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Abstract

It is not easy to acquire a desired high dynamic range (HDR) image directly from a camera due to the limited dynamic
range of most image sensors. Therefore, generally, a post-process called HDR image reconstruction is used, which
reconstructs an HDR image from a set of differently exposed images to overcome the limited dynamic range.
However, conventional HDR image reconstruction methods suffer from noise factors and ghost artifacts. This is due to
the fact that the input images taken with a short exposure time contain much noise in the dark regions, which
contributes to increased noise in the corresponding dark regions of the reconstructed HDR image. Furthermore, since
input images are acquired at different times, the images contain different motion information, which results in ghost

artifacts. In this paper, we propose an HDR image reconstruction method which reduces the impact of the noise
factors and prevents ghost artifacts. To reduce the influence of the noise factors, the weighting function, which
determines the contribution of a certain input image to the reconstructed HDR image, is designed to adapt to the
exposure time and local motions. Furthermore, the weighting function is designed to exclude ghosting regions by
considering the differences of the luminance and the chrominance values between several input images. Unlike
conventional methods, which generally work on a color image processed by the image processing module (IPM), the
proposed method works directly on the Bayer raw image. This allows for a linear camera response function and also
improves the efficiency in hardware implementation. Experimental results show that the proposed method can
reconstruct high-quality Bayer patterned HDR images while being robust against ghost artifacts and noise factors.

Keywords: High dynamic range; Bayer pattern; Camera response function; Ghost artifact

1 Introduction

Image capturing devices like digital cameras and cam-
corders have recently improved remarkably. However,
image sensors such as charge-coupled devices (CCD) and
complementary metal-oxide semiconductors (CMOS) in
these imaging devices can still only capture a limited
dynamic range. As a result, when a captured scene con-
tains a dynamic range above the given limitation, a loss of
information is inevitable even if the exposure is adjusted
according to the brightness of the scene. Thus, many
methods based on signal processing have been proposed
to reproduce scenes with a high dynamic range (HDR).
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To obtain HDR images, many HDR imaging approaches
utilize low dynamic range (LDR) images with different
exposures [1-11]. Most of these approaches first convert
the pixel values of input images into radiance values by
using the camera response function (CRF), where the CRF
refers to the function that maps the radiance values of a
given scene to the pixel values in the captured image, and
the radiance refers to the physical quantity of light energy
on each element on the sensor array. Next, the radiance
values of the input images are combined into a single HDR
image using weighting functions based on the reliability of
the input data.

In early studies, conventional approaches were pro-
posed to estimate the CRF from multiple LDR images.
These CRF estimation approaches can be categorized as
parametric [1,2] and non-parametric approaches [3,4]. In
parametric approaches, Mann and Picard [1] presented a
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variety of parametric forms for CRF estimation. Mitsunaga
and Nayar [2] used a high-order polynomial function to
estimate the CRF. On the other hand, in terms of non-
parametric approaches, Debevec and Malik [3] estimated
the CRF using an objective function with a smoothness
constraint. Pal et al. [4] used a Bayesian network consist-
ing of a probabilistic model for an imaging function and a
generative model for smooth functions.

In recent years, some techniques have been proposed to
prevent artifacts in HDR images caused by moving objects
[5-10]. If local motion occurs in a scene while the LDR
images are being captured, a ghost artifact appears in the
HDR image. Most of the ghost artifact-preventing tech-
niques first detect the local motion by using ghost artifact
measurement and then combine the LDR images without
the ghost artifact regions.

All these approaches, however, combine LDR images
without considering the influence of noise factors. Dark
regions in an LDR image taken with short exposure time
contain relatively more noise factors because the regions
are under-exposed or noisy. Thus, the noise level is
increased in the corresponding dark regions of the recon-
structed HDR image. These approaches also utilize RGB
images processed by the image processing module (IPM).
The IPM is a processor which converts Bayer raw data
into an RGB image suitable to the human visual system
[12-14]. Using RGB images processed by the IPM makes
the CRF estimation inaccurate since the IPM includes sev-
eral adaptive nonlinear sub-modules, e.g., dynamic range
compression, noise reduction [15], and color correction
[16] algorithms. An inaccurate CRF leads to poor HDR
imaging performance. Moreover, the use of RGB images
increases the hardware complexity since the IPM has to
be performed several times before the HDR image recon-
struction, as shown in Figure la.

In this paper, we introduce a new approach which per-
forms HDR image reconstruction on the Bayer raw images
before the IPM [17], as shown in Figure 1b. The pro-
posed method can be widely used in applications such as
real-time HDR video cameras because of the reduction
of hardware complexity. The CRF estimation is simpler
and more accurate than conventional methods because
the CRF before the IPM is linear. The proposed method
considers the noise and the ghost artifact problems. For
this purpose, a new weighting function is proposed to
combine the Bayer patterned LDR (BP-LDR) images. The
proposed weighting function is designed so that each
of the BP-LDR images independently covers each corre-
sponding region according to the radiance value in order
to reduce the influence of the noise. The regions covered
by each BP-LDR image are determined by the exposure
of each BP-LDR image and the existence of local motion.
This avoids using the short-exposure BP-LDR image to
reconstruct the dark regions in the Bayer patterned HDR
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(BP-HDR) image. The weighting function also detects the
local motion in the Bayer pattern and excludes ghosting
regions. To detect the local motion, the luminance and the
chrominance values are directly calculated in the Bayer
pattern, and the differences of these values are utilized.
When the proposed method is compared with conven-
tional methods, the detection performance is improved
since an accurate CRF is employed.

The rest of this paper is organized as follows: In
Section 2, the proposed BP-HDR image reconstruction
approach is described in detail. The properties of the CRF
are discussed and analyzed in Section 2.1. Section 2.2
describes the design process of the adaptive weighting
function for BP-HDR image reconstruction. In Section 3,
experimental results of various test images are presented,
and the paper is concluded in Section 4.

2 Proposed BP-HDR image reconstruction

2.1 Properties of the camera response function

In general, the radiance value I® which passes through the
lens of the camera is converted into a pixel value I by the
image sensor and the IPM part. The CRF is a function
that relates the radiance value to the pixel value and is
expressed as

I=f(I* At) (1)

where At represents the exposure time.

CCD and CMOS image sensors are widely used in image
acquisition systems. Both of these sensors utilize the same
kind of element called photodiode [18], which generates
a current proportional to the light energy. The photodi-
ode offers a high level of resistance when there is no light
falling on it. On the other hand, the resistance of the pho-
todiode is reduced and the current increases linearly with
the light energy when light falls on it. That is, the response
function of the photodiode is linear with respect to the
radiance value. An example under the condition with
6500 k fluorescent lighting using a CMOS sensor with
Bayer pattern is shown in Figure 2. In the plot of the pixel
value versus the intensity of the radiance, each of these
response functions appear to be linear.

Although the relationship between the light energy and
the image sensor output is linear, the CRF is usually non-
linear due to the IPM. In the IPM, the linear response
function is intentionally converted into a non-linear func-
tion to produce an image attractive to the human visual
system. The response function generated by the IPM is
often designed to mimic the nonlinearity of film, where
the film response function is designed to produce attrac-
tive images [19,20]. Moreover, the response function gen-
erated by the IPM also varies for every pixel due to
spatially adaptive processing modules for image enhance-
ment. Thus, it is not appropriate to estimate the CRF with
images acquired from the IPM’s output. Therefore, we use
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the CRF before the IPM and apply it to the BP-LDR images
to reconstruct the BP-HDR image.

In the BP-LDR images, the CRF is expressed linearly as
fx) = ax + B as shown in Figure 2. Here, o represents
the slope of the CRF corresponding to the sensitivity of
the RGB channels. That is, « differs according to the color
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Figure 2 Camera response function of the RGB channels in the
Bayer raw data.

channel of the Bayer pattern. However, there is no need
to estimate o because the auto white balance sub-module
of IPM adjusts the slopes of the RGB channels to be equal
[14]. Therefore, f () can be approximated as f(x) = x + B.
B represents the black level of an image sensor which
can be simply estimated as the average of the optical
black region located on the boundary of the image sensor
[21].

2.2 Proposed design method of the weighting function
for BP-HDR image reconstruction

The proposed method combines a set of differently
exposed Bayer raw images to obtain a single BP-HDR
image. The BP-LDR images are combined with differ-
ent weights determined by the weighting function. The
weighting function consists of the data reliability term
and the ghost artifact reduction term, and it utilizes the
linear property of the CRE. The data reliability term deter-
mines how much a certain BP-LDR should be reflected in
the BP-HDR image. The data reliability term is designed
to exclude the influence of noise factors. The ghost
artifact reduction term excludes ghosting regions from
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the reconstruction process. The reconstructed BP-HDR
image (E) is calculated as

St W ()) £ (I (i) / At

Yoy W (i,))
where W, represents the weighting function correspond-
ing to the n-th BP-LDR image, 1, (i, j) represents the given
pixel value at the position (i, ) of the #n-th BP-LDR image,
At, represents the exposure time of [,, and N is the
number of BP-LDR images. For convenience, we arranged
I, D, ..., 1, ..., Iysuchthat At; > Aty > .... > A, >
....> Aty. Furthermore, f represents the CRF explained
in the previous section, and thus f~! (I,) /At, represents
the radiance value of I,,. Therefore, (2) can be regarded
as an equation which combines the radiance values of the
BP-LDR into the BP-HDR image.

Figure 3 shows a block diagram of the proposed method
regarding the estimation of the proposed weighting func-
tion. In order to estimate the weighting function W, first,
the weight for the data reliability (W})) and the weight for
the ghost artifact reduction (erl) have to be estimated.
The data reliability weight W is further modified to W,
to reflect the change of the data reliability according to the
ghosting regions in the other LDR images. Then, finally,
W’ and W are combined to obtain the final weighting
function W,;:

W, (i, ) = WG, j) - Wi, )), (3)

E(,j) = 2

The details are described in the following sections.

2.2.1 The weight for data reliability

Conventional methods use a symmetric weighting func-
tion that decreases with the distance from the center of
the pixel value range [3,11]. This is based on the fact
that the pixel values near the center are the most reli-
able. If considering only the influence of the noise, the
higher part of the pixel value range seems to be reli-
able since the shot noise in general image sensor has a
Poisson distribution. However, since the higher part is
close to the saturation value and since post-processing
methods such as the gamma correction make the higher
part more close to the saturation value, a smaller weight
should be assigned to the higher part to prevent the use
of the saturated pixel values in the reconstruction pro-
cess. Figure 4a shows two examples of weighting functions
that are generally used. These weighting functions are
converted into the functions in the radiance domain, as
shown in Figure 4b. Using the function values in the radi-
ance domain, the ratio of how much the BP-LDR images
are combined into the BP-HDR image is calculated. For
example, the radiance value L; in Figure 4b has a weight
of about 0.6 (point a) in the middle exposure BP-LDR
image, while the weights in the other BP-LDR images are
about 0.2 (point b). This means the weight for the middle
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exposure is about three times larger than the weights for
the other exposures at L;. In general, it can be observed
that a BP-LDR image captured with long exposure has a
large weight in the low-radiance region, while a BP-LDR
image captured with short exposure has a large weight
in the high-radiance region. However, a major problem
is that the short-exposure BP-LDR image has a consid-
erable weight in the very low radiance region. Using the
short-exposure BP-LDR image in the low-radiance region
is improper since it can be under-exposed or noisy in this
region.

To overcome the abovementioned problems, we use a
designing method for the reliability function. The design-
ing method consists of two steps as listed in Algorithm 1.
The first step is to design a desired weighting function
(\57,’1) in the radiance domain. The second step is the con-
version of the designed weighting function in the radiance
domain into that in the pixel value domain.

Algorithm 1 Designing method for the data reliability
weighting function
Designing method:
Step 1:

Design a desired weighting function W in the radi-
ance domain.
Step 2:

Obtain the function W},(-) in the pixel value domain
by considering the following relations:

WIIR) = WII,) and IR = f=1(I,,) / Aty

Thus, the weighting function W} (-) is obtained as
Wi () =W (F1()/ Atn).

In the first step, the design of W has to be done so that
for a certain 1, W/, covers only a certain region in the radi-
ance domain, as shown in Figure 5b. That is, we design
the weighting function so that the short-exposure BP-
LDR image has an effect only in the high-radiance region,
while the long-exposure BP-LDR image has an effect
only in the low-radiance region. This reduces the amount
of noise in the reconstructed BP-HDR image, since the
short-exposure BP-LDR image, which normally contains
noise in the dark regions, is not used to reconstruct the
low-radiance region in the BP-HDR image.

To make the design simple, the following constraints are
used:

1. The two adjacent functions W), and W 41 intersect
at the same point as in conventional methods.

2. All of the functions W), have the same slopes at the
transition region.

By obeying the first constraint, the most reliable
BP-LDR image for a certain radiance range becomes
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Figure 3 Block diagram for the proposed weighting function.
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consistent with that in conventional methods. However,
since the conventional weighting functions are designed
to adapt to the RGB images processed by the image pro-
cessing module such as the gamma correction, they are
improper for the BP-LDR images. Therefore, we mod-
ify the conventional weighting functions to adapt to the
BP-LDR images. That is, the maximum value posi-
tion (p) in the weighting functions is changed from

the center of the pixel value range to a more reliable
position as will be later mentioned in Section 3. By
obeying the second constraint, the change of the two
weights between different exposure LDR images becomes
close to linear. This can prevent artifacts which can be
possibly generated due to a nonlinear change in the
weight ratio. To reduce the overlap between adjacent
weighting functions while obeying the above mentioned
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Figure 4 Two examples of conventional weighting functions. (a) In the pixel value domain and (b) in the radiance domain.
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Figure 5 Proposed weighting function for reliability of the data. (a) In the pixel value domain and (b) in the radiance domain.
constraints, the slopes at the transition region have to be exp (—C (IR - uﬁ)2) ) if IR < L

increased.

The proposed weighting functions are calculated start-
ing with that corresponding to the longest exposure
image. As shown in Figure 5b, W] for the longest expo-
sure BP-LDR image I3 is asymmetric with respect to point
pit as

I ol
wi (') =
1 exp (—C. (I{2 — ,ull'l)z), otherwise,
where
-1
H S
= . 5
25} Aty (5)

Here, C represents the parameter that controls the slope
of the function WI’ .

Obeying the second constraint, C should be the same
for all of \/NV,: For If < ,u{{, \571’ has the value 1 since I
is the most reliable in this range. For If > ,u’f’ s VV{ is the
Gaussian function with mean pf’. C is determined by the
function value § at the intersection point y; of W/{ and W/z’" ,
ie,8 = Wf(m) = Wzr(yl). It is calculated from (4) as

log (8)
(n — ut)?

As described above, the intersection point y,, of W and
Wn’ 1 is the same as in conventional methods. The proce-
dure of calculating y, is described in the Appendix. The
result is

_ P Umax — B) — BUmax — P)
! Atyp + Atyt1max — o) ’
where Iiax represents the maximum value of the BP-LDR
images (4,095 for 12-bit images). W} forn =2,...,N — 1
can be calculated by the following equation:

C=- ©6)

7)

if gy < I < by

exp (—C. (15 — p,f)2> s otherwise,

(8)

where uf and u!l are the mean values of the Gaussian
functions applied to the low part and the high part in W7,
respectively. Since W/,:_l and W/ intersect at the point
Yu—1 and are symmetric around y,_1, uk is obtained from
“7—1:

ph =2y, — pit ). ©)
Likewise, /LI,,;I is calculated from (8) as
exp (—=C- (v — 1)) =8
Vo — 1ff = \/— 1ogc(5) (10)
PR

The various coefficients to design the proposed weight-
ing function W/ are marked in Figure 6. The weight-
ing function VV]{] corresponding to the shortest exposure
image Iy is asymmetric with respect to uf\[:

2 .
exp (—C - (If - uk)”), i1 < ik

1, otherwise,

Wi (1) = (11)

For 1115, < ;Lf\,, \57](, is a Gaussian function with mean ,uLN.
For I]If,z ,uLN, W](] becomes 1 since Iy is the most reliable
in this range.

After the desired weighting function is designed by the
abovementioned step, it has to be converted to a weighting
function in the pixel value domain. This is done by step 2
in Algorithm 1. By step 2, wr, \/NV,;", and \57](, in (4), (8), and
(11) are converted into W7, W}, and WY, respectively, as
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Wi (h) = (
W;: (In) = 17

Wx (In) =

The weighting function W}, obtained in this section is
further modified to consider local motion by the method
described in Section 2.2.3.

2.2.2 The weight for ghost artifact reduction
In general, any movement introduces ghost artifacts when
input images with different exposures are sequentially
acquired. Figure 7 shows the effect of these ghost artifacts.
Figure 7a shows three input images with different expo-
sures, and Figure 7b shows the HDR image result using a
conventional Gaussian weight [11]. The movement of the
people while the input images were being captured caused
the ghost artifacts of the HDR image. The artifacts are
shown in the close-up image (Figure 7c). To prevent the
ghost artifacts, the region where local motion occurs has
to be excluded from the reconstruction process.

The proposed method uses the weighting function to
exclude the ghost artifacts. Small weights are assigned
to the pixels where ghost artifacts occur to exclude the

1, if 1 <f(ufAn)

Page 7 of 18
(12)
otherwise,
if I, < f (uhAt,)
if f (nEAL,) < I, < f (nhf Aty) (13)
otherwise,
if In < f (k Atn) 14

1, otherwise.

ghosting regions from the reconstruction process. Before
calculating the weighting function, the image with the
fewest saturated and dark pixels is selected as the refer-
ence image. From the correspondence between the refer-
ence image and the other BP-LDR images, the weighting
function W,ll is decomposed into the switching (s,) and the
weighting (w),) components as
W, (i) = su (i) - Wy (i) -
The switching component s, is defined based on the
fundamental assumption that the pixel value captured at a
long exposure should be larger than that at a short expo-
sure. Therefore, if the pixel value at a short exposure is
larger than at a long exposure, this means that one of the

two pixel values is wrong and should be excluded from the
reconstruction process. Therefore, s,, becomes

(15)

1, if (i,j) € Myor n = ny
su(i,)) = 16
" (l ]) 0, otherwise (16)

Weight

H 'L
Hu-1 V-1 Hn

Figure 6 lllustration of the data reliability weighting function W". The coefficients to design the function are included in this figure.

Radiance
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box in (b).

Figure 7 An example of the ghost artifact in an HDR image. (a) Input images, (b) the result containing ghost artifact, and (c) close-up of the red

where 79 denotes the reference image and M, represents
the region in I, which satisfies the abovementioned fun-
damental assumption. Even though the switching com-
ponent is not used, the weighting component wfq assigns
small weights to these regions. However, the switching
component is effective to reduce ghost artifacts because
these regions are completely excluded from the recon-
struction process by the switching component.

The weighting component w!, is determined by the
differences of the luminance and chrominance values
between the reference image and the other BP-LDR
images. The regions with large differences can be regarded
as regions where local motion occur, and thus small
weights have to be assigned to these regions. On the other
hand, large weights have to be assigned to regions with
small differences. The above description is applied to wil,
and it is assigned to the pixels as

wy, (i-)) = exp (~Cy - Dy (i-j) — Cr - Dy (i)

17
~Co DL i), )

Here, D}; represents the difference of the luminance val-
ues between I, and I,,. DX, where X denotes the red (R) or
blue (B) channel, represents the difference of the chromi-
nance values between I, and I,. The parameters Cy, Cg,
and Cp are chosen to balance between DZ, D{f, and DE,
respectively.

To obtain D}; and Dif, first, the BP-LDR images are
adjusted to the same exposure setting because the expo-
sures of the BP-LDR images differ. The procedure to

adjust the exposure can be expressed in terms of the
formula below:

Iy, —»n, = min {f (fl (Im) X ii:j) :Imax} (18)

where I, ., represents the image I,, of which the expo-
sure time changes from At,, to At,,, and min {a, b}
represents the minimum value between a and b. From
the exposure adjustment in (18), the exposure time of
I, changes from At,, to At,, in the radiance domain,
and then it is converted in the pixel value domain. After
adjusting the exposures, D} is calculated as

Yoo (6/) = ¥ ()]

Y (: N no
DY (i,j) = max [T (i), T ()] (19)
where
Y, (i) = Z Go 0 q) - Yu(i+pj+4q). (20)

»:9)€S

Here, max {a, b} represents the maximum value between
a and b, Y, represents the luminance component of I,
Gy () represents the corresponding truncated Gaussian
kernel with variance o2, and S represents an index set
of a support, i.e., a rectangular windowed search range.
The normalization of |Yno (i, j) - Y, (i, ])| to D,{ (i, j) is to
compensate for the difference according to the level of
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luminance. The luminance component Y, is calculated in
the Bayer pattern from neighboring pixels as

| R ¢ . . .
Yo (i) =, bp+ g (InG = 1,)) + LG, j — 1)
+1,G+ 1) + 1,5, + 1)

1
+ e (InGi = 1,j = D+ L,(i — 1,j+ 1)
i+ 1Lj— D+, +1,j+1).
(21)
By applying (21), Y,, contains 50% green, 25% red, and
25% blue colors regardless of the position. DY is also
calculated after adjusting the exposures as follows:

&5 (i) = KX ()|

DX (i,j) = - - (22)
i (1) max {YX (i,j), V¥ (i./)}
where KX is calculated by
KX (i)=Y Gopa)  (Yu(i+pj+a)

Here, X, represents the pixel value of the X channel
in I, which is calculated by the bilinear interpolation
depending on the position.
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Figure 8 shows the results of obtaining DnY , Dﬁf, and
Df between the reference image (middle exposure) and
the other two BP-LDR images. The regions where D},
DR, and DB are large are regarded as the local motion
regions. In Figure 8, it can be seen that the local motion
is detected effectively. Although it is difficult to detect the
local motion in the dark region of the short-exposure BP-
LDR image due to the influence of the noise, there is no
problem since the short-exposure BP-LDR image is rarely
used to reconstruct dark regions of the scene.

2.2.3 The weight for data reliability considering local
motion

If the weighting function W) obtained in the previous
section as VAV,’I in (3) is used, this will cause a problem: a
certain local motion can cause artifacts. For easy under-
standing, let us consider a situation in which two LDR
images have different exposures. Suppose that the image
with shorter exposure is the reference image. Figure 9
illustrates this situation. Here, the local motion region
is shown in the longer exposure image I; (marked by
light gray in Figure 9c¢), and the black region is shown in
the shorter exposure image I (marked by dark gray in
Figure 9¢). When calculating W, for n = 1,2 by (3) using
W), they have weighting values W7 ~ 0 and W, ~ 0,
respectively. This is due to the fact that the local motion

Figure 8 Ghost artifact regions calculated from the captured BP-LDR images.
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(a)

(b) (©)

Figure 9 An example of a situation in which the weighting functions W, for all n become 0. (a) A long-exposure image /1, (b) a
short-exposure image I, (reference image), and (c) a weight image (light gray: W; = 0, dark gray: W, = 0, black: W, W, ~ 0).

region in I; leads to Wll ~ 0, and the black region in I
leads to W) ~ 0. As a result, an artifact appears since
no LDR images are utilized in the intersection of these
two regions (marked by black in Figure 9c). To avoid the
artifact, the weighting function W), has to be modified.
The modified weighting function VAV,: should increase
its weight if a local motion occurs in the opponent BP-
LDR image to compensate for the small weighting value
of the local motion region. For example, again, regarding
the case where the image /; is obtained with the longest
exposure, I with the second longest, I3 with the third,
and so on for I,—45, . n. In this case, first, the weighting
function Wf for the longest exposure BP-LDR image I; is
composed of W] and a partial weighting of W] to com-
pensate for the local motion in I5. In detail, when a local
motion is detected in a certain region in I, a partial weight
of W is added to W7 for this region. The modified weight
W{ does not include the partial weights of W) _; , since

W' _,  are almost 0 in the radiance value range of I;.

Therefore, W{ can be expressed as follows:

W (i) = Wi (1 (i)
+ W (11 (i) - (1= W3 (i) - W3 (B2 (i)
(24)

The weight W} is the weight defined in (15) for the case
of image I,. It has a small value if the likelihood of a local
motion in I is large. If Wzl has a small value, the weight
W} is much reflected in the weight W7. The image I, is
used to compute W7, where I1_,, is calculated from (18).
Here, W* (-) represents a simple hat function [7] as shown
in Figure 10, which prevents the use of saturated values in

I, :
L 1)12'
Imax

Next, we consider the case for W}. The weight

VAVZV includes the weighting values W and Wj in the
same manner as explained in the abovementioned case.

W (L) =1— (2- (25)

Furthermore, the weight W] is additionally included in

\/AVzr . This is due to the fact that the radiance range of I
includes the radiance range of I, which is again due to
the fact that I, is obtained with a shorter exposure than ;.
Therefore, using I to compensate for the local motion in
I and I3, W/z’" becomes

W3 (i.)) = W3 (12 (i)
+ W (1 (i) - (1= WE () - W5 (a3 (3.))

+ (1= W (@0))) - Wi (B (i) - (26)

Here, the weight W* is not required for the third term in
the right hand side of (26), since the radiance value range
captured by I; corresponds to the low-radiance part of I.

Similarly, W; contains the weights Wi, W], W], and
Wy
W3 (i./) =W3 (15 (i./))

+ W (5 (1)) - (1= Wh () - W (Fsna (i)

+ (1= W5 (i) - W3 (32 (i)

# (1= WAGD) - (1= W () - W 11 )
(27)

0 1000 2000 3000

Pixel value

4000

Figure 10 The hat function W* to avoid using the saturation level.
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The fourth term compensates for the case if local
motion is detected in both I7 and I5. If local motion occurs
only in I, then the third term in (27) would be enough.
Otherwise, the case that local motion occurs only in I; is
already compensated for by the third term in (26).

Generalizing the case for n (except forn = 1 and n =
N), VAV,I’ can be represented as

=W, (I (i.))

W0, ) (1—wnﬂ<>f>)

Wit (In»nﬂ
(11

Wnr k(In—>n k l]

W, (ij)

Wi (,-,,-))
(8)

Finally, the weighting function \/AVnr is used as the data
reliability term in (3).

3 Experimental results

The performance of the proposed algorithm was tested
with several BP-LDR images, which were captured with
a CMOS sensor at three different exposures (At} = ¢,
Aty = t/4, and At3 = t/16). The BP-LDR images have a
pixel value range of 0 < intensity < 4,095 (12-bit). The
12-bit pixel value range is widely used for digital cameras.
Later, the 12-bit range is compressed to 8-bit RGB data by
the IPM.

With the proposed method, several parameters were set
empirically and tested with various images to obtain the
best results. The parameter p in (5) was set to glmax. The
parameter § in (6), which determines the degree of the
overlap between the data reliability weights, was set to
0.25. The parameters Cy, Cg and Cp in (17) were set to 20,
10, and 10, respectively. The kernel size S and the variance

2 in (20) and (23) were set to 5 x 5 and 4, respectively.
No pre-processes were performed on the input BP-LDR
image, but pre-processes such as bad pixel correction [22]
and Gr-Gb imbalance correction [23] can improve the
HDR result according to the quality of the imaging sen-
sor. For better visualization, we showed the results in RGB
images rather than in Bayer patterned images. All the
input BP-LDR images were post-processed by the edge-
preserving color interpolation [24], white balancing, color
correction, and gamma correction. For the resulting BP-
HDR images, an additional tone-mapping algorithm [25]
was used to compress the dynamic range, which visual-
izes the HDR image information on a low dynamic range
display.

We compared the performance with respect to the influ-
ence of noise at dark regions and ghost artifacts with three
conventional methods. The first conventional method
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(CM1) uses the weighted summation using the Gaus-
sian weighting function without considering ghost artifact
reduction in [11]. The second (CM2) and third (CM3)
method are commercial software programs that are widely
used to obtain an HDR image with ghost artifact reduction
in [26,27], respectively. In CM2 and CM3, the parame-
ters associated with ghost artifact removal were set to the
highestlevel. For CM2 and CM3, the BP-LDR images were
preprocessed by the same edge-preserving color interpo-
lation, white balancing, and gamma correction algorithms
which are used for the visualization.

First, we performed an experiment when there was no
local motion. Figure 11 shows our HDR result applied
to a scene containing both indoor and outdoor environ-
ments. As can be seen in Figure 11a, the limited dynamic
range of the imaging sensor revealed saturation and black
regions in the LDR images. In the short-exposure LDR
image, the pixels in the bright regions avoided saturation,
but the details in the dark regions disappeared. On the
other hand, in the long exposure LDR image, the dark
regions, e.g., the part under the desk, became visible, but
the bright regions became saturated. In comparison, with
the proposed method, the fine details became visible in
both the bright and the dark regions, as can be seen in
Figure 11b. Figure 11c visualizes the values of the weight-
ing functions W,—=1 23 in colors. The R, G, and B channels
were assigned to W1, W5, and W3, respectively. For exam-
ple, a red region represents the fact that the value of W is
dominant in that region. As a result, in the reconstruction
of the BP-HDR image, the long-exposure BP-LDR image
has a dominant effect on the region under the desk, while
the short-exposure BP-LDR image has a dominant effect
on the sky region.

Figure 12 shows the results of the three CMs and the
proposed method applied to a scene containing very dark
regions around the test chart. Figure 12a shows the ‘chart’
images with different exposures. Figure 12b,c,d,f shows
the results of the CMs and the proposed method, respec-
tively. To confirm the effect of noise, the lower left corners
of the results were magnified as shown in Figure 13. The
proposed results were less affected by the noise com-
pared with the result of the CMs. Especially, with the
CM2 and the CM3, more noise was observed in the
dark regions compared with the others. This is due to
the fact that the weight for the long-exposure BP-LDR
image decreased in the process of excluding ghosting
regions. The long-exposure BP-LDR image appears less
noisy in the dark regions than the other images. However,
the proposed method provides better performance than
the CM1 although our method considered ghost artifacts
unlike the CM1. Figure 14a,b shows the weight images of
Figure 12b,e, which correspond to the weighting functions
used in the CM1 and the proposed method, respectively.
As can be observed, with the CM1, the surrounding dark
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Figure 11 Experimental results of the captured scene with window. (a) The three LDR images, (b) the result of the proposed method, and (c)
the weight image obtained by W,,.

D ==

| -'I-—il’d'l =

D= G

(d) (e)

Figure 12 Experimental results of the captured scene with chart. (a) The three LDR images, (b) CM1, (c) CM2, (d) CM3, and (e) the proposed
method.
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(c)

Figure 13 Close-up comparison of Figure 12. (a) CM1, (b) CM2, (c) CM3, and (d) the proposed method.

(d)

region revealed similar small weights for all the BP-LDR
images. In comparison, with the proposed method, W,
assigned a dominant weight for the long-exposure BP-
LDR image in the dark region, which made the dark region
visible.

Figure 15 shows the results for a scene with a desk.
The scene contained a very dark region under the desk
as shown in Figure 15a. In Figure 15, it appears that the
noise under the desk was reduced effectively in the results
of the CM2 and the proposed method, while the CM1
and the CM3 did not reduce the influence of noise and
even generated some artifacts in the light source. How-
ever, with the CM2, the details in both the bright and
dark regions were disappeared when compared with the

other results. To evaluate the performance with respect
to the influence of noise, the standard deviation (o) and
the coefficient of variation (CV) were used as objective
performance criteria. The CV is defined as the ratio of
the standard deviation o to the mean pu, i.e., o/u. The
CV is useful for comparison when the means in the result
images are different from each other. Table 1 presents
the standard deviations and the CVs of the proposed
method and the CMs, which are calculated in the homo-
geneous dark regions of Figures 13 and 15. As described
in Table 1, the PM recorded a smaller standard deviation
and CV values than the CMs. From Table 1, it is clear that
the proposed method outperforms the CMs in numerical
values.

(a)

Figure 14 The weight images of Figure 12. (a) CM1 and (b) the proposed method.

(b)
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Figure 15 Experimental results of the captured scene with desk. (a) The three LDR images, (b) CM1, () CM2, (d) CM3, and (e) the proposed

0] ERS 21y 2%t a4

(e)

In the second experiment, we performed experiments
on captured scenes that included object movements.
Figure 16 shows the results for a scene with leaves blowing
in the wind. Figure 16b shows the ghost artifacts around
the leaves since CM1 cannot consider local motion. The
CM2 cannot remove the ghost artifacts effectively, as can

Table 1 Comparison of experimental results in
quantitative terms

Image Method o cv
Chart M1 9.61 0475
CcM2 11.96 0478
M3 12.06 0334
Proposed 5.15 0.281
Desk (@) 7.51 0.225
CM2 5.94 0.467
CM3 743 0.273
Proposed 491 0.220

be seen in Figure 16c¢. Figure 16d,e shows the results when
using the CM3 and the proposed method, respectively.
Both results show almost no ghost artifacts when com-
pared with the results of the CM1 and the CM2. As a
result, the CM3 and the proposed method are able to pre-
vent ghost artifacts from small local motion like blowing
leaves.

Figure 17 shows the results for a scene with moving peo-
ple. The captured input images are shown in Figure 7a.
As can be seen, the motion regions are extremely large.
The ghost artifacts are observed with all of the conven-
tional methods. However, the proposed method intro-
duces no ghost artifacts. Figure 18 shows a close-up of
Figure 17. In Figure 18a, false color artifacts are observed
in bright regions. This is due to the fact that saturated
pixels in the longest exposure BP-LDR image are used
in the reconstruction process. The reconstructed radi-
ance regions affected by these saturated pixels become
falsely achromatic. Meanwhile, the BP-HDR image per-
forms post-processing such as white balancing since the
colors in the Bayer raw images may be unbalanced. As a
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(e)
Figure 16 Experimental results of the captured scene with leaves blowing in the wind. (a) The three LDR images, (b) the result of CM1, (c) the
result of CM2, (d) the result of CM3, and (e) the result of the proposed method.

(d)

Figure 17 Experimental results of the captured scene with moving people. (a) The result of CM1, (b) the result of CM2, () the result of CM3,
and (d) the result of the proposed method.




Kang et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:76

http://asp.eurasipjournals.com/content/2014/1/76

Page 16 of 18

(a) (b)

method.

(c) (d)

Figure 18 Close-up comparison of Figure 17. (a) The result of CM1, (b) the result of CM2, (c) the result of CM3, and (d) the result of the proposed

result, false colors may occur in the achromatic regions.
Moreover, as can be seen in Figure 18, conventional meth-
ods cannot detect the person wearing black pants in front
of the black desk because their brightness values are sim-
ilar. In comparison, the proposed method prevents ghost
artifacts and produces a high-quality BP-HDR image, as
shown in Figure 18d.

We presented the results of the proposed method
together with the input images in Figure 19. Figure 19

demonstrates that the proposed method provides BP-
HDR images without any artifacts.

4 Conclusion

In this paper, we have proposed a BP-HDR (Bayer
patterned high dynamic range) image reconstruction
algorithm from multiple BP-LDR (Bayer patterned low
dynamic range) images. Unlike conventional methods, the
proposed method works on the Bayer raw image. This

Figure 19 Results of the proposed BP-HDR image reconstruction method with various test images.
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allows for a linear CRF and also improves the efficiency
in hardware implementation. The proposed method aims
to deal with the noise and the ghost artifact problems.
For this aim, a new weighting function is proposed to
be designed so that each of the BP-LDR images indepen-
dently covers its corresponding region according to the
radiance value. Furthermore, the weighting function is
designed to detect the local motion in the Bayer pattern
and to exclude ghosting regions. As a result, the proposed
method weakens the influence of noise in the short-
exposure BP-LDR image and prevents ghost artifacts.
Experimental results show that the proposed method pro-
duces a high-quality BP-HDR image while being robust
against ghost artifacts and noise factors, even when there
exists excessive local motion.

Appendix

Procedure for calculating intersection point y,

The intersection point y, of W/ and W/, 41 is determined
as the same point obtained from the conventional weight-
ing function. We use the simple weighting function to
calculate y,, as

- X, ifx<p
0

. (29)

W, (%) =

(x— p) +1, otherwise,

Imax

The weighting function W is shown in the top part of
Figure 4. The falling part of Wy and the rising part of
W, | intersect in the radiance domain. The procedure for

n+
calculating the intersection point y,, is shown below:

1 1
—p (f()/nAtn) - p) +1= 0 S (YnBDtnt1)

Tax
1 p
Snty) + - f(YnDtt1) = +1
Imax — 14 Imax — P
1 p
c(YnAty +B) + - (YuAturr + B) = +1
Imax — p 14 Imax — P
At At
Ve ( nog n+l) + B + B _ P +1
Imax — p P P Imax — p Imax — p
p=B B 1
Yn= Imax —p p
" Aty Atpy1
Imax — p P
_ pUmax — B) — BUmax — p)
Yn =

(30)
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