the relative risk
will be unity. More sensitive classifier will have this factor
slightly above unity, whereas slow response classifier makes
this factor lower than unity. We have obtained a low value
of just 40% for performance index and 83.33%, 71.42%,
78.87%, and 1.166 for sensitivity, specificity, average detec-
tion, and relative risk for the code converter. Due to the
low performance measures, it is essential to optimize the
output of the code converter. Performance index of code
converters output using different wavelet transforms for
hard thresholding methods are tabulated in Table 5.

2.4 Rhythmicity of code converter
Now, we are about to identify the rhythmicity of code
converter techniques which is associated with nonlinearities
of the epilepsy risk levels. Let the rhythmicity be defined
as [10]

R ¼ C
D= ð15Þ

where C is the number of categories of patterns and D is
the total number of patterns which is 960 in our case.
For an ideal classifier, C is to be one and R = 0.001042.
Table 6 shows the rhythmicity of the code converter
classifier for hard thresholding of each wavelet. Table 6
Table 5 Performance of code converter output based on
wavelet transform along hard thresholding

Wavelets Perfect
classification

Missed
classification

False
alarm

Performance
index

Haar 61.45 15.625 22.91 37.58

Db2 61.18 16.14 22.65 36.44

Db4 64.57 12.49 22.91 44.72

Sym8 63.52 11.44 23.95 44.81
shows that the value of R is highly deviated from its ideal
value. Hence, it is necessary to optimize the code
converter output to endure a singleton risk level. In the
following section, we discuss about the morphological
filtering of EEG signals.

2.5 Morphological filtering for feature extraction of EEG
signals
Morphological filtering was chosen over other methods
such as the temporal approach of the EEG signal and
wavelet-based approach due to the fact that morphological
filtering can precisely determine the spikes with a very high
accuracy rate [14]. Let us call it as a function f (t). Let us
also take into account a structuring element g (t) which
together with f (t) be the subsets of Euclidean space E.
Accordingly, the Minkowski addition and subtraction [6]

for the function f (t) is given by the relation
Addition:

f⊕gð Þ tð Þ ¼ max
t−u∈F
u∈G

f t−uð Þ þ g uð Þf g ð16Þ

Subtraction:

fΘgð Þ tð Þ ¼ min
t−u∈F
u∈G

f t−uð Þ � g uð Þf g ð17Þ

The opening and closing functions of the morpho-
logical filter is given as:
Opening:

f �g
� �

tð Þ ¼ fΘgS
� �

⊕ g
� 	

tð Þ ð18Þ
Closing:

f •gð Þ tð Þ ¼ f ⊕ gS
� �

Θg
� 	

tð Þ ð19Þ
The abovementioned equations help us in determining

the peaks and valleys in the original recording [7]. The
opening function (erosion-dilation) is used in smoothing of
the convex peak of the original signal, and the closing
function (dilation-erosion) is used in smoothing the
concave peak of the signal. Combinations of opening and
closing function lead to the formation of a new filter which
when fed with the original signal can divide it into two, the
first signal being defined by a structuring element and the
second signal being the residue of f (t). This type of filtering
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is done in order to detect the spikes with high accuracy.
For two structuring elements, say g1 (t) and g2 (t), the
open-close (OC) and close-open (CO) functions are
defined as

OC f tð Þð Þ ¼ f tð Þ�g1 tð Þ•g2 tð Þ ð20Þ
CO f tð Þð Þ ¼ f tð Þ•g1 tð Þ�g2 tð Þ ð21Þ

When considered separately, the OC and CO func-
tions result in a variation in amplitude, i.e., while OC
results in lower amplitude; the CO function yields
higher amplitude. For easier interpretation and calcula-
tion, we go for the average of the two defined as
opening-closing and closing-opening (OCCO) function.
The same is depicted below as

OCCO f tð Þð Þ ¼ OC f tð Þð Þ þ CO f tð Þð Þ½ �=2 ð22Þ

f (t) is the original signal represented as

f tð Þ ¼ x tð Þ þOCCO f tð Þð Þ ð23Þ

where x (t) is the spiky part of the signal.
Performance index, sensitivity, and specificity of code

converter outputs through morphological filter-based
feature extraction arrived at the low value of 33.46%,
76.23%, and 77.42%, respectively. This scenario impacts the
optimization of code converter outputs using postclassifier
to accomplish a singleton result. The following section
describes about the outcome of SVD, EM, and MEM
techniques as postclassifier.

3. Singular value decomposition, expectation
maximization, and modified EM as postclassifier
for classification of epilepsy risk levels
In this section, we discuss the possible usage of SVD,
EM, and MEM as a postclassifier for classification of
epilepsy risk levels. The SVD was established in 1870s
by Beltrami and Jordan for real square matrices [27]. It
is used mainly for dimensionality reduction and deter-
mining the modes of a complex linear dynamical system
[27]. Since then, SVD is regarded as one of the most
important tools of modern numerical analysis and
numerical linear algebra.

3.1 SVD theorem
Let us have an m × n matrix A = [a1, a2, a3…………, an].
The SVD theorem states that [28]:

A ¼ USVT ð24Þ

where A∈Rm × n (with m ≥ n), U∈Rm × n,V∈Rn × n, And S
is a diagonal matrix of size Rn × n.
Equation 24 can be further realized as:

A ¼
X

Pσkukv
T
k ð25Þ

The columns of U are called the left singular vectors of
matrix A, and the columns of V are called the right singular
vectors of A. P =min (m, n) and ∑ is called as the singular
value matrix with along the diagonal.
We have taken the EEG records of 20 patients for our

study. Each patient's sample is composed of a 16 × 3 matrix
as code converter outputs depicted in Table 3. Considering
this to be as matrix A, SVD is computed. The so obtained
eigenvalue is eventually regarded as the patient's epilepsy
risk level. The similar procedure is carried out in finding
out the remaining eigenvalues of other patients as well.

3.2 Expectation maximization as a postclassifier
The EM is often defined as a statistical technique for maxi-
mizing complex likelihoods and handling incomplete data
problem. EM algorithm consists of two steps namely:

� Expectation step (E Step): Say for data x, having an
estimate of the parameter and the observed data, the
expected value is initially computed [29]. For a given
measurement,y1 and based on the current estimate
of the parameter, the expected value of x1 is
computed as given below:

x kþ1½ �
1 ¼ E x1jy1; pk

� 	 ð26Þ
This implies
x kþ1½ �
1 ¼ y1

1=4
1
4 þ p k½ �

2

ð27Þ

� Maximization step (M Step): From the expectation
step, we use the data which were actually measured
to determine the maximum likelihood (ML)
estimate of the parameter.

Considering the code converter output, let us take a
set of unit vectors to be as Х. We will have to find
out the parameters μ and κ of the distribution Md
(μ, k). Accordingly, we can form the equation as [30]
Х ¼ Xi XieMd μ; kÞ for 1≤i≤ngðjf ð28Þ
Considering xi∈Х, the likelihood of Х is:
PðХjμ; kÞ ¼ Pðxi…… ::xnjμ; kÞ ¼
Yn

i¼1
f ðxi μ; kj Þ

¼
Yn

i¼1
cd kð ÞekμT xi

ð29Þ
The log likelihood of Equation 25 can be written as:
L Х μ; kÞ ¼ lnP Х μ; kÞ ¼ n lncd kð Þ þ k μTrjðjð ð30Þ
where r = ∑ixi.



Harikumar and Vijayakumar EURASIP Journal on Advances in Signal Processing 2014, 2014:59 Page 8 of 15
http://asp.eurasipjournals.com/content/2014/1/59
In order to obtain the likelihood parameters μ and κ,
we will have to maximize Equation 28 with the help of
Lagrange operator λ. The equation can be written as:
L μ; λ; κ;ХÞ ¼ n lncd kð Þ þ k μTrþ λ 1− μT μÞðð
ð31Þ

Derivating Equation 29 with respect to μ, λ, and κ

and equating these to zero will yield the parameter
constraints as
μ̂ ¼ k̂

2λ̂
r ð32Þ

μ̂T μ̂ ¼ 1 ð33Þ

nc′ðk̂Þ
cdðk̂Þ

¼ −μ̂T r ð34Þ

In the expectation step, the threshold data are

estimated, given the observed data and current
estimate of the model parameters [31]. This is
achieved using the conditional expectation,
explaining the choice of terminology. In the M step,
the likelihood function is maximized under the
assumption that the threshold data are known. The
estimate of the missing data from the E step is used
in lieu of the actual threshold data.
Table 7 Performance index for morphological based
feature extraction

Classifiers Morphological operators based feature extraction

Perfect
classification

Missed
classification

False
alarm

Performance
index

Code
converter

62.6 18.25 19.13 33.26

With SVD
optimization

91.22 7.31 1.42 89.48

With EM
optimization

82.68 12.93 4.38 80.1

With MEM
optimization

85.32 10.95 3.72 83.35
3.3 Modified expectation maximization algorithm
In this paper, a ML approach uses a modified EM algorithm
for pattern optimization. Similar to the conventional EM
algorithm, this algorithm alternated between the estimation
of the complete loglikelihood function (E step) and the
maximization of this estimate over values of the unknown
parameters (M step) [32]. Because of the difficulties in the
evaluation of the ML function [33], modifications are made
to the EM algorithm as follows.
The method of maximum likelihood corresponds to

many well-known estimation methods in statistics. For ex-
ample, one may be interested in the heights of adult female
giraffes, but been unable due to cost or time constraints, to
measure the height of every single giraffe in a population.
Assuming that the heights are normally (Gaussian) distrib-
uted with some unknown mean and variance, the mean
and variance can be estimated with MLE while only know-
ing the heights of some sample of the overall population.
Given a set of samples X = {x1, x2…xn}, the complete data

set S = (X, Y) consists of the sample set X and a set Y of
variable indicating from which component of the mixtures
the samples came. The description which is given below ex-
plains how to estimate the parameters of the Gaussian mix-
tures with the maximization algorithm. After optimization
of the patterns, maximum likelihood is adopted to redesign
the intracranial area into two clusters. Basically, maximum
likelihood algorithm is a statistical estimation algorithm
used for finding log likelihood estimates of parameters in
probabilistic models [30].

1. Find the initial values of the maximum likelihood
parameters which are mean, covariance, and mixing
weights.

2. Assign each xi to its nearest cluster centerck by
Euclidean distance (d).

3. In maximization step, maximization can be used.The
likelihood function is written as:

Q θiþ1θi
� � ¼ maxQ θiθ

� �
; θiþ1

¼ argmaxQ θ; θi
� � ð35Þ

d p; qð Þ ¼ d p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

iþ1
qi − pið Þ2

q
ð36Þ

4. Repeat iterations and do not stop the loop until it
becomes small enough.

The algorithm terminates when the difference between
the log likelihood for the previous iteration and current
iteration fulfills the tolerance. For μ = 0 and σ = 1, the
likelihood function was applied to the 16 × 3 matrix of the
code converter output by having truncated to the known
endpoints.

4. Results and discussion
To study the relative performance of these code converter
and SVD, EM, and MEM, we measure two parameters, the
performance index and the quality value. These parameters
are calculated for each set of 20 patients and compared.

4.1 Performance index
A sample of performance index of morphological filter-
based feature extraction with code converters, singular
value decomposition, EM, and MEM for an average of 20
known epilepsy data set shown in Table 7. As shown in
Table 7, the morphological filter-based feature extraction
along with SVD optimization is ranked at first with high PI



Table 9 Performance analysis of Haar wavelet transforms
with soft thresholding

Classifiers Perfect
classification

Missed
classification

False
alarm

Performance
index

Heursure soft thresholding

Code
Converter

66.1 19.18 11.93 52.82

With SVD
optimization

87.21 2.84 9.94 82.64

With EM
optimization

89.03 6.79 4.16 87.88

With MEM
optimization

90.46 4.6 4.93 89.82

Minimax soft thresholding
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of 89.48% against the 80.1% and 83.35% of EM and MEM
methods, respectively. But the morphological filter may be
plugged into more missed classification rather than less
false alarm which is a dangerous trend. Therefore, this
method will be considered as a lazy and high threshold
classifier.
Table 8 depicts the performance analysis of wavelet trans-

form with hard thresholding method. In case of hard
thresholding, while code converter has got an average
classification rate and false alarm of 62.68% and 18.105%,
respectively, EM optimizer has 87.39% of perfect classifica-
tion with a false alarm rate of 4.43%. With not much
of deviations, MEM has 89.36% and 4.46% of average
perfect classification and false alarm, respectively. SVD
Table 8 Performance analysis of wavelet transforms with
hard thresholding

Classifiers Perfect
classification

Missed
classification

False
alarm

Performance
index

Haar wavelet

Code
converter

61.45 15.625 22.91 37.58

With SVD
optimization

96.58 3.42 0 96.4

With EM
optimization

82.68 12.93 4.38 80.1

With MEM
optimization

85.32 10.95 3.72 83.35

DB 2 Wavelet

Code
converter

61.18 16.14 22.65 36.44

With SVD
optimization

98.13 0.9465 0.946 98.03

With EM
optimization

87.29 8.1 4.59 85.42

With MEM
optimization

89.58 5.81 4.61 87.81

DB 4 Wavelet

Code
converter

64.57 12.49 22.91 44.72

With SVD
optimization

97.54 0.378 2.08 97.45

With EM
optimization

92.33 4.31 3.29 91.35

With MEM
optimization

93.86 2.3 3.84 93.17

Sym8 Wavelet

Code
converter

63.52 11.44 23.95 44.81

With SVD
optimization

97.35 1.512 1.135 97.23

With EM
optimization

87.27 7.78 5.48 85.03

With MEM
optimization

88.71 6.9 5.67 86.95

Code
converter

64.63 20.59 15.1 44.52

With SVD
optimization

85.22 0 14.77 79.43

With EM
optimization

89.48 5.92 4.6 88.15

With MEM
optimization

93.97 2.74 3.5 93.4

Rigsure soft thresholding

Code
converter

66.34 19.88 13.78 49.11

With SVD
optimization

88.49 0 11.5 84.18

With EM
optimization

90.9 3.84 5.48 89.93

With MEM
optimization

92.22 3.62 4.16 91.25

Sqtwolog soft thresholding

Code
converter

65.34 27.69 6.96 46.89

With SVD
optimization

77.69 20.88 1.42 66.58

With EM
optimization

84.65 10.85 4.49 82.12

With MEM
optimization

88.38 8.88 2.74 86.87

Table 10 Quality value of wavelet transforms with hard
thresholding

Wavelets Quality value

Without
optimization

With SVD
optimization

With EM
optimization

With MEM
optimization

Haar 11.56 23.5 18.32 19.24

Db2 12.57 23.82 19.72 20.49

Db4 12.49 23.15 21.32 22.11

Sym8 12.84 23.37 19.52 20.3



Table 11 Performance analysis of twenty patients using db2 wavelet hard thresholding with SVD, EM, and MEM
postclassifiers

Parameters Code converter method
before optimization

SVD optimization With EM optimization With MEM optimization

Risk level classification rate (%) 61.45 98.13 87.29 89.58

Weighted delay (s) 2.189 2.017 2.233 2.14

Falsealarm rate/set 22.65 0.9463 4.59 4.6

Performance index% 36.45 98.03 85.42 87.81

Sensitivity 75.43 99.05 95.4 95.4

Specificity 81.94 99.1 91.89 94.19

Average detection 78.875 99.075 93.645 94.795

Relative risk 1.166 0.9999 1.038 1.0128

Quality value 12.57 23.82 19.72 20.49

Table 12 Quality value of Haar wavelet transforms with
soft thresholding

Haar
wavelet
with soft
thresholding

Quality value

Code
converter

With SVD
optimization

With EM
optimization

With MEM
optimization

Heursure 13.54 20.16 20.12 20.85

Mini max 12.11 19.38 20.09 22.54

Rigsure 12.91 20.44 20.32 21.42

Sqtwolog 13.22 17.82 18.77 20.22
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optimization has the highest value of perfect classification
rate of 96.58% with zero false alarms. Hence, SVD
optimizer can be regarded as the best postclassifier. In all
the four wavelet transforms, SVD postclassifier is the best
suited one to achieve the high classification rate. EM and
MEM techniques fail miserably to achieve better classifica-
tion accuracy when compared with SVD classifier.
Table 9 represents the performance analysis of wavelet

transforms with soft thresholding with code converter,
SVD, EM, and MEM. It can be found that, in soft thresh-
olding, the code converter has an average perfect classifica-
tion of 65.6 and false alarm of 11.94. SVD has a
classification rate of over 85% with comparatively higher
values of false alarms. MEM optimizer claims to be the best
optimizer as it has a classification rate of 93.97% with a false
alarm rate of 3.5 only. This is obtained when Haar wavelet
is used with minimax soft thresholding.

4.2 Quality value
This parameter determines the overall quality of the classi-
fiers used. The relation for quality value is given by [19],

QV ¼ C

Rfa þ 0:2ð Þ � Tdly � Pdct þ 6� Pmsd
� � ð37Þ

Where C is the scaling constant, Rfa is the false alarm per
set, Tdly is the average delay of onset classification, Pdct is
the percentage of perfect classification, and Pmsd is the
percentage of perfect risk level missed.
By setting the value of ‘C’ to a constant value, say 10, the

classifier with the highest QV is the better one. Table 10
depicts the quality value of wavelet transforms with hard
thresholding and SVD, EM, and MEM optimization
methods. It was observed that SVD with dB2 wavelet in
hard thresholding attained the maximum value of QV at
23.82, and EM with Haar wavelet has the low value of QV
at 18.32.
Table 11 shows the performance analysis of 20 patients
using dB2 wavelet hard thresholding with SVD, EM,
and MEM as postclassifiers. The evaluation parameters
achieved an appreciable value in the case of SVD postclassi-
fier when compared to the other two classifiers. Hence, we
can choose SVD as a good postclassifier for epilepsy risk
level classification. All the three postclassifiers are bestowed
with the best sensitivity and specificity measures. EM and
MEM classifiers are plugged into the higher false alarm
rate, and this leads to the lower QV and PI for the system.
Since the Haar wavelet is a predominant wavelet, we had

chosen this wavelet for the four types of soft thresholding
methods and the same is depicted in Table 12. As seen in
Table 12, the highest QV of 22.54 is attained in the
minimax soft thresholding with MEM as a postclassifier.
Table 13 exhibits the performance analysis of 20 patients

using Haar wavelet in soft thresholding with SVD, EM, and
MEM postclassifiers. MEM postclassifier with minimax soft
thresholding reached the better QV and PI when compared
to SVD and EM classifiers. A slight incremental tradeoff in
the weighted delay for MEM is responsible for this perfor-
mancewhen comparedwith SVD and EM classifiers. SVD
fails to achieve a good performance in this methodology
due to more false alarm rate. EM is struck in the middle
path as far as performance index is concerned.
Table 14 shows the performance analysis of 20 patients

using morphological filters with SVD, EM, and MEM



Table 13 Performance analysis of 20 patients using Haar wavelet in soft thresholding with SVD, EM,
and MEM postclassifiers

Parameters Code converter method
before optimization

SVD optimization With EM optimization With MEM optimization

Heursure soft thresholding

Risk level classification rate (%) 66.1 87.21 89.03 90.46

Weighted delay (s) 2.47 1.91 2.19 2.08

Falsealarm rate/set 11.93 9.94 4.16 4.93

Performance index% 52.82 82.64 87.88 89.82

Sensitivity 85.39 90.05 96.27 95.07

Specificity 78.28 97.16 92.76 95.4

Average detection 78.875 93.61 94.51 95.23

Relative risk 1.166 0.926 1.037 0.996

Quality value 13.54 20.16 20.12 20.85

Minimax soft thresholding

Risk level classification rate (%) 64.63 85.22 89.48 93.97

Weighted delay (s) 2.53 1.7 2.15 2.06

Falsealarm rate/set 15.1 14.77 4.6 3.5

Performance index% 44.52 79.43 88.15 93.4

Sensitivity 82.31 85.25 95.4 96.71

Specificity 76.81 100 94.08 97.26

Average detection 78.875 92.625 94.74 96.98

Relative risk 1.166 0.85 1.014 0.994

Quality value 12.11 19.36 20.09 22.54

Rigsure soft thresholding

Risk level classification rate (%) 66.34 88.49 90.9 92.22

Weighted delay (s) 2.52 1.77 2.01 2.1

Falsealarm rate/set 13.78 11.5 5.48 4.16

Performance index% 49.11 84.18 89.93 91.25

Sensitivity 84.35 88.49 94.74 95.83

Specificity 78.23 100 96.16 96.83

Average detection 78.875 94.45 95.45 96.33

Relative risk 1.166 0.88 0.992 0.989

Quality value 12.91 20.44 20.32 21.42

Sqtwolog soft thresholding

Risk level classification rate (%) 65.34 77.69 84.65 88.38

Weighted delay (s) 2.96 2.806 2.34 2.3

Falsealarm rate/set 6.96 1.42 4.49 2.74

Performance index% 46.89 66.58 82.12 86.87

Sensitivity 91.34 98.57 95.5 97.26

Specificity 70.82 79.11 89.15 91.12

Average detection 78.875 88.84 92.325 94.19

Relative risk 1.166 1.245 1.07 1.06

Quality value 13.22 17.82 18.77 20.22
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Table 14 Performance analysis of 20 patients using morphological filters with SVD, EM, and MEM postclassifiers

Parameters Code converter method SVD optimization With EM optimization With MEM optimization

Risk level classification rate (%) 62.6 91.22 87.27 88.71

Weighted delay (s) 2.34 2.26 2.2 2.18

Falsealarm rate/set 19.13 1.42 5.47 5.67

Performance index% 33.26 89.48 85.03 86.95

Sensitivity 77.84 98.57 95.59 98.97

Specificity 78.91 92.65 98.11 97.67

Average detection 78.875 95.61 96.85 98.32

Relative risk 1.166 1.063 0.974 1.013

Quality value 12.74 20.62 19.52 20.3

Harikumar and Vijayakumar EURASIP Journal on Advances in Signal Processing 2014, 2014:59 Page 12 of 15
http://asp.eurasipjournals.com/content/2014/1/59
postclassifiers. In this method, SVD outperforms other clas-
sifiers in terms of QV and PI. This morphological filtering
is inherited with slow response and is considered to be a
high-threshold classifier. SVD classifier is summed with low
false alarm and weighted delays. All these methods are in
an average, positioned at more than 90% of performance
index, and around quality value of 18. Since for all these
classifiers, the obtained weighted delay is more than 2 s; it
leads to larger threshold and slow response system.
We wish to analyze the time complexity of the postclassi-

fiers in terms of weighted delay and quality value. Table 15
Table 15 Performance analysis of postclassifiers in terms of w

Methods Wavelets SVD optimization

Weighted delay (s) Quality value W

Hard threshold Haar 2.14 23.5

dB2 2.017 23.82

dB4 1.974 23.15

Sym8 2.038 23.37

Soft threshold heursure Haar 1.94 20.16

dB2 2.82 16.01

dB4 2.41 19.99

Sym8 2.16 18.95

Soft threshold minimax Haar 1.7 19.36

dB2 2.23 19.39

dB4 1.97 20.13

Sym8 2.51 19.51

Soft threshold rigsure Haar 1.77 20.44

dB2 1.62 18.77

dB4 1.53 16.74

Sym8 1.65 19.51

Soft threshold sqtwolog Haar 2.08 17.82

dB2 3.25 16.73

dB4 2.76 19.1

Sym8 2.97 17.52

Morphological filters 2.26 20.62
shows the performance analysis of postclassifiers in terms
of weighted delay and quality value. It is observed that the
four types of wavelet transforms in hard thresholding
method along with SVD postclassifier attained low
weighted delay and high value of QV.
In the case of Table 15, the EM and MEM classifiers are

either plugged into more missed classification or false
alarms and subsequently leads to lower value of QV less
than 20 in most of the wavelet transforms. In case of soft
thresholding, dB2 wavelet in rigsure thresholding for
MEM postclassifier outperforms other fifteen methods.
eighted delay and quality value

EM optimization MEM optimization

eighted delay (s) Quality value Weighted delay (s) Quality value

2.431 18.32 2.36 19.24

2.23 19.72 2.14 20.49

2.11 21.32 2.01 22.11

2.2 19.52 2.18 20.3

2.19 20.12 2.08 20.85

2.37 20.24 2.27 20.54

2.31 19.79 2.27 20.57

2.26 20.44 2.13 22

2.15 20.09 2.06 22.54

2.3 18.87 2.16 20.41

2.17 19.97 2.14 20.66

2.27 20.2 2.22 20.73

2.01 20.32 2.1 21.42

2.07 19.4 2.04 19.95

2.08 20.42 2.08 22.04

2.18 20.02 2.09 21.06

2.34 18.77 2.3 20.22

2.42 19.17 2.36 20.1

2.37 19.62 2.36 19.35

2.41 18.74 2.39 19.97

2.2 19.52 2.18 20.3
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Morphological filters are stacked at higher delay with QV
set at near 20.
Table 16 shows a good collection of recent papers in this

area are given in the review paper by Rajendra Acharya etal.
in [34]. Studies that presented techniques for two-class
(normal, ictal) epilepsy activity classification are that of
Nigam and Graupe [35] who used a multistage nonlinear
pre-processing filter along with an artificial neural network
(ANN) for the automated detection of epileptic signals and
obtained an accuracy of around 97.20%. Nonlinear parame-
ters like CD, LLE, H, and entropy were used to characterize
the EEG signal and discriminate epileptic and alcoholic
EEG from normal EEG with more than 90%accuracy [36].
Using the same dataset, the same group automatically clas-
sified EEG signals into normal and epileptic using different
entropies using an adaptive neuro-fuzzy interference sys-
tem(ANFIS) and obtained an accuracy of 92.22% [37]. Time
domain and frequency domain EEG features combined
with Elman network were used to classify the two classes
with an accuracy, sensitivity, and specificity of 99.6% [38].
Normal and epileptic EEG signals were automatically iden-
tified with a classification accuracy of85.9% using discrete
wavelet transform (DWT) sub-band energy as input
Table 16 Summary of previous works for automated detectio

Authors Features

Nigam and Graupe [35] Nonlinear preprocessing fil

Kannathal et al. [37] Entropy measures adaptive neu

Srinivasan et al. [38] Time andfrequency doma

Sadati et al. [39] DWT adaptive neural

Subasi [42] DWT statistical measures

Polat and Gunes [43] FFT-based features

Tzallas et al. [41] Time-frequency method

Srinivasan et al. [40] ApEn

Polat and Gunes [44] FFT-based features

Polat and Gunes [45] AR C4.5

Ocak [46] DWT-ApEn

Guo et al. [47] Relative wavelet energy

Guo et al. [48] ApEn and wavelet Transfo

Guo et al. [49] Line length features and wavelet

Subasi and Gursoy [51] DWT-PCA, ICA, LDA

Ubeyli [52] AR

Lima et al. [53] Wavelet transform

Guo et al. [50] Genetic programming bas

Wang et al. [54] Wavelet packet entropy

Iscan et al. [55] Cross correlation and PSD

Proposed method by authors Harikumar dB2 wavelet hard threshold
features to adaptive neural fuzzy network [39]. Srinivasan
et al. [40] developed an automated epileptic EEG detection
system using approximate entropy as the feature in Elman
and probabilistic neural networks. Elman network yielded
an overall accuracy of 100%. Tzallas et al. [41] employed
time-frequency methods to analyze selected segments of
EEG signals for automated detection of seizure using neural
network and obtained an accuracy ranging from 97.72% to
100%. Subasi [42] applied DWT on EEG signals and
decomposed them into frequency sub-bands. DWT coeffi-
cients were converted into four statistical features, and
these were fed to a modular neural network called mixture
of experts (MEs). They classified normal and epileptic EEG
signals with an accuracy of 94.5%, sensitivity of 95%, and
specificity of 94%. Polat and Gunes [43] classified EEG sig-
nals into epileptic and normal using fast Fourier transform
(FFT)-based Welch method and decision tree classifier and
achieved a maximum classification accuracy of 98.72%,
sensitivity of 99.4%, and specificity of 99.31%. The same
group [44] used the Welch FFT method for feature extrac-
tion, PCA for dimensionality reduction, and a new hybrid
automated identification system based on artificial immune
recognition system (AIRS) with fuzzy resource allocation
n of normal and epileptic classes

Classifier Accuracy (%)

ter Diagnostic neural network 97.20

ro-fuzzy Inference system (ANFIS) 92.22

in Features Elman network 99.60

Fuzzy network 85.90

Mixture expert model
(a modular neural network)

94.50

Decision tree 98.72

s Artificial neural network 97.72 to 100

Probabilistic neural network, Elman network 100

Artificial immune recognition system 100

Decision tree classifier 99.32

Thresholding 96.65

ANN 95.85

rm ANN 99.85

transform ANN 99.60

SVM 98.75(PCA)

99.50(ICA)

100(LDA)

SVM 99.56

SVM 100

ed KNN 99

KNN 100

Several classifiers including SVM 100

ing SVD 98.03
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mechanism for classification of normal and epileptic seg-
ments. They reported an accuracy of 100%.The same group
([45] used autoregressive (AR) for feature extraction and
C4.5 decision tree classifier for classification and reported
an accuracy of99.32%. Ocak [46] developed a method for
automated seizure detection based on ApEn and DWT.
They were able to distinguish seizures with more than 96%
accuracy. Guo et al.conducted many studies using ANN for
classification and reported an accuracy of95.2%, sensitivity
of 98.17%, and specificity of 92.12% using relative wavelet
energy-based features [47]; an accuracy of 99.85%, sensitiv-
ity of 100%, and specificity of 99.2% using wavelet trans-
form and ApEn features [48]; an accuracy of 99.60% using
wavelet transform and line length feature [49]; and an
accuracy of 99% using genetic programming-based features
in a K-nearest neighbor (KNN)classifier [50]. The DWT
features were reduced using PCA, ICA, andLDA, and the
resultant features were used to classify normal andepilepsy
EEG signals using SVM classifier [51]. They obtained an ac-
curacy of 98.85% using PCA method,99.5% using ICA
method, and 100% using LDA method. Ubeyli [52] used
AR methods for feature extraction and SVM for classifica-
tionand reported an accuracy of 99.56%. In other recent
studies, 100% classification accuracy was achieved by Lima
et al. [53] (wavelet transform and SVM), Wang et al. [54]
(wavelet packet entropy and KNN), Iscan et al. [55] (cross
correlation and PSDand SVM), and Orhan et al. [56]
(DWT and ANN). Finally, the proposed system by authors
used seven parameters along with wavelet hard threshold-
ing and obtained an accuracy of 99.03%, sensitivityof
99.05%,and specificity of 99.1%.Table 16 gives a summary
of the above listed studies for automated detection of nor-
mal and epileptic classes. It can be observed that a variety
of methods like FFT, time-frequency, DWT, morphological
filtering,wavelet, statisticalmeasures, nonlinear, chaotic, and
entropy measures, and dimension reduction methods like
PCA, ICA,SVD,EM,MEM, and LDA are used to analy-
zeEEG to detect epileptic state from normal state.

5 Conclusions
The objective of this paper is to classify the risk level of the
epileptic patients from the EEG signals. The aim is to
obtain high classification rate, performance index, quality
value with low false alarm, and missed classification. Due to
the nonlinearity obtained and also the poor performance
found in the code converters, an optimization was vital for
the effective classification of the signals. We opted SVD,
EM, and MEM as postclassifiers. Morphological filters were
also used for the feature extraction of the EEG signals. After
having computed the values of PI and QV discussed under
the results column, we found that SVD was working per-
fectly with a high classification rate of 91.22% and a false
alarm as low as 1.42. Therefore, SVD was chosen to be the
best postclassifier. The accuracy of the results obtained can
be made even better by using extreme learning machine as
a postclassifier, and further research will be in this
direction.
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