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Abstract

Radar obtains its parameters on a grid whose design supports resolution of underlying radar processing. Existing radar
exploits a regular grid although the resolution changes with stronger echoes at shorter ranges. We compute the radar
resolution from the intrinsic geometrical structure of data models that is characterized in terms of the Fisher
information metric. Based on the information-based approach, we design an estimation grid whose cells have a
constant Fisher information distance. In addition, we explore how this information-based grid can suit radar
processing in practice and propose information-based processing on such an irregular estimation grid by applying
the sparse signal processing from compressive sensing. Accordingly, the grid was adjusted to the sensing
incoherence needed in sparse signal processing by setting a lower bound for the cell size. Our approach enables an
adaptive estimation grid that can be adjusted with respect to the available resolution, the desired sensing
incoherence, available computational power, and required operational priorities. The information-based design and
processing are illustrated in a one-dimensional case of range estimation.
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1 Introduction
A radar grid is designed to support the resolution of
underlying radar processing. Radar resolution is the min-
imum distance between two objects that radar still can
resolve. Besides the effective sensing bandwidth, the
signal-to-noise ratio (SNR) is also crucial in the abil-
ity to resolve close objects (e.g., [1]). In existing radar,
the cell size is constant, i.e., the estimation grid is reg-
ular because of the real-time computations done by fast
Fourier transform (FFT). However, the resolution is not
constant because it increases with stronger echoes at
closer ranges as well known from the radar equation
(e.g., [2]).
In this paper, we continue exploring a practical com-

bination of information geometry (IG) and compressive
sensing (CS) in a basic radar example of range estima-
tion (started in [3,4]). IG is applied to design a resolution
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cell in a radar system as related not only to the sens-
ing bandwidth but rather to information distances on the
statistical manifold of the Fisher information matrix of a
data model. In a range-only case, this implies that closer
ranges would have smaller cells. Our resolution analysis
differs from previous work (e.g., [5,6]) as we include the
range-dependent amplitude and use raw radar measure-
ments throughout the whole analysis. In addition, we also
explore how such an irregular grid suits radar processing
and propose applying sparse signal processing (SSP) that
is nowadays a major part of CS.
SSP designates a sparse model-based refinement of

existing signal processing. In radar, matched filtering
remains vital within SSP but followed by the �1-norm
iterative refinements promoting the sparsity [7]. SSP is a
major part in the back end of a sensor with CS, while
its front end enables compressive acquisition of measure-
ments. CS is optimized to the information in received
measurements through a specific view based on the two
assumptions: sparsity of processing results and the sensing
incoherence (e.g., [8,9]).
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IG raises a new approach to stochastic signal process-
ing by treating the stochastic inferences as structures in
differential geometry (e.g., [5,10]). The intrinsic geomet-
rical structure of measurement models is conveniently
characterized in terms of the Fisher information met-
ric. Accordingly, resolution of sensors can be based on
information distances on such statistical manifolds.
Both IG and CS have a potential to improve radar

processing because of the emphasis on the information
density in received data instead of the much larger sens-
ing bandwidth. Accordingly, conventional processing can
be improved if the demands of data acquisition and sig-
nal processing are optimized to the information content
in radar measurements.
In our work, we have been exploring the innovative

IG-CS combination that offers the new flexibility in radar
design. In [3], we had focussed only on design of the
IG-based grid. In [4], we proceeded by focusing on a
combination of the IG-based grid design with SSP. The
emphasis was on the effects of the IG-based estimation
grid to the sensing incoherence (typical for SSP or CS).
In this journal paper, we provide a more detailed analy-
sis, express the Fisher information metric in more generic
terms of the waveform specific constant, and indicate the
grid adaptivity leading to a coherence-adjusted irregular
grid. Moreover, we give numerical results to illustrate the
theoretical analysis in a practical radar example.
In Section 2, typical radar processing is recalled first fol-

lowed by the information-based approaches of IG and CS.
In Section 3, the analysis is illustrated with simulations
results in a range-only case. In Section 4, conclusions are
drawn, and future work is indicated.

2 Information-based radar processing
2.1 Typical radar processing
Raw radar measurements gathered in a vector y are
described by nonrandom signals s in receiver (thermal)
noise z in a model: y = s + z. If s is described as in CS, by
a linear model: s = Ax, it writes as

y = Ax + z, (1)

by a sensing matrix A, a sparse radar profile x, signals Ax
, and complex Gaussian noise z with zero mean and equal
variances γ , p(z|γ ) ∝ exp

(−|z|2/γ )
. The sensing matrix

A contains a radar signal model with a desired profile x
that is known from the physics. For example, in range,
columns of A are time-delayed replicas of the transmitted
waveform that is usually a linear chirp (linear frequency
modulation (LFM)) because of the optimal processing
gain.
Typical radar processing starts with matched filtering

(MF) because of the optimal SNR of a single target in
radar echoes (e.g., [2]). The MF profile xMF, xMF = AHy
(H denoting hermitian) is computed using FFT and also

decoupled for angle(s), range, and Doppler. Accordingly,
both observation and estimation grids are regular. The
time resolution of xMF is proportional to the signal band-
width B and

√
SNR, while a grid cell is usually 1/B large

(as given by the Nyquist sampling of complex signals).

2.2 CS and sparse signal processing
In CS, x from Equation 1 is assumed sparse (or com-
pressible). In a Bayesian framework, it can be formal-
ized by a multivariate Laplace prior p(x|λ), p(x|λ) ∝
exp (−λ ||x||�1). The maximum a posteriori (MAP) esti-
mator of x, written as

xMAP = argminx

{∣∣∣∣y − Ax
∣∣∣∣2 + h ||x||�1

}
, (2)

gives the usual SSP from CS with the �1 norm ||x||�1
promoting the sparsity and the �2 norm

∣∣∣∣y − Ax
∣∣∣∣ for

minimizing the noise, together with a threshold h that
balances between the two tasks (e.g., [8,11]). An undeter-
mined system can be solved by SSP from Equation 2, i.e.,
M measurements in y can be enough for N outputs in x,
M < N , because of the sparsity, i.e., only K nonzeros in
x, K < M, and incoherence of A, i.e., a low inner product
between its different columns. There are three measures
for the incoherence of a matrix: the mutual coherence, the
restricted isometry property (RIP), and null space prop-
erty (NSP); the last two being more difficult to compute
(e.g. [8]).
The mutual coherence c(A) of a matrix A is given by the

largest inner product of columns of A, denoted as an, with
n = 1, . . . ,N and normalized, i.e.,|ai| = 1, as:

c(A) = max
(i,j),i �=j

〈ai, aj〉
|ai|

∣∣aj∣∣ . (3)

In radar, the straight physical nature of a sensing matrix
A suits CS and the incoherence well. The mutual coher-
ence c(A) can be viewed as the largest off-diagonal value
of AHA, i.e., the highest sidelobe (e.g., [12]). The sparsity
of x is bounded by c(A), e.g., |x|0 < 1+ 1/c(A), where |x|0
is the (pseudo) norm �0, i.e., a number of nonzeros in x.
The number of measurementsM needed to solve x is also
related to c(A) as

c(A) >

√
N − M

M(N − 1)
. (4)

The mutual coherence c(A) is also connected to the RIP
of a sensing matrix A in a linear model. The matrix A sat-
isfies RIP(K , ε) if (1− ε) ||x||2�2 ≤ ||Ax||2�2 ≤ (1+ ε) ||x||2�2 ,
for ∀x ∈ C

N
K and 0 < ε < 1, where CN

K indicates a set of
all complex vectors of sizeN and sparsity K (e.g., [8]). The
RIP(K , ε) is satisfied for any K < 1 + 1/c(A). This relates
the two measures of the sensing quality by a matrix A.
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Practical CS in radar prefers stochastic SSP when
treating noise, prior knowledge on signals or their data
acquisition, and when providing results ([13]). In a way,
stochastic SSP is giving a fresh boost to radar initiated
in the 1950s ([14]). Accordingly, we use the algorithm
complex fast Laplace (CFL, [15] and [13] for complex
signals). In CFL, the prior p(x|λ) is built from a complex
Gaussian prior for x and a � hyperprior for the variance
of x. CFL refines actually the MF profile xMF in a num-
ber of iterations by selecting significant elements based
on increase in the assessed posterior in each element of
x. For the optimal processing gain, measurements y are to
be gathered over the whole observation time and space,
supporting the SSP of a profile x over all its parameters:
range, doppler and angle(s). The matrix A as well as the
SSP size becomes huge but well arranged, what makes SSP
even achievable in real time (as in [13], CFL implemented
in range-Doppler SSP on GPU).
When SSP is applied on an irregular grid, the effects on

the incoherence of the sensing matrix A should be first
considered. When the cell size decreases, the columns of
sensing matrix A become more coherent because they
come closer to each other. This limits a minimum grid cell
size, as the incoherence is a requirement for SSP. Thus,
IG gives us possible grid cells while SSP poses the lower
bound to the cell size.
In addition, the computational demands of SSP applied

on an irregular grid should also be considered. The num-
ber of cells can become equal or even smaller as opti-
mized to the possible resolution, desired incoherence,
and available processing power. Finally, operational needs
will also benefit from the grid adaptivity. For example,
closer ranges can have a higher priority in the radar
operation.
HowSSP on irregular grid can suit radar processing, and

make it even more efficient, is illustrated in a range-only
case in a case study in Section 3. Note that with the same
number of cells, closer targets are resolved.

2.3 Information geometry
IG is the study of manifolds in the parameter space of
probability distributions, using the tools of differential
geometry [5]. These spaces are generally non-Euclidean,
which basically implies that the scalar product of two
vectors x and y,

〈�x, �y〉 =
∑
i
xiyi (5)

is redefined by a metric tensor gij (e.g. [16]), i.e.,

〈�x, �y〉 =
∑
i

∑
j
xigijyi = �x	G�y. (6)

Here, metric gij may depend on the location �θ on the
manifold, so gij → gij(�θ). A consequence of themetric ten-
sor is that the actual length of curve is different from the
length in Euclidean space. For an arbitrary, differentiable
curve ψ(t) = (ψ1(t) . . . ψn(t)), that is on the manifold
equipped with metric g, denoted as (	, g), the length is
given by

L(t) =
∫ t

0

∣∣ψ ′(τ )
∣∣ dt

=
∫ t

0

√
ψ ′(τ )	G(ψ(τ ))ψ ′(τ )dt.

(7)

When ψ(t) is (locally) the shortest paths between two
points, ψ(t) is called a geodesic of (	, g): this is the exten-
sion of the notion of a straight line to non-Euclidean
spaces.
A clear example of a geodesic in a non-Euclidean space

is the shortest path on the spherical surface. There are no
straight lines here: the shortest path between two points
on the spherical surface is the shorter great circle arc (see
Figure 1).
In IG, the metric tensor is defined by the Fisher infor-

mation matrix. The Fisher information matrix is defined
for some likelihood function p(y|�θ) and parameter vector
�θ as the expectation value

gij(�θ) = E

[
∂ ln p(�y|�θ)

∂θi

∂ ln p(�y|�θ)

∂θj

]

= −E

[
∂2 ln p(�y|�θ)

∂θi∂θj

]
.

(8)

Figure 1 A geodesic on a spherical surface, a shorter great circle
arc.
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In this paper, we will study the basic case for range only.
For this one-dimensional case, the Fisher information
metric reduces to

G(τ ) = −E
[

∂2 ln p(�y|τ)

∂τ 2

]
. (9)

Distances on this one-dimensional statistical manifold
can simply be calculated from ds2 = G(τ )dτ 2 (e.g., [5]).
We will derive an expression for the Fisher information
metric G(τ ) for arbitrary waveforms in the next part.

2.3.1 Information distance cell design
We derive the Fisher information metric G(τ ) to design
and construct grid cells with a constant information dis-
tance as they support radar resolution. In the derivation
of G(τ ), we closely follow the approach from [6]. How we
construct the grid cells differs from the previous works
(e.g., [5] and [6]) as we directly incorporate the delay-
dependent amplitude and use raw radar measurements in
the data model. This is incorporated by letting the signal
amplitude a be a function of delay, i.e., a → a(τ ). The
signal amplitude a (that is independent of τ ) is our refer-
ence case. The received signal is modeled in continuous
form as

y(t) = a(τ )s(t − τ) + z(t), (10)

where s(t−τ) is a replica of the transmitted signal delayed
by τ and z(t) is the zero-mean, complex Gaussian noise
with variance γ . Themeasurement y is complex Gaussian,
defined by

p(y|τ) ⇔ CN (a(τ )s(t − τ), γ ). (11)

The probability density function p(y|τ) is given by

p(y|τ) = 1
πγ

exp

(
−

∫ ∞
−∞

∣∣y − a(τ )s(t − τ)
∣∣2 dt

γ

)
,

(12)

where τ is the parameter of interest. The Fisher informa-
tion metric is given by Equation 9, or

G(τ ) = −
∫ ∞

−∞
∂2 ln p(y|τ)

∂τ 2
p(y|τ)dy. (13)

In order to avoid certain convergence problems [17], we
divide the likelihood function to obtain a likelihood ratio

(y|τ), which is again a likelihood function:


(y|τ) = p(y|τ)

p(y)
. (14)

Because

p(y) = 1
πγ

exp

(
−

∫ ∞
−∞

∣∣y∣∣2dt
γ

)
(15)

is independent of τ , we know that

E
[
∂2
(y|τ)

∂τ 2

]
= E

[
∂2p(y|τ)

∂τ 2

]
, (16)

so we can continue to find the Fisher information metric
based on 
(y|τ). We then take the natural logarithm of
the likelihood function 
(y|τ),

ln
(y|τ) = − 1
γ

∫ ∞

−∞

[∣∣y − a(τ)s(t − τ)
∣∣2 − ∣∣y∣∣2] dt

= 1
γ

∫ ∞

−∞

[
2Re

[
a(τ)s∗(t−τ)y

] − ∣∣a(τ)s(t−τ)
∣∣2] dt.
(17)

Differentiating twice with respect to τ results in

∂2
(y|τ)

∂τ 2
= 2

γ
Re

[∫ ∞

−∞
∂2a(τ )s∗(t−τ)

∂τ 2
( y−a(τ )s(t−τ))

−
∣∣∣∣∂a(τ )s(t − τ)

∂τ

∣∣∣∣2dt
]
.

(18)

Taking the expectation value and multiplying by −1
gives the Fisher information metric

G(τ ) = 2
γ

∫ ∞

−∞

∣∣∣∣∂a(τ )s(t − τ)

∂τ

∣∣∣∣
2
dt. (19)

Note that for the reference case, this result reduces to

G0 = 2|a|2
γ

∫ ∞

−∞

∣∣∣∣∂s(t − τ)

∂τ

∣∣∣∣2dt. (20)

In previous work, the resultG0 was derived and the sub-
stitution a → a(τ ) was made to incorporate the delay
into the Fisher information. The difference from current
work is that the delay dependence in the Fisher infor-
mation metric G(τ ) was derived by incorporating the
fundamental radar equation in the model of raw data.

2.4 Delay-dependent amplitude and phase-modulated
waveforms

From the fundamental radar equation (e.g., [18]), we know
that the received power scales with τ−4. This means that
the amplitude of the received signal can be written as

a(τ ) = b
τ 2

, (21)

with b some complex parameter that may include gain,
RCS, etc. The delay-dependent Fisher information metric
G(τ ) from Equation 19 can then be written as

G(τ ) = 2|a(τ )|2
γ

∫ ∞

−∞

∣∣∣∣∂s(t − τ)

∂τ
− 2s(t − τ)

τ

∣∣∣∣
2
dt. (22)
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In order to apply the previous equation to a test case, we
define the unit energy replica of the transmitted waveform
with square envelope and phase modulation (PM) ϕ(t) as

s(t) = 1√
Tp

exp [ iϕ(t)] for t ∈[ 0,Tp] , (23)

where Tp is the pulse duration and ϕ(t) is a real, differen-
tiable function on the interval [ 0,Tp] that represents the
phase of the signal. Note that using this construction, the
frequency and phase modulation is controlled by ϕ(t) and
the amplitude by a(τ ). The first derivative is calculated as

∂s(t − τ)

∂τ
= − i exp (iϕ(t − τ))√

Tp

dϕ(u)

du

∣∣∣∣
u=t−τ

≡ −iϕ′(t − τ)s(t − τ) for t ∈[ τ ,Tp + τ ] ,
(24)

so G0 and G(τ ) may be written as

G0 = 8|a|2
γ

C (25)

and

G(τ ) = 8
γ

|b|2
τ 6

[
1 + Cτ 2

]
, (26)

where the constant C is specific for a waveform and its
PM, defined as

C ≡ 1
4Tp

∫ Tp

0
(ϕ′(u))2du. (27)

Information distances on both manifolds are calcu-
lated intrinsically different. For the reference case, it is a
Euclidean metric, i.e.,

d0(τa, τb) = √
G0(τa − τb), (28)

while the distance on the new manifold, with delay-
dependent amplitude control is calculated as

d(τa, τb) =
∫ τb

τa

√
G(τ )dτ = |b|

√
2
γ

[√
1 + Cτa2

τa2

−
√
1 + Cτb2

τb2
+ C ln

(
τb
τa

1 + √
Cτa2 + 1

1 + √
Cτb2 + 1

)]
.

(29)

With these results, the grid cells will be constructed in
the next part.

2.4.1 Choice of the cell size
Using the expression in Equation 29, we have to con-
struct resolution cells. For this, we need to determine the
information distance of one grid cell δ. We start with the
calculation of the total information distance of the listen-
ing interval, i.e. the time interval between Tp and pulse
repetition time (PRT), d(Tp, PRT) and the choice of an

appropriate number of grid cells Ncells. Combining these,
the size of the information grid cell is determined through

δ = d(Tp, PRT)

Ncells
. (30)

Note that in the current analysis, the relative size of the
grid cell with respect to the total PRT δ/d(Tp, PRT) is
independent of parameters b and γ because they are held
constant.
An alternative method is to (experimentally) determine

at what distance the conventional resolution (from the ref-
erence grid) is ‘correct’. The conventional resolution cell at
this positionm (and thus given on the interval [τm, τm+1])
determines the size of the information resolution cell

δ = d(τm, τm+1). (31)

Another possibility is to use the method from [5]. This
paper uses information distance in a Monte Carlo method
for determining whether there are one or two targets
present in a small area. The critical distance for the model
radar in distinguishing the two targets with some empiri-
cal probability of error is defined as the resolution cell.
When the value for δ is determined, the new resolution

grid is constructed by starting at τ1 = Tp and iterating
along the PRT

τi+1 = argτ [d(τi, τ) − δ = 0] . (32)

Note that when Equation 30 is used, this results in an
integer number of grid cells on the listening interval.
Processing on the grid will be done with SSP. For this,

the coherence of the sensing matrix c(A) must be low.
This is not the case when the grid cells are too close
together, which leads to a lower bound in grid cell size.
This coherence-adjusted grid is designed for the practical
case in Section 3.

2.4.2 LFMpulse
We apply the above results to the test case of a linear chirp
(LFM pulse) of bandwidth B. The phase is given by

ϕ(t) = πB
(
t2

Tp
− t

)
. (33)

Now, constant C for this waveform is calculated from
Equation 27 as

C = (πB)2

12
. (34)

This gives expressions for both metrics,

G0 = 2|a|2
3γ

(πB)2 (35)

and

G(τ ) = 8|b|2
τ 4

[
1 + 1

12
(πBτ)2

]
. (36)
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Figure 2 Fisher information metrics and grid cell sze. (a) The Fisher information metrics of the amplitude-dependent (constant information
distance) model and the reference case. (b) Grid cell size as a function of distance for both models.

The Fisher information metrics G0 and G(τ ) are shown
in Figure 2a.
Distances on the statistical manifold of the delay-

dependent case are calculated as

d(τa, τb) = |b|(πB)2√
6γ

[√
12 + (πBτa)2

(πBτa)2
−

√
12 + (πBτb)2

(πBτb)2

+ 1
2
√
3
ln

(
τb
τa

2
√
3 + √

12 + (πBτa)2

2
√
3 + √

12 + (πBτb)2

)]
.

(37)

By combining the last result with Equations 30 and
32, the cells were constructed and their size is shown in
Figure 2b.

3 Numerical results
The information-based design and processing with the
adaptive grid will be demonstrated using simulated data
in the basic case of range only in pulse radar. We consider
the LFM pulse from Equation 33 and set parameter b to
be |b| = 1, the pulse length Tp = 25, the bandwidth B
equal to the normalized sampling frequency fs, B = fs = 1,
PRT = 108, and variance γ = 1. Note that no compressive
acquisition is involved yet but regular Nyquist sampling in
the observation grid (as we focus here on the estimation
grid).
We first determine the total information distance dur-

ing the listening time on the PRT: d(Tp, PRT). Then, we
determine a desirable number of cells Ncells: for this par-
ticular case, we set Ncells = PRT − Tp = 83, which is
the same number of cells as for the reference case. From
this, in Equations 30 and 32, we calculate the constant
information distance δ and construct the grid cells, which
are found in Figure 3. Note that our analysis holds for all
the radar types providing G(τ ) from Equation 26 with the
waveform specific constant C in and the parameter b that
includes the gain, RCS, etc. The sensing matrices A and

corresponding coherences c(A) are illustrated in Figure 4.
SSP on the grids is shown in Figure 5.
The reference grid (Figure 3) causes the coherence

to be low and its maximum is constant for all ranges
(Figure 4a). The information-based grid (Figure 3) leads to
higher coherence for close ranges because of the smaller
cells (Figure 4b). An optimal smallest grid size is to be
designed as a compromise between the information-based
distance (Equation 29), the incoherence of the sensing
matrix (Equation 3), operational needs, and the available
processing power.
The coherence of the sensing matrix c(A) is taken into

consideration after the grid cells are determined with the
constant information distance δ. For very small grid cells,
the coherence is very high. An attempt in lowering the
coherence is made by setting the minimum cell size to half
the cell size of the reference case. For the test case, this
means that for all cells with τ < 37 the cell size is fixed, as
is seen in Figure 3 and Figure 4c.
In a range-only case, we show an example of the radar

operation where closer ranges may have a higher priority.
In our test case, there are three pairs of targets at differ-
ent ranges from radar, where each pair consists of two
targets that are equally distant from each other at every of
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1.5
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ce
ll 
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 [1
/B

]

constant information distance
coherence adjusted
reference

Figure 3 Cell sizes for the reference, information-based, and
coherence-adjusted grids.
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Figure 4 Sensing matrices and corresponding coherences. Sensing matrix (left) and coherence plot (right) for the reference grid (a), the
constant information distance grid (b), and the coherence-adjusted grid (c). Note that in (c), the sensing matrix contains less elements because a
lower bound on cell size has been applied in order to limit the coherence, hence the lower number of column combinations (i, j).

the three different ranges (Figure 5). The distance between
the two targets in a pair is equal to one unit cell from
the reference grid. On the reference grid (Figure 5a), the
targets cannot be resolved at any range. SSP on both irreg-
ular grids (Figure 5b,c) enables resolving the two targets at
closer ranges but on the coherence-adjusted grid with less
cells. The coherence-adjusted grid (Figure 5c) is an exam-
ple how the grid can be adapted by limiting its cell size
to the half as it is small enough for a given scenario, and
moreover, it lowers coherence (Equation 3) as well as the

computational demands. We applied an ad hoc cell size
that illustrates the design compromise well.

4 Conclusions
An adaptive estimation grid is created as a result of a prac-
tical combination of IG and CS in a basic radar case of
range estimation. IG is applied to design a resolution cell
in a radar system as related to the Fisher information dis-
tances on the statistical manifold of a data model with
raw measurements and the range-dependent amplitude.
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Figure 5 Results of SSP on the reference grid (a), information-based grid (b), and coherence-adjusted grid (c). The closer targets are only
resolved on the irregular grids. The coherence-adjusted grid gives the best results.

In addition, we also explore how such an irregular esti-
mation grid suits radar processing in practice, propose
applying SSP from CS, and adjust the grid accordingly for
this type of processing.
The IG-based grid and its processing by SSP enable the

adaptive grid adjustments that ensure better radar per-
formance and more efficient radar processing because
the processing power and resolution are optimized over
ranges. Thus, such an adaptive grid compromises the IG-

based grid with the CS-based sensing incoherence and
naturally, also with the available processing power and
operational demands. In existing radar processing, there
is no flexibility in the FFT-based grid.
Future work on the combination of IG and CS will

include extension of the optimal grid design to the range-
Doppler-angle scenarios, as well as waveform design and
other effects of the observation grid caused by compres-
sive acquisition (typical for CS).
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12. L Zegov, R Pribić, G Leus, Optimal waveforms for compressive sensing
radar, in EUSIPCO (Marrakech, Morocco, 2013)
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