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Abstract

Multi-target tracking is mainly challenged by the nonlinearity present in the measurement equation and the difficulty
in fast and accurate data association. To overcome these challenges, the present paper introduces a grid-based model
in which the state captures target signal strengths on a known spatial grid (TSSG). This model leads to linear state and
measurement equations, which bypass data association and can afford state estimation via sparsity-aware Kalman
filtering (KF). Leveraging the grid-induced sparsity of the novel model, two types of sparsity-cognizant TSSG-KF
trackers are developed: one effects sparsity through �1-norm regularization, and the other invokes sparsity as an extra
measurement. Iterative extended KF and Gauss-Newton algorithms are developed for reduced-complexity tracking,
along with accurate error covariance updates for assessing performance of the resultant sparsity-aware state
estimators. Based on TSSG state estimates, more informative target position and track estimates can be obtained in a
follow-up step, ensuring that track association and position estimation errors do not propagate back into TSSG state
estimates. The novel TSSG trackers do not require knowing the number of targets or their signal strengths and exhibit
considerably lower complexity than the benchmark hidden Markov model filter, especially for a large number of
targets. Numerical simulations demonstrate that sparsity-cognizant trackers enjoy improved root-mean-square error
performance at reduced complexity when compared to their sparsity-agnostic counterparts. Comparison with the
recently developed additive likelihood moment filter reveals the better performance of the proposed TSSG tracker.

1 Introduction
Target tracking research and development are of major
importance and continuously expanding interest to a
gamut of traditional and emerging applications, which
include radar- and sonar-based systems, surveillance and
habitat monitoring using distributed wireless sensors,
collision avoidance modules envisioned for modern trans-
portation systems, and mobile robot localization and nav-
igation in static and dynamically changing environments,
to name a few; see, e.g., [1,2] and references therein.
At the core of long-standing research issues even for

single-target tracking applications is the nonlinear depen-
dence of the measurements on the desired state estimates,
which challenges the performance of linearized Kalman
filter (KF) trackers, including the extended (E)KF, the
unscented (U)KF, and their iterative variants [1,2]. This
has motivated the development of particle filters (PFs),
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which can cope with nonlinearities but tend to incur pro-
hibitively high complexity in many critical applications.
For multi-target tracking, data association has been
another formidable challenge, especially when the ambi-
ent environment is cluttered, and the sensors deployed
are unreliable. This challenge amounts to determining
the target associated with each measurement, where the
noisy measurements typically reflect the candidate tar-
get locations acquired through signal detection in gated
validation regions; see, e.g., [2,3]. Once data association
is established, targets can be tracked separately using
the associated measurements, in conjunction with track
fusion for improved accuracy.
The present paper investigates the multi-target tracking

problem, whereby the available measurements comprise
the superposition of received target signal strengths of
all targets in the sensor field of view. Sensors collecting
these measurements are not necessarily radars or high-
cost receivers, but can be general-purpose radio units
employing simple energy detectors. The measurements
are nonlinearly related to target locations, but no data
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association issues arise because conventional range-gate
operations have not yet been employed to detect, sepa-
rate, and localize the targets of interest [3]. To cope with
the nonlinearity issue, this paper introduces a grid-based
dynamical state-space model in which the state describes
signal strengths of targets traversing a preselected spatial
grid (TSSG) of the tracking field. Because the locations of
grid points are preset and known, both the measurement
and state equations become linear. Further, data associa-
tion is avoided by dynamically tracking the TSSG values
rather than directly producing the target tracks. Based on
TSSG tracking, however, data association and track tra-
jectory estimation can be performed as a follow-up step,
whereby track association and estimation errors do not
propagate back to the TSSG tracker.
Similar ideas on bypassing data association at the price

of tracking ‘less informative’ estimates have been exploited
in recent multi-target tracking schemes, such as the
probability hypothesis density (PHD) filter [4,5] and the
Bayesian occupancy filter (BOF) [6]. The PHD filter tracks
the so-termed target intensity, while the BOF tracks the
probability of a grid point being occupied by any target.
A main advantage of the grid-based TSSG tracker here
is that state estimation becomes possible via KF applied
to linear state and measurement models, at considerably
reduced computational burden relative to the complexity
incurred by the PHD and BOF. Further, the TSSG tracker
is novel in exploiting the sparsity present in the grid-based
state vector, which allows one to leverage efficient solvers
of (weighted) least-squares (LS) minimization problems
regularized by the �1-norm of the desired state estimate.
Sparsity-aware estimators have been studied for variable

selection in static linear regression problems and have
recently gained popularity in signal processing and vari-
ous other fields in the context of compressive sampling
(CS); see, e.g., [7-9]. However, few results pertain to the
dynamic scenario encountered with target tracking.When
measurements arrive sequentially in time, a sparsity-
aware recursive least-squares scheme was reported in
[10], but its tracking capability is confined only to slow
model variations; see also [11] for a sparsity-cognizant
smoothing scheme which nevertheless does not lend itself
to filtering, as well as [12], where a so-called KF-CS-
residual scheme is reported for tracking slowly varying
sparsity patterns. Different from existing alternatives, the
present work develops sparsity-aware trackers along with
their error covariances, without requiring knowledge on
the number of (possibly fast-moving) targets or their sig-
nal strengths.
As alluded to in the previous paragraphs, most of the

well-known multi-target tracking algorithms such as the
joint probabilistic data association filter (JPDAF) [3], mul-
tiple hypothesis tracker (MHT) [2], and the original PHD
are derived with a certain measurement model in mind.

This model exerts that every measurement comes from
either a single target or clutter and each target gen-
erates at most one measurement. On the other hand,
existing literature on superpositional sensors, which are
investigated here, is considerably more sparse. A cardi-
nalized PHD (CPHD) filter for such sensors was devel-
oped by [13] which is computationally intractable. An
approximate PHD filter for superpositional sensors was
developed by [14] which was referred to as the additive
likelihood moment (ALM) filter. It was later extended to
an approximate CPHD by [15]. Our comparison reveals
that the TSSG tracker outperforms the ALM filter by a
comfortable margin.
This work extends the results of [16] in four major

directions:

(1) It introduces the novel TSSG-IEKF tracker which is
based on the idea that sparsity can be enforced as an
extra measurement.

(2) In addition to the TSSG estimate, target positions
and tracks are also computed from the TSSG. This
requires tackling several issues such as clustering grid
points using their TSSG values for an unknown
number of targets, computing the targets’ estimated
positions, and performing position-to-track
association which is needed to arrive at tracks from
mere positions.

(3) Instead of presenting the multi-target model as an ad
hoc extension of the single target case, a rigorous
proof is set forth in the appendix which leads to the
linear target movement model on the grid. During
the process, the two important assumptions that are
needed for this model to remain valid are presented.

(4) A complete set of multi-target scenarios and their
corresponding performance analysis is investigated
in the simulations. The performance of the newly
introduced TSSG-IEKF tracker is also examined, and
comparisons with ALM are carried out.

The rest of the paper is organized as follows. Section 2
develops the novel grid-based sparse model, for which
a sparsity-agnostic KF tracker is introduced in Section
3. Two sparsity-cognizant trackers are presented in
Sections 4 and 5. Target position estimation and track
formation are detailed in Section 6. Numerical results are
presented in Section 7, followed by concluding remarks
in Section 8.

2 Grid-based state spacemodel
Consider the problem of trackingM moving targets using
N active (e.g., radar) or passive (e.g., acoustic) sensors
deployed to provide situational awareness over a geo-
graphical area. Targets emit power either because they
passively reflect the energy of other transmitters such
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as radar or because they are active sources such as cell
phones or transmitters mounted on smart cars. Associ-
ated with each target, say the mth one, is its position
vector p(m)

k per time k and the signal of strength s(m)

that the target reflects or emits. Sensor n measures the
superposition of received target signal strengths,

yn,k =
M∑

m=1
h

(
dm→n
k

)
s(m) + νn,k , (1)

where n = 1, . . . ,N , k = 1, 2, . . ., h(·) denotes
the distance-dependent propagation function, dm→n

k :=
‖p(m)

k − qn‖2 is the distance between the known position
qn of sensor n and the unknown position vector p(m)

k of
target m, and νn,k is a zero-mean Gaussian noise at sen-
sor n. Function h(·) satisfies h(0) = 1, is non-negative,
decreasing, and is either assumed known from the physics
of propagation or acquired through training [9].
At each time k, a centralized processor has available

the measurement vector yk := [
y1,k , . . . , yN ,k

]T , based on
which the target positions {p(m)

k }Mm=1 are to be tracked.
Note that the measurement model (1) differs from the
one typically considered in radar applications, where a
measurement comes from either a single target or a clut-
ter, usually in the form of position information obtained
from range gate operations [3]. Each measurement in (1)
comes from a sensor and comprises the superposition of
received signal strengths emitted by or reflected from all
targets in the sensor field of view. This model considers
the localization and tracking problems jointly and avoids
the measurement-target association issue.
One major challenge in tracking and localization prob-

lems is that the measurements in (1) are nonlinear
functions of the wanted target position vectors. A neat
approach to arrive at a linear measurement model is to
adopt a set of G (possibly regularly spaced) grid points at
known positions {gi}Gi=1, where target(s) could be poten-
tially located; see also, e.g., [6], [8], and [7]. Using a
sufficiently dense grid, it is possible to capture the target
locations at a prescribed spatial resolution using a G × 1
vector xk having most entries equal to zero except for

the {i(m)

k }Mm=1 entries given by {x(i(m)

k )

k }Mm=1, which repre-
sent the target signal strengths at time k if and only if
the mth target is located at the i(m)

k th grid point, that is,
p(m)

k = gi(m)

k
. Note that if target m is located exactly on a

grid point i(m)

k , then x(i(m)

k )

k ≡ s(m) �= 0 will be the only
nonzero entry of xk corresponding to this target. How-
ever, to account for target presence off the preselected grid
points, it will be allowed for the unknown target signal
strength s(m) to ‘spill over’ grid points around i(m)

k and thus

render nonzero a few neighboring entries of xk . Let G(m)

k
denote the spill-over region on the grid corresponding to
target m at time k, such that x(i)

k �= 0 is associated with
s(m), ∀i ∈ G(m)

k . The following assumption on this target
occupancy model is imposed:

Assumption 1. Each grid point i can be occupied by at
most one targetm at any given time k.

This assumption can be easily satisfied in practice by
selecting a sufficiently dense grid [6,17]. Under Assump-
tion 1, each grid point i is associated with a unique target

indexm(i)
k at time k; that is, i ∈ G(m(i)

k )

k , wherem(i)
k ∈ [1,M]

if it is occupied by one of theM targets, orm(i)
k = 0 if it is

not occupied, meaning it is associated with a dummy tar-
get m = 0 with strength s(0) ≡ 0. Apparently, {G(m)

k }Mm=0
are mutually exclusive acrossm and their union spans the
entire grid in the sense ∪M

m=0G
(m)

k = ∪G
i=1i, which leads to

a measurement equation (cf. (1)):

yn,k =
M∑

m=0

∑
i∈G(m)

k

h
(
d(i→n)

)
x(i)
k + vn,k = hTn xk + vn,k .

(2)

Here, hTn :=[h(d1→n), h(d2→n), . . . , h(dG→n)], di→n :=
‖qn − gi‖2 now denotes the known time-invariant dis-
tance between the nth sensor and the ith grid point, and
the noise vn,k replacing νn,k in (1) captures the unmod-
elled dynamics in the aforementioned spill-over effect.
Notwithstanding, thanks to the grid-based model, the
measurements in (2) have become linear functions of the
unknown xk , whose nonzero entries reveal the grid points
where target signal strengths are present at time k.
The next step is to model the evolution of xk in time as

the targets move across the grid. Regarding their move-
ment pattern, targets obey the following assumption:

Assumption 2. All targets move according to identical
transition probabilities { f ( ji)

k }Gi,j=1, where f
( ji)
k := p(x( j)

k �=
0|x(i)

k−1 �= 0; j ∈ G(m)

k , i ∈ G(m)

k−1),m = 1, . . . ,M.

In words, the homogeneity of targets under Assump-
tion 2 refer to the probability that a target m moves from
grid point i at time k − 1 to point j at time k.
Consider now expressing each entry of xk as x( j)

k =
s( j)k · p(x( j)

k �= 0), where s( j)k = s(m
( j)
k ) ∈ {s(0), s(1), . . . , s(M)}

denotes a non-negative proportionality constant, and
p(x( j)

k �= 0) stands for the probability of a target to be
present on grid point j at time k. Essentially, each x( j)

k is
associated with only one of the (M+1) targets (including
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the dummy targetm=0) indexed bym( j)
k , and s( j)k is a pro-

portionality constant in the sense that it takes on (M + 1)
possible values s(m) = ∑

j∈G(m)

k
x( j)
k , form = 0, 1, . . .M.

Under Assumptions 1 and 2, it is shown in the Appendix
that the state obeys the following recursion:

x( j)
k =

G∑
i=1

f ( ji)
k x(i)

k−1, ∀j ∈ [1,G] . (3)

Concatenating (3) for j = 1, . . . ,G and (2) for n = 1,
. . . ,N , one arrives at the grid-based model:

xk = Fkxk−1 + wk (4a)
yk = Hxk + vk , (4b)

where the G × G state transition matrix Fk has its (i, j)th
entry given by f ( ji)

k ; the measurement matrix is defined
as H := [h1, . . . ,hn]T , likewise for the measurement
noise vector vk := [

v1,k , . . . , vN ,k
]
; and wk is a zero-

mean process noise vector with a positive-definite covari-
ance matrix Qk added to account for both Assumption 1
and the natural non-negativity constraints on xk , whose
entries represent target signal strengths (magnitudes or
power).
A distinct feature of model (4) is that the unknown xk

is sparse ∀k, since only few of its G entries are nonzero
(in fact exactly M nonzero entries if all the M targets are
located on grid points). Although (3) describes the lin-
ear evolution of each xk entry under Assumption 1, using
these recursions alone does not guarantee that the pre-
dicted or estimated xk adheres to Assumption 1. Indeed,
starting with a target at an arbitrary entry in x0 �= 0 and
running (3) up to a large enough k, the signal strength
of this target will ‘spill-over’ to all entries of xk and will
possibly overlap with other targets present. Such a state
transition pattern is expected, because uncertainty of any
dynamically evolving state grows over time if no correc-
tions are made based on real-time measurements. There-
fore, xk predictions based on (4a) will be nonsparse, but
the true state vector xk at any time k is sparse with only a
few nonzero entries around the target locations. Posterior
to processing the measurements, filtered and predicted
renditions of xk will remain sparse as well. The noise term
wk reflects the uncertainty in the state transition model
under Assumption 1.
This sparsity attribute will prove to be instrumental for

enhancing tracking performance. Also, it is worth noting
that the state transition matrix Fk reflects the transition
behavior of target positions only, without revealing full
information of the target movement model that may be
dependent on velocity or other factors as well. In fact,
Fk is derived from the target movement model but does
not fully reveal it, which differs from most existing track
state models.

Given y1:k := {y1, . . . , yk}, the goal of this paper is to
track xk using a sparsity-aware KF. Since xk represents the
target signal strength on the grid (TSSG), the KF-like algo-
rithms proposed in Sections 3 and 4 will be referred to
as TSSG-KF trackers, while the iterated extended Kalman
filter (IEKF) algorithms of Section 5 will be referred to as
TSSG-IEKF trackers. Having available x̂( j)

k estimates and

recalling that x( j)
k = s(m

( j)
k )p(s( j)k �= 0), one can estimate

the constant s(m) capturing the signal strength of the mth
target at time k as

ŝ(m)

k = ∑
j∈G(m)

k
x̂( j)
k , ∀ k (5)

and the corresponding target position vector at time k as

p̂(m)

k = (1/ŝ(m)

k )
∑

j∈G(m)

k
gjx̂

( j)
k , m = 1, . . . ,M. (6)

The following remark makes useful observations
regarding the position estimate in (6).

Remark 1. A TSSG filter for tracking xk avoids data
association, because the TSSG-based state and measure-
ment equations in (4) hold for any target-grid association
{G(m)

k }m, so long as Assumptions 1 and 2 are satisfied. On
the other hand, finding the target positions via (6) requires
knowledge of {G(m)

k }m and hence calls for associating tar-
gets with TSSG entries. Solution to such an association
problem is provided in Section 6. Nonetheless, it is worth
stressing that the association errors and resultant position
estimation errors do not affect TSSG tracking that is inde-
pendent of target position estimation, similar to the PHD
and BOF in [4] and [6], respectively.

In addition to reduced complexity, an attractive feature
of the present formulation relative to, e.g., [6], is that even
for finite G, there is no need to assume that targets are
located on grid points since (6) allows for interpolating
the target position vectors regardless of knowing that grid
point j is associated with the targetm( j)

k occupying it. The
next remark is useful to further appreciate this point:

Remark 2. Given measurements y1:k and supposing
that the number of targets M and their signal strengths
{s(1), . . . , s(M)} are known, the maximum a posteriori
(MAP) and minimum mean-square error (MMSE) opti-
mal trackers can be derived from a hidden Markov model
(HMM) filter implementing the recursions (7) derived
from Bayes’ rule (cf. (34) and (35) in the Appendix), where
f ( ji)
k is the transition probability as in (3).
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p
(
x( j)
k �= 0

∣∣∣ y1:k−1
)

= ∑
i∈G(m( j)

k )

k−1

f ( ji)
k p

(
x(i)
k−1 �= 0

∣∣∣ y1:k−1
)

p
(
x( j)
k �= 0

∣∣∣ y1:k) = p(yk|x( j)
k �= 0; s(m

( j)
k ))p(x( j)

k �= 0|y1:k−1)∑
i∈G(m( j)

k )

k

p (yk|x(i)
k �= 0; s(m

(i)
k ))p(x(i)

k �= 0|y1:k−1)
.

(7)

These HMM recursions hinge on prior knowledge of
the target-grid association {G(m)

k }Mm=0, which needs to be
figured out among a total of (M+1)G−MG! /(G−M)! pos-
sible combinations. A large G increases grid density and
hence spatial resolution, at the expense of increasing com-
plexity. In addition, M and {s(m)}Mm=1 need to be known
beforehand.

One additional remark is now in order:

Remark 3. Although yk in (4b) comprises scalar mea-
surements from N geographically distributed sensors per
time k, it is possible to form yk with samples of the
continuous-time signal received at a single (e.g., a radar or
sonar) sensor by over-sampling at a rate faster than the
rate xk changes, so long as the state-space model (4) is
guaranteed to be observable (and thus xk is ensured to be
identifiable).

3 KF for tracking TSSG
If the non-negativity constraints for xk were absent, the
optimal state estimator for (4) in the MAP, MMSE, or LS
error sense would be the clairvoyant linear KF. A pertinent
state estimator is pursued here in the presence of non-
negativity constraints. Suppose that the estimate x̂k−1|k−1
and its error covariancematrixPk−1|k−1 are available from
the previous time step. At time k, the KF state predictor
and its error covariance are obtained as

x̂k|k−1 = Fk x̂k−1|k−1

Pk|k−1 = FkPk−1|k−1FTk + Q k .
(8)

For the KF corrector update, consider the LS formula-
tion of the KF; see, e.g., [18]. The corrector update can be
derived as a regularized LS criterion, which will also be
useful to account for the sparsity attribute. To show this,
view x̂k|k−1 as a noisy measurement of xk . It follows read-
ily from (8) that x̂k|k−1 = xk + ek|k−1, where ek|k−1 has
covariance matrix Pk|k−1. Stacking x̂k|k−1 and yk to form
an augmented measurement vector yields the following
linear regression model:[

x̂k|k−1
yk

]
=

[
IG
H

]
xk +

[
ek|k−1
vk

]
,

where the augmented noise vector has block diago-
nal covariance matrix denoted as diag(Pk|k−1,Rk). The

weighted LS (WLS) estimator for this linear regression
problem is given by

x̂k|k = arg min
xk≥0

‖x̂k|k−1−xk‖2P−1
k|k−1

+ ‖yk−Hxk‖2R−1
k
, (9)

where ‖x‖2A := xTAx. In the absence of non-negativity
constraints, the optimal state corrector x̂k|k can be found
in closed form as the cost is quadratic, and likewise its
error covariance can be updated as

Pk|k = Pk|k−1−Pk|k−1HT (HPk|k−1HT +Rk)
−1HPk|k−1.

(10)

A gradient projection algorithm is developed in Section
4 to solve (9) under non-negativity constraints on the state
vector. However, (10) will still be used bearing inmind that
this update is approximate now. The TSSG-KF tracker
implemented by (8) to (10) is sparsity-agnostic, as it does
not explicitly utilize the prior knowledge that xk is sparse.

4 Sparsity-aware KF trackers
Taking sparsity into account, this section develops
sparsity-cognizant trackers. To this end, the degree of
sparsity quantified by the number of nonzero entries of
xk , namely, the �0-norm ‖xk‖0, can be used to regularize
the LS cost of the previous section. Unfortunately, similar
to compressed sensing formulations for solving under-
determined linear systems of equations [19], such a reg-
ularization results in a nonconvex optimization problem
that is NP-hard to solve and motivates relaxing the �0-
norm with its closest convex approximation, namely, the
�1-norm. Thus, the proposed sparsity-cognizant tracker
is based on the state corrector minimizing the following
�1-regularized WLS cost function

x̂k|k = arg min
xk≥0

J(xk) (11)

J(xk) := ‖x̂k|k−1 − xk‖2P−1
k|k−1

+ ‖yk − Hxk‖2R−1
k

+ 2λk‖xk‖1.
The state corrector minimizing (11), together with the

covariance updatea in (10) and the prediction step in
(8), forms the recursions of the sparsity-aware TSSG-
KF tracker. Relevant design choices and algorithms for
minimizing (11) is elaborated in the next subsection.
The TSSG-KF trackers in (9) and (11) involve both pre-

diction and correction steps, which interestingly can be
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combined into a single estimation step. Considering that
both xk−1 and xk are sparse and non-negative and com-
bining the LS terms for both the prediction and correction
steps, the following optimization problem arises for some
non-negative λk−1 and λk parameters:

x̂k|k = arg min
xk−1,xk≥0

{
‖x̂k−1|k−1 − xk−1‖2P−1

k−1|k−1

+ ‖xk − Fkxk−1‖2Q−1
k

+ ‖yk − Hxk‖2R−1
k

+ 2λk−1‖xk−1‖1 + 2λk‖xk‖1
}
.

(12)

The performance gain of this tracker was evaluated via
simulations, and no substantial improvement over the
TSSG-KF tracker was observed. For this reason, focus
henceforth will be placed on the TSSG-KF tracker in (11).

4.1 Parameter selection
The scalar parameter λk in (11) controls the sparsity-
bias tradeoff [20]. The corrector x̂k|k becomes increasingly
sparse as λk increases, and eventually vanishes, i.e., x̂k|k =
0, when λk exceeds an upper bound λ̄k . There are two sys-
tematic means of selecting λk . The first one popular for
variable selection in linear regressions is cross-validation
[20, pp. 241-249]. The second one is the so-termed abso-
lute variance deviation-based selection that has been
advocated in the context of outlier rejection setups [21].
Both approaches require solving (11) for different trial
values of λk . This can be certainly affordable for offline
solvers of a linear regression problem or a fixed-interval
smoothing scenario, but may incur prohibitive delays for
real-time applications, even though warm starts reduce
the computational burden considerably. For the tracking
problem at hand, the simple rule advocated is to set λk =
αλ̄k , where α ∈ (0, 1) is a fixed scaling value to avoid the
trivial solution x̂k|k = 0. The bound λ̄k is derived next.

Proposition 1. The solution to (11) reduces to x̂k|k = 0 for
any scalar λk ≥ λ̄k, where

λ̄k = ‖P−1
k|k−1x̂k|k−1 + HTR−1

k yk‖∞. (13)

Proof. Since xk ≥ 0, it holds that ‖xk‖1 = xTk 1, where
1 denotes the all-one vector. Therefore, J(x) in (11) is
differentiable and results in a convex problem. The nec-
essary and sufficient optimality condition states that x∗ is
an optimum point iff (y − x∗)T∇J(x∗) ≥ 0, ∀y ≥ 0. For
x∗ = 0, this condition holds iff ∇J(x∗) ≥ 0. It then follows
from (11) that

∇J(x) = 2
(
−P−1

k|k−1(x̂k|k−1 − x) − HTR−1
k (yk − Hx) + λk1

)
.

(14)

Therefore, x∗ = 0 is an optimal solution iff (13) holds.

4.2 Gradient projection algorithms
As (11) is a convex problem, convex optimization soft-
ware such as SeDuMi [22] can be utilized to solve it
efficiently. In addition to these solvers, low-complexity
iterative methods are developed here, by adopting the
gradient projection (GP) algorithms in [23, pp. 212-217].
Note that the proposed algorithms can be used to obtain
the sparsity-agnostic tracker from (9) too, since the latter
is obtained by minimizing a special case of (11) corre-
sponding to λk = 0.
At each time k, the GP is initialized with x̂k|k(0) = x̂k|k−1

at iteration l = 0. The state corrector iterates from l to
(l + 1) as follows:

x̂k|k(l + 1) = [
x̂k|k(l) − γ∇J

(
x̂k|k(l)

)]+ , (15)

where [x]+ denotes the projection onto the non-negative
orthant, γ is the step size, and ∇J is as in (14). Here, J(xk)
is differentiable because ‖xk‖1 = xTk 1 when xk ≥ 0.
While (15) amounts to a Jacobi-type iteration updat-

ing all the entries at once, one can also devise Gauss-
Seidel variants, where entries are updated one at a
time [23, pp. 218-219]. This is possible because the
non-negative orthant is a constraint set expressible as
the Cartesian product of one-dimensional sets, allowing
entrywise updates per iteration (l + 1) as

x̂( j)
k|k(l + 1) = max

{
0, x̂( j)

k|k(l) − γ∇jJ
(
x̃( j)
k|k(l)

)}
, (16)

where x̃( j)
k|k(l) :=

{
x̂(1:j−1)
k|k (l+1), x̂( j:G)

k|k (l)
}
has its first ( j−1)

entries already updated in the (l + 1)st iteration. Conver-
gence of the iterations in (16) to the optimum solution of
(11) is guaranteed under mild conditions by the results in
[23, p. 219]. Specifically, J(xk) should be non-negative and
its gradient should be Lipschitz continuous, both of which
hold for the objective in (11).

Proposition 2. Any limit point of the sequence generated
by (16), with arbitrary initialization x̂(0)

k|k, is an optimal
solution of (11) provided that the step size γ is chosen
small enough. In practice, only a few gradient-projection
iterations are run per time step k to allow for real-time
sparsity-aware KF tracking.

5 Enhanced sparsity-aware IEKF tracking
The proposed sparsity-aware tracker employs the KF
covariance recursion in (10) to update the error covari-
ance of the corrector state estimate. As it does not account
for the �1-norm regularization, this update is approx-
imate. In order to incorporate the prior knowledge of
sparsity when updating the corrector covariance, this
section develops an EKF-based approach, which leads to
enhanced tracking performance.
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Toward this objective, the prior information on sparsity
is viewed as an extra measurement μk = ‖xk‖0, rather
than as a regularizing term in the LS cost function. When
the number of targets M is known, an apparent choice is
to set μk = M. Accordingly, tracking will be carried out
based on an augmented (N + 1) × 1 measurement vector,
given by

ȳk :=[yTk μk]T .

5.1 Viewing sparsity as an extra measurement
The added measurement can be modeled in a general
form as

μk = ρ(xk) + uk ,

where ρ(xk) is a differentiable function approximating
the sparsity-inducing �0-norm, and uk denotes zero-mean
noise with variance σ 2

k . The noise term captures both
the uncertainty in approximating ‖xk‖0, as well as the
error in attaining the desired degree of sparsity. As to
ρ(xk), three well-known approximants of the �0-norm
are the �1-norm, the logarithm, and the inverse Gaussian
functions:

(�1-norm)ρ(xk) = xTk 1

(logarithm)ρ(xk) = ∑G
j=1 log

(
x( j)
k + δ

)
(inv. Gaussian)ρ(xk) = ∑G

j=1

(
1 − exp

(
− (x( j)

k )2

2σ 2
p

))
,

where δ and σp are tuning parameters, and only xk ≥ 0
is considered. These nonlinear functions are plotted along
with the �0-norm function for a scalar xk in Figure 1. It can
be seen that they all have relatively sharp edges around the
origin to approximate the �0-norm.

−3 −2 −1 0 1 2 3
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Figure 1 The �0-norm and its three approximations.

Adding the extra measurement μk , the state space
model in (4) is augmented to

xk = Fkxk−1 (17a)
ȳk = h̄(xk) + v̄k , (17b)

where h̄(xk) :=[(Hxk)T , ρk(xk)]T consists of N + 1 scalar
measurement functions that can be nonlinear in general,
and v̄k :=[vTk , uk]T has covariance R̄k := diag(Rk , σ 2

k ).
Similar to (11), the model in (17) leads to a nonlinear LS
(NLS) problem

x̂k|k = arg min
xk≥0

J1(xk) (18)

J1(xk) := ‖x̂k|k−1 − xk‖2P−1
k|k−1

+ ‖yk − Hxk‖2R−1
k

+
+ σ−2

k (μk − ρ(xk))2 .

Compared with (11), (18) replaces the �1-norm of
xk with an alternative LS-error regularization involving
the extra measurement which accounts for the sparsity
present. Because (18) directly results from (17), the error
covariance of state estimates can be updated using the
KF-like recursions developed next.

5.2 IEKF algorithm for nonlinear measurement models
Since the augmented ȳk in (17b) is a nonlinear function
of the wanted TSSG state, the EKF approach is adopted
here to update the error covariance along the lines of,
e.g., [1, Chap. 10]. Specifically, an iterated EKF (IEKF)
algorithm is employed, which is tantamount to apply-
ing Gauss-Newton iterations to a relevant NLS regression
problem [24].
The prediction step of the IEKF is similar to KF; hence,

x̂k|k−1 and P̂k|k−1 follow directly from the state space
model in (17) and coincide with (8). For the correc-
tion step per time k, IEKF recursions are initialized with
x̂k|k(0) = x̂k|k−1 for l = 0, and subsequent iterations
proceed as follows [25, Appendix C]:

x̂k|k(l + 1) = x̂k|k−1 + K(l)
(
ȳk − h̄(x̂k|k−1)

+�(l)(x̂k|k(l) − x̂k|k−1)
)

K(l) = Pk|k−1�
T (l)

(
�(l)Pk|k−1�

T (l) + R̄k
)−1

,

(19)

where �(l) := ∇h̄
(
x̂k|k(l)

)T denotes the Jacobian matrix
of h̄(·) evaluated at x̂k|k(l). After the IEKF iterations are
completed at l=L, the corrector’s error covariance matrix
is updated as

Pk|k = Pk|k−1 − K(L)�(L)Pk|k−1. (20)

The ensuing proposition establishes the link between
IEKF and Gauss-Newton iterations for the related NLS
problem.
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Proposition 3. Consider the NLS problem (cf. (17) and
(18))

x̂k|k = arg min
xk

‖x̂k|k−1 − xk‖2P−1
k|k−1

+ ‖ȳk − h̄(xk)‖2R̄−1
k
.

(21)

Solving (21) via Gauss-Newton iterations initialized
with x̂k|k(0) = x̂k|k−1 amounts to the IEKF recursions in
(19).

Proof. The quadratic terms in (21) can be rewritten as

x̂k|k = arg min
xk

‖g(xk)‖22 (22)

where g(xk) =
[
P−1/2
k|k−1(x̂k|k−1 − xk)
R̄−1/2
k (ȳk − h̄(xk))

]
. (23)

Gauss-Newton iterations for (22) become

x̂k|k(l + 1) = x̂k|k(l) −
(
�(l)�T (l)

)−1
�(l)g(x̂k|k(l)),

(24)

where �(l) := ∇g(x̂k|k(l)) is the Jacobian transpose eval-
uated at x̂k|k(l). Substituting g(.) from (23) into (24) and
applying the matrix inversion lemma to invert the matrix
in (24) yield (19) after straightforward algebraic manipu-
lations.

When Gauss-Newton iterations in (24) are adopted in
lieu of IEKF, the resulting error covariance matrix is a
function of ∇g at the last iteration L given by

Pk|k =
(
�(L)�T (L)

)−1
. (25)

The sparsity-aware EKF formulation in (18) is a special
case of the general NLS problem in (21) corresponding to
h̄(xk) :=[(Hxk)T , ρk(xk)]T . As a result, the error covari-
ance for the state estimate of (18) can be derived from
(25) as

Pk|k =
(
P−1
k|k−1+ HTR−1

k H + 1
σ 2
k

∇ρ(x̂k|k (L))∇ρ(x̂k|k(L))T
)−1

.

(26)

Compared with (10) for the sparsity-agnostic KF, the
last summand in (26) captures the effect of the sparsity-
promoting penalty term on the error covariance. To
enforce the non-negativity constraints in (18), one can
project each Gauss-Newton iterate in (24) onto the non-
negative orthant. Unfortunately, this may not generate
a convergent sequence [23, p. 215]. To ensure conver-
gence, the projection should be with respect to a different

distance metric than the usual Euclidean distance. Upon
defining B(l) := (�(l)�T (l))−1, one implements

x̂k|k(l + 1) =
[
x̂k|k(l) −

(
�(l)�T (l)

)−1
�(l)g(x̂k|k(l))

]+

B(l)
,

(27)

where [.]+B denotes projection onto the non-negative
orthant, which minimizes the ‖.‖2B distance instead of the
usual ‖.‖22. If ρ(xk) = xTk 1, which is equivalent to the
�1-norm for xk ≥ 0, then (18) becomes convex, and
general-purpose convex solvers such as SeDuMi can also
be utilized to solve it [22].
The iterative updates in (27) and (26), along with the

prediction step (8), constitute the sparsity-aware TSSG-
IEKF tracker.

5.3 Enhanced sparsity-aware KF tracker
As a final note, the sparsity-aware TSSG-KF tracker
in Section 4 can be enhanced by also casting the �1-
regularizedWLS cost in (11) as an NLS cost. The �1-norm
term in (11) can be equivalently expressed as an extra LS
error term for the extra measurement 0 = √

2λ
√
xTk 1+uk ,

where uk is zero-mean noise with unit-variance. The cor-
responding covariance update can be derived from (25) as

Pk|k =
(
P−1
k|k−1 + HTR−1

k H + λ

2xTk 1
11T

)−1

. (28)

In all, the state update in (11), together with the pre-
diction step in (8) and the refined covariance update in
(28) with x k replaced by x̂ k|k , forms the recursions of the
enhanced sparsity-aware TSSG-KF tracker.

6 Position estimation and track formation
The TSSG filters developed so far produce a dynamic TSS
map of the operational environment. Such information
is adequate to describe the targets’ distribution and spa-
tial occupancy over the sensing field of interest, similar in
spirit to the PHD filter which portrays the targets’ inten-
sity function and the BOF that depicts their occupancy
map. In many tracking applications, however, more infor-
mative estimates such as target positions and trajectories
are desired. This section provides TSSG-based solutions
to these estimation tasks too.
For the PHD approach, methods performing these

extra steps have been reported using particle PHD filters
[26-28] or Gaussian mixture (GM)-PHD filters [29]. Tar-
get positions are typically identified by peak-picking the
target intensity function being tracked, and the estimated
target positions are treated as measurements for the
ensuing data association and track recovery tasks. PHD
filters view each particle or each Gaussian component
involved as a target [4,5] and employ conventional target
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movement models to describe the state transition. As a
result, most of the well-known data association meth-
ods can be run after PHD filtering [3], [2, Chapters 6-7].
Examples include the auction algorithm proposed in [27]
and the joint probabilistic data association algorithm [30].
Likewise, for the BOF, the target movement model is
employed in updating the HMM filter, which makes it
feasible to be combined with a well-established data asso-
ciation method such as the JPDAF [30].
In contrast, the TSSG state equation only models the

dynamic behavior of the TSS distribution on the grid, in
which grid points are not treated as targets, and hence
do not directly obey the conventional target movement
model. As remarked in Section 2, only partial information
about position changes is explicitly captured by the state
transition matrix Fk , while other factors such as veloc-
ity are implicit. Due to this major difference, conventional
data association methods cannot be directly adopted as
a follow-up to TSSG filtering. This section develops esti-
mators of target positions and tracks for multi-target sce-
narios, based solely on the limited information regarding
target transition probabilities on the grid.

6.1 Target position estimation
Given the output x̂ k|k of the TSSG filter, target positions
can be obtained from (6) provided that the subset of grid
points associated with each target is known in the form of
G(m)

k , ∀m.
Starting from x̂k|k , one can apply appropriate clustering

techniques to identify G(m)

k . When the number of targets
M is known, simple parametric clustering methods such
as the k-means can be used [31, pp. 424–429]. When M
is unknown, one can perform joint clustering and model
order selection. Such algorithms utilize some globalmodel
order selection criteria such as Akaike’s information cri-
terion to determine the best number of clusters M̂, as
well as the clusters {Ĝ(m)

k }M̂m=1 themselves [32]. Other non-
parametric clustering methods can be employed as well,
without assuming or estimating the number of clusters.
For example, hierarchical clustering techniques either
aggregate or divide the data based on some proximity
measure, while density estimation-based nonparametric
approaches identify clusters and their number from the
modes of the empirical density function of the unknowns
(see, e.g., [33], for a survey).
Having acquired M̂ and {Ĝ(m)

k }M̂m=1, and based on (6),
the target positions can be obtained individually from the
TSSG estimates on the associated clusters of grid points
∀i ∈ Ĝ(m)

k , as follows:

p̂(m)

k =
∑

i∈Ĝ(m)

k
gix̂(i)

k|k∑
i∈Ĝ(m)

k
x̂(i)
k|k

, m = 1, 2, . . . , M̂. (29)

6.2 Position-to-track association
Suppose that there are Mt tracks from time slot 1 up
to k − 1 and p̂(m)

k−1 has been associated with track t and
hence alternatively expressed as p̂(t)

k−1, t = 1, . . . ,Mt . The
goal of track association is to assign the position estimates{
p̂(m)

k

}M
m=1

of the M targets at time k to one of the estab-
lished Mt tracks. For clarity in exposition, suppose first
that M = Mt and there is no target birth or death. This
assumption will be removed later on. Evidently, there are
M! different assignments, which must be examined to find
the best possible association.
Given y1:k−1, the first step is to establish a track predic-

tion model to be used for computing the predicted track
positions {P̂(t)

k|k−1}Mt
t=1 and their error covariances. Note

from (29) that the target position estimates conditioned
on the TSSG are independent of the per-sensor measure-
ments. Hence, it suffices to predict {p̂(t)

k|k−1}t solely from
the TSSG vector x̂k−1|k−1. To do so, focus on track t and
form a G × 1 vector x̌k−1,t that only retains the entries
of x̂k−1|k−1 belonging to the tth cluster of grid points in
G(t)
k−1; that is, x̌

( j)
k−1,t = x̂( j)

k−1 for j ∈ G(t)
k−1 and x̌( j)

k−1,t = 0
otherwise, ∀j.
Given x̌k−1,t at time k−1, the predicted TSSG belonging

to track t at time k becomes

x̌k|k−1,t = Fk x̌k−1,t

and correspondingly, the predicted track position is

p̂(t)
k|k−1 =

∑G
j=1 gjx̌

( j)
k|k−1,t∑G

j=1 x̌
( j)
k|k−1,t

. (30)

The normalized quantities x̌( j)
k|k−1,t/(

∑G
j=1 x̌

( j)
k|k−1,t) in

(30) play the role of fractional weights when the corre-
sponding grid positions gj are used to estimate the track
position. Viewing p̂(t)

k|k−1 as the weighted average of G
position-samples {gj}Gj=1, it is straightforward to estimate
the covariance of P̂(t)

k|k−1 using the sample covariance as

P̂(t)
k|k−1 =

∑G
j=1 x̌

( j)
k|k−1,t

(
gj − p̂(t)

k|k−1

) (
gj − p̂(t)

k|k−1

)T
∑G

j=1 x̌
( j)
k|k−1,t

.

(31)

The process in (30) to (31) is repeated for all target
tracks t = 1, . . . ,Mt , so that the prediction estimates and
covariances become available for all tracks. Now, the aim
is to associate the predicted track positions {p̂(t)

k|k−1}t in
(30) with the target position estimates {P̂(m)

k }m in (29). To
this end, define the decision variables a(t,m) ∈ {0, 1} for
t = 1, . . . ,Mt and m = 1, . . . ,M, where a(t,m) = 1
amounts to deciding that target m measured at p̂(m)

k is
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assigned to track t. The pairwise-association cost can be
quantified using the Mahalanobis distance between track
t’s prediction and P̂(m)

k as a measurement, that is,

MD(t,m) :=
(
p̂(t)
k|k−1 − p̂(m)

k

)T
(P̂(t)

k|k−1)
−1

(
p̂(t)
k|k−1 − p̂(m)

k

)
.

(32)

The following optimization problem is formulated to
minimize the total association cost subject to linear con-
straints that ensure one-to-one track-to-measurement
mapping:

min
a(t,m)∈{0,1}

Mt∑
t=1

M∑
m=1

a(t,m)MD(t,m) (33)

such that
M∑

m=1
a(t,m) = 1, ∀t = 1, . . . ,Mt ,

Mt∑
t=1

a(t,m) = 1, ∀m = 1, . . . ,M.

It is worth mentioning that (33) is a special case of the
so-called assignment problem, which is a well-known data
association algorithm [2, pp. 342–349]. Its solution can
be efficiently computed in polynomial time using inte-
ger programming solvers such as the Hungarian algorithm
[34].
The track association problem in (33) can be modified

to handle track birth and death scenarios [2]. Toward this
objective, introduce a dummy targetm = 0 and a dummy
track t = 0. The one-to-one constraints in (33) are mod-
ified as follows: each track is assigned to at most one
target position measurement, but the dummy track can be
associated with any number of targets; meanwhile, each
position measurement is assigned to at most one track,
but the dummy measurement can be assigned to multi-
ple tracks. Further, the dummy target cannot be associated
with the dummy track. Such a modified association prob-
lem resembles the auction algorithm [2,27], along with the
corresponding association costs defined in (32). The com-
putational burden of this combinatorial problem can be
reduced by removing some unlikely association pairs in
advance. Essentially, if for a track t all the association costs
{MD(t,m)}m exceed a large threshold, then this track is
considered ‘dead’ and is associated with the dummy tar-
get. Similarly for a target m, if all the association costs
{MD(t,m)}t are too large, then this target is considered
‘born’ and is associated with the dummy track.
Once the position-to-track association is completed,

velocity estimates can be obtained too. This is possible by
subtracting target position at time k − 1 from its position
at time k and dividing by the sampling period.

Finally, it is worth noting that in formulating (33),
only the state transition probability matrix Fk is needed,
regardless of the underlying target movement model. It
is possible however to utilize each target’s movement
model to develop other (more effective) data association
schemes and refine the track estimates as well. Such asso-
ciation and track refinement steps will take place after
every TSSG update, using the output of the TSSG tracker
to form the position-measurements (29) for the ensuing
parallel target trackers, one for each target. The results
will not be fed back to the TSSG trackers, thus ensuring
resilience of TSSG estimates to data mis-association and
track estimation errors.

7 Numerical tests
Consider a 300 × 300-square meter surveillance region
along with a 10 × 10 rectangular grid with equally spaced
grid points. Therefore, each grid cell is of size 30×30. Sim-
ulations are performed for both single- and multi-target
scenarios.

7.1 Single-target case
A single target starts at the southwest corner of the grid at
time k = 1 and moves northeast according to a constant
velocity model

pk = pk−1 + v̄Ts + nk ,

where v̄ denotes the target’s constant velocity assumed
known and given by v̄ = (15, 15) m/s, pk−1 is the previous
target position, Ts = 1 is the sampling time in seconds,
and nk represents the modeling noise of zero-mean and
variance σ 2

n I2. Given this model and ignoring nk , if the tar-
get starts at the center of the grid cell it is currently in, then
at the next time instant, it will arrive at the northeast cor-
ner of this grid cell conjoining the north, east, and north-
east grid cells. Due to the symmetrically distributed noise,
the target will have equal probability of falling inside each
of the 4 grid cells. It is assumed that σn is small enough so
that the probability of a target moving into grid cells other
than its four adjacent ones is negligible. The resultant
movement model is as follows: a target stays on the cur-
rent grid point with probability 1/4 andmoves north, east,
or northeast with probability 1/4. Whenever the target
moves outside the boundaries of the surveillance region,
tracking stops. One random realization of this movement
model is plotted in Figure 2 and is considered for the ensu-
ing simulations starting with the single-target case. The
target’s signal strength is s = 10, and there are N = 20
sensors distributed randomly over the surveillance region
measuring the received TSS. The measurement noise vk is
zero-mean Gaussian white with unit variance. The prop-
agation function h(x) in (1) is given by h(x) = c/(c + x2)
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Figure 2 True target track on the grid.

for x ≥ 0, where c is chosen so that h(60) = 0.5. Appar-
ently, h(0) = 1 and h(x) is monotonically decreasing as x
increases.
The proposed sparsity-agnostic and sparsity-aware

TSSG-KF trackers in Sections 3 and 4 are employed to
estimate the target signal strengths and position vectors
over time. The position estimation accuracy is measured
by the average root-mean-square error (RMSE) in the
form of RMSE =

√
1

Kmax

∑Kmax
k=1 ‖p̂k − pk‖22, where Kmax

is the tracking duration, and p̂k is obtained as in (6). The
covariance matrix of the process noise wk is set to Qk =
IG in (8), and 1, 000 Monte Carlo runs over the random
measurement noise are performed to compute the RMSE.
Figure 3 depicts the RMSE performance with respect to
the sparsity-controlling coefficient λk as a fraction of λ̄k
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Figure 3 Sparsity-agnostic and sparsity-aware TSSG-KF trackers.
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Figure 4 TSSG-IEKF tracker with an extra sparsity measurement.

in (13). The sparsity-agnostic tracker corresponds to set-
ting λ = 0 in (11) and is also plotted for comparison.
It is seen that the sparsity-aware KF tracker outperforms
the sparsity-agnostic one for a large range of λk �= 0 val-
ues, and λk = 0.1λ̄k appears to yield the lowest RMSE for
this test. The optimal HMM filter exhibits the best per-
formance but requires accurate knowledge of the target
signal strength.
Figure 4 depicts the RMSE of the sparsity-aware TSSG-

IEKF tracker of (18), with μk = 1 and for different
values of σk . This tracker incorporates sparsity as an
extra measurement and selects the sparsity model ρ(xk)
as the �1-norm function. Evidently, this extra measure-
ment is effective in promoting sparsity, which leads to
improved performance relative to the sparsity-agnostic
tracker. The noise variance σ 2

k of the sparsity measure-
ment in (17b) is a design parameter chosen in accordance
with the sensor measurements (here having unit vari-
ance). As Figure 4 indicates, there is an optimal value of σk
that attains the most effective tradeoff between the sensor
measurements and the sparsity-induced measurement.
As σk becomes larger, the tracker collects less informa-
tion from the extra measurement and eventually becomes
sparsity-agnostic when σk is too large. On the other
hand, when σk is too small, the tracker is predominantly
enforcing a sparse solution without considering much
the sensor measurements, which also degrades tracking
performance.
Both sparsity-aware TSSG trackers, the TSSG-KF

tracker with λk = 0.1λ̄k and the TSSG-IEKF tracker
with σk = 2, are compared in Figure 5 in terms
of their RMSE performance versus time. The curves
are generated using 1, 000 Monte Carlo runs. These
two sparsity-aware trackers exhibit similar performance,
both outperforming the sparsity-agnostic tracker. The
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Figure 5 Comparison of TSSG-KF and TSSG-IEKF trackers.

clairvoyant optimal HMM filter is also tested as
the benchmark.
Finally, Figure 6 demonstrates the dynamic behavior of

the sparsity-aware estimator in (11) with λk = 0.9λ̄k . Even
though the sparsity-aware TSSG-KF performs worse than
sparsity-agnostic TSSG-KF for this value of λk , it is chosen
to demonstrate how sparsity affects the tracking process.
The estimated TSSG state vectors are depicted over time,
with a circle representing a nonzero TSS at the corre-
sponding grid point. The true and estimated tracks are
plotted as well. For clarity, only the projection of the tar-
get track on the y-direction is depicted. It is seen that the
‘cloud’ of nonzero target signal strengths follows the true
track. The estimated target profile is seen to be indeed
spatially sparse. The size of the nonzero support indi-
cates the uncertainty in target position estimates, which
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Figure 6 Nonzero support of estimated TSSG, true, and
estimated tracks (y-direction only).

apparently does not grow over time, even when using a
simple grid-induced linear KF tracker to follow the state
transition pattern.

7.2 Multi-target case
Two targets are respectively located at the south-center
and west-center of the grid at time k = 1. They start mov-
ing according to the same movement model used for the
single-target case. Figure 7 plots one random realization
of these target trajectories used for the ensuing multi-
target test cases. Adhering to Assumption 1, these two
trajectories do not overlap on the same grid point at the
same time.
The target signal strengths are set to be s(1) = s(2) = 10.

It is assumed that the trackers know the number of targets
unless otherwise stated. There are 100 sensors deployed
randomly over the surveillance region tomeasure the total
received signal strengths.
First, the position estimation method presented in

Subsection 6.1 is tested. Figure 7 depicts the position
estimates as circles along with the true target trajecto-
ries, for both the sparsity-agnostic TSSG-KF and the
sparsity-aware TSSG-KF trackers with λk = 0.1λ̄k . When
the �1-norm sparsity-promoting regularization term is
not present (cf. Figure 7), position estimates are rather
inaccurate and some of them fall far from either of the
two targets. In contrast, the sparsity-aware TSSG-KF in
Figure 7 results in quite accurate position estimates. One
can clearly associate each position estimate with one of
the two targets and readily visualizes target tracks from
the position estimates. Before the position estimates
are associated with individual targets, a pertinent per-
formance metric quantifying estimation accuracy is the
so-called Wasserstein distance (WD) that measures the
distance between two finite sets [35]. Let Pk = {p(m)

k }m
denote the finite set of the true target positions at time
k and P̂k = {p̂(n)

k }n the set of position estimates, respec-
tively. Let d(., .) stand for the Euclidean �2-norm, and | · |
for set cardinality. The Lp WD between these two sets is
defined as

dWp (Pk , P̂k) = min
{Cmn}

(∑
p(m)∈Pk

∑
P̂(n)∈P̂k Cmnd

(
P(m), p̂(n)

)p)1/p
subject to

∑|Pk |
m=1 Cmn = 1

|P̂k | , ∀n = 1, . . . , |P̂k |
∑|P̂k |

n=1 Cmn = 1
|Pk | , ∀m = 1, . . . , |Pk |.

Figure 8 depicts the L1 WD for both sparsity-
aware TSSG-KF and TSSG-IEKF trackers, in compar-
ison with the sparsity-agnostic TSSG-KF tracker. The
TSSG-IEKF tracker is implemented with μk = 2 and
σk = 2. The WD is evaluated by averaging over 1, 000
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Figure 7 True tracks and position estimates for two targets. Sparsity-agnostic TSSG-KF tracker (left) and sparsity-aware TSSG-KF tracker (right).
Circles indicate the estimated target positions.

Monte Carlo runs for each tracker. Evidently, both
sparsity-aware designs are effective and improve the WD
performance.
The track formation algorithm of Subsection 6.2 is

investigated next for the same target realization. The
target tracks formed using the position estimates of a
single Monte Carlo run are plotted in Figure 9, for the
sparsity-agnostic TSSG-KF tracker. The estimated track
for target 1 is not even plotted because it deviates too
much from the true trajectory. The estimated track for
target 2 shows some erratic behavior. As will be dis-
cussed shortly, the unsatisfactory performance is not due
to the proposed track formation algorithm itself; rather,
it is a manifestation of inaccurate clustering that results
from badly shaped TSSG estimates to begin with. The
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Figure 8WD versus time for sparsity-agnostic and
sparsity-aware TSSG-KF and TSSG-IEKF trackers.

accuracy of the TSS map provided by the TSSG fil-
ters is essential in ensuring good performance of posi-
tion estimates and track formation algorithms. Figure 9
illustrates the track estimates obtained after processing
the sparsity-aware TSSG-KF output. It can be seen that
both targets are closely tracked. To compare these meth-
ods quantitatively, the RMSE curves for the two targets
are plotted versus time in Figure 10, for 1, 000 Monte
Carlo runs. It is evident that exploitation of sparsity
markedly improves performance of the TSSG filters. In
addition, sparsity-aware TSSG-KF seems to outperform
the TSSG-IEKF for this specific setting and choice of
parameters.
To further illustrate the importance of TSSG estimation

for subsequently forming position and track estimates,
Figure 11 depicts two snapshots of the TSSG heat maps
after the KF prediction and correction steps at times k = 2
and 3. For the sparsity-agnostic TSSG-KF tracker, the cor-
rection heat map at k = 2 seems to contain three clusters
while there are only two targets. In the correction heat
map at k = 3, there is a single point in the lower right
which is nonzero and far from both targets. This spurious
point can have a detrimental effect during the clustering
phase as it can greatly shift mean positions of the two clus-
ters. These malign effects do not show up in the TSSG
heat maps for the sparsity-aware TSSG-KF in Figure 11,
where heat maps exhibit two compact clusters in both KF
correction steps.
A comparison with the ALM filter proposed by [15] is

performed next. Like PHD, ALM requires evaluating an
integral which does not have a closed form. While [15]
uses a random grid (or PF) to evaluate this integral, we
use a deterministic grid instead. The performance met-
ric is the WD between position estimates of TSSG/ALM
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Figure 9 True and estimated tracks. Sparsity-agnostic TSSG-KF (left) and sparsity-aware TSSG-KF (right).

and the true target positions. To obtain position estimates
from intensities in TSSG/ALM, we use a common clus-
tering scheme. Firstly, the TSSG and ALM intensity are
converted into distributions by appropriate scaling. Then,
100 points are sampled from these distributions. Finally,
k-means clustering is performed on the sampled points,
and the corresponding cluster-heads are set as target posi-
tion estimates. The same two-target model considered in
the previous simulations is considered. The true number
of targets is assumed known during the clustering phase,
but they are not needed during the TSSG/ALM inten-
sity evaluations. Results are plotted in Figure 12, where
TSSG-KF is shown to outperform ALM by a comfortable
margin.
Lastly, simulations for an unknown number of targets

are performed on a 15 × 15 grid with the true and esti-
mated target tracks plotted in Figure 13. In this setup,

targets 1 and 2 begin their movement at time k = 1; at
k = 5 target 3 is born, and at k = 10 target 1 disappears.
The sparsity-aware TSSG-KF is utilized in both simula-
tions. Various clustering options are available when the
number of clusters is unknown [32]. Here, a simple MAT-
LAB routine called ‘silhouette’ is used to determine the
best number of natural clusters in the TSS maps. After k-
means clustering is performed, silhouette returns a value
between −1 and 1 for every point that has participated
in the clustering phase. The value that silhouette returns
measures how well every point is explained by the cluster
it belongs to, compared to other clusters. A value close to
1 is desirable. Therefore, silhouette values averaged over
the clustered points offer a goodmeasure of howwell clus-
ters explain the points which belong to them. The number
of clusters with the largest average silhouette value is
selected as the most appropriate number of clusters. It can
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Figure 11 Heat map. Sparsity-agnostic TSSG-KF tracker (left) and sparsity-aware TSSG-KF tracker (right).

be seen that the three targets are accurately tracked. How-
ever, a small erroneous track emerges close to target 1 for
two time periods. Unfortunately, performance of the case
with unknown number of targets is not always as accurate
as shown here and more than one inaccurate track may
arise. On the other hand, when applied to the two-target
example previously considered in the absence of target
births or deaths, the algorithm with unknown number of
targets is always successful in recovering accurate target
tracks.

8 Conclusions
The problem of tracking multiple targets on a plane using
the superposition of their received signal strengths as
measurements has been investigated. A grid-based state
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Figure 12 Performance comparison between TSSG-KF and ALM.

space model was introduced to describe the dynamic
behavior of target signal strengths. This model not only
renders the nonlinear estimation problem linear, but also
facilitates incorporation and exploitation of the grid-
induced sparsity present. Two sparsity-aware Kalman
trackers were developed to exploit this sparsity attribute:
TSSG-KF promoting sparsity of the state estimates
through �1-norm minimization and TSSG-IEKF effecting
sparsity by viewing it as an extra measurement. To address
the challenge of updating the state estimation error
covariances under sparsity constraints, a novel approach
based on iterative extended KF and measurement aug-
mentation was also developed to provide tractable and
accurate covariance updates. Position estimation and
position-to-track association issues were considered as
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well. The proposed trackers do not require knowing the
number of targets or their signal strengths and consid-
erably reduce complexity when compared to the opti-
mal hidden Markov model filter. They offer improved
tracking performance at reduced sensing and computa-
tional cost, especially when compared to sparsity-agnostic
trackers.

Appendix
State transition model
From the total probability argument, it holds that

p
(
x( j)
k �= 0

∣∣∣j ∈ G(m)

k

)

=
G∑
i=1

p
(
x( j)
k �= 0, x(i)

k−1 �= 0, i ∈ G(m)

k−1

∣∣∣j ∈ G(m)

k

)

which leads to the following equality after invoking
Assumption 2 in Bayes’ ruleb:

p
(
x( j)
k �= 0

∣∣∣j ∈ G(m)

k

)
=

G∑
i=1

f ( ji)
k p

(
x(i)
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f ( ji)
k p

(
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)
.

(34)

Any grid point j = 1, . . . ,G with a nonzero x( j)
k �= 0

is associated with a single target index m( j)
k ∈ [1,M] at

time k, which means p(x( j)
k �= 0, j ∈ G(m( j)

k )

k ) �= 0 for
m( j)

k ∈ [1,M], and according to assumption 1, p(x( j)
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0, j ∈ G(m)
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Similarly for a grid point i at time (k − 1), there exists
a target index m(i)

k−1 ∈ [0,M] such that p(x(i)
k−1 �= 0) =

p(x(i)
k−1 �= 0, i ∈ G(m(i)

k−1)

k−1 ), and p(x(i)
k−1 �= 0, i /∈

G(m(i)
k−1)

k−1 ) = 0, ∀i ∈ [1,G]. Under Assumptions 1 and 2,

(36) follows from (34) and (35) which completes the
proof.

x( j)
k = s(m

( j)
k )p

(
x( j)
k �= 0

)
= s(m

( j)
k )p

(
x( j)
k �= 0

∣∣∣∣j ∈ G(m( j)
k )

k

)

= s(m
( j)
k )

G∑
i=1

f ( ji)
k p

(
x(i)
k−1 �= 0, i ∈ G(m( j)

k )

k−1

)

=
∑

∀i:m(i)
k−1=m( j)

k

f ( ji)
k s(m

(i)
k−1)p

(
x(i)
k−1 �= 0, i ∈ G(m(i)

k−1)

k−1

)

+ s(m
( j)
k )

∑
∀i:m(i)

k−1 �=m( j)
k

f ( ji)
k p

(
x(i)
k−1 �= 0, i /∈ G(m(i)

k−1)

k−1

)
︸ ︷︷ ︸

=0, ∀i

=
∑

∀i:m(i)
k−1=m( j)

k

f ( ji)
k s(m

(i)
k−1)p

(
x(i)
k−1 �= 0

)

+
∑

∀i:m(i)
k−1 �=m( j)

k ,m(i)
k−1=0

f ( ji)
k s(0)p

(
x(i)
k−1 �= 0, i ∈ G(m(i)

k−1)

k−1

)
︸ ︷︷ ︸

=0, ∀i: m(i)
k−1=0

=
∑

∀i:m(i)
k−1=m( j)

k

f ( ji)
k s(m

(i)
k−1)p

(
x(i)
k−1 �= 0

)

+
∑

∀i:m(i)
k−1 �=m( j)

k ,m(i)
k−1=0

f ( ji)
k s(m

(i)
k−1)p

(
x(i)
k−1 �= 0|m(i)

k−1 = 0
)

=
G∑
i=1

f ( ji)
k x(i)

k−1, ∀j ∈[ 1,G] .

(36)

Endnotes
aA more accurate covariance update will be derived in

(28).
bIt holds trivially for the dummy targetm = 0 as well,

because p(x( j)
k �= 0|j ∈ G(0)

k ) = 0 and p(x( j)
k �= 0, j ∈

G(0)
k ) = 0.
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