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Abstract

ones, or mixed field sources.

Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this
paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field
environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The
recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is
used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to
estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the
estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources
and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and
parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field
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1 Introduction

Acoustic source localization using microphone arrays has
many applications, such as video conferences, intelligent
systems, and robotics. It has received great attention since
almost four decades [1,2]. In most of array signal process-
ing applications, the wavefront is assumed to be planar,
that is, all the sources are located in the far-field (FF) of an
array. In this case, the parameter that characterizes a
source location is its direction of arrival (DOA) [2]. In the
near-field (NF) of an array, the range information should
be integrated into the array signal model for accurately
characterizing sources [3]. Although plane wave assump-
tion can simplify the modeling and processing, it cannot
hold in near-field applications and results in analysis er-
rors. Moreover, in some practical applications, the signals
collected by microphone arrays are often the mixture of
far-field and near-field sources. Each source may be lo-
cated in the near-field or far-field of an array [4-9]. The
localization methods for the mixed field sources should
discriminate far-field and near-field sources. Then for far-
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field sources, they only estimate DOA information. For
near-field sources, range information is also estimated.

If an acoustic source locates in three-dimensional (3D)
space, its position information is jointly described by range
and bearing (azimuth and elevation). The geometric struc-
ture of a microphone array is very important for the
localization performance. Currently, most localization tech-
niques used a uniform linear array (ULA) or a uniform
circular array (UCA) [1,2,5-7,9-11] to estimate source posi-
tions. Planar arrays, such as cross array and uniform rect-
angular array (URA) are the straightforward extensions of
the ULA and can estimate both azimuth and elevation
[8,12,13]. ULAs cause a 180° ambiguity in the azimuth esti-
mation. UCAs can provide 360° azimuthal coverage due to
its circular symmetry in the azimuth plane. The main draw-
back of planar arrays including UCAs is that they provide a
smaller aperture in the elevation plane compared to the azi-
muth plane, resulting in poor estimation of elevation angles
[10]. Some arbitrary array configurations were investigated
to localize sources [14-17]. They were different from array
uniformity that traditional localization approaches require.
The array structure was selected according to some specific
practical applications. Spherical microphone arrays have
3D symmetrical geometry configuration and can capture
higher order sound field information. The 3D structure
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advantage facilitates more accurate sound source localization.
Moreover, they can be analyzed within the mathematical
framework of the spherical Fourier transform (SFT) which
greatly simplifies processing in the space domain. There-
fore, they have received considerable attention and have a
wide variety of applications in the fields of source
localization, beamforming, and acoustic analysis [18-20].
In this paper, we aim to develop a novel algorithm able to
accurately estimate the locations of mixed field sources
using spherical arrays.

Many techniques were proposed to estimate DOAs of
multiple acoustic sources. Multiple signal classification
(MUSIC) and estimating signal parameter via rotational in-
variance techniques (ESPRIT) are two subspace techniques
[21,22]. The latter avoids multidimensional search in the
parameter space. Goossens and Rogier proposed a unitary
spherical ESPRIT algorithm based on the spherical phase-
mode excitation that yielded accurate estimates with low
computational complexity [23]. The eigenbeam (EB)-ES-
PRIT algorithm for spherical arrays was presented in [24]
with its performance analysis for robust localization in
reverberant environments. It only exploited the relation be-
tween a fixed order of spherical harmonics. Many ap-
proaches were based on beamforming [22]. Argentieri and
Danes proposed an online beamspace MUSIC method with
a beamforming scheme to localize sound sources in robot-
ics [25]. Sun et al. proposed several steered beamformer-
based and subspace-based localization techniques in the
spherical EB domain [26]. They localized early reflections
in room acoustic environments. Wu et al. used sparse re-
covery to localize sources and formulate super-resolution
beamforming in the spherical harmonic domain [27]. How-
ever, when a source is close to the spherical array, the array
signal model based on the far-field assumption is no longer
valid. Independent component analysis (ICA) was used to
estimate source locations. It employed higher order statis-
tics and directly identified basis vectors containing the
source location information. It was applied in near-field or
far-field [28]. The ICA-based method was used to estimate
DOAs for spherical microphone arrays [29,30]. It fails to
localize sources which are not statistically independent.
Source localization can be considered as an overcomplete
basis representation problem using a grid of spatial loca-
tions. Many sparse recovery methods were used to estimate
source DOAs [31,32]. If the source is in 3D space, the num-
ber of basis is large and the computational complexity is
high. Some approaches assumed that one source was dom-
inant over the others in some time-frequency zones [11,33].
They extended the single-source DOA algorithm over these
zones to estimate multiple source locations. They were
based on the sparse representation of the observation sig-
nals in the time-frequency domain.

In many practical applications, the observations col-
lected by an array may be either mixed far-field and
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near-field signals or multiple far-field signals or multiple
near-field sources. Most of the above techniques localize
sources in far-field or near-field. In recent years, source
localization in mixed near-field and far-field has been
developed using MUSIC algorithm [5-7], ESPRIT-like
technique [8], or sparse signal reconstruction method
[4] based on a linear array. Jiang et al. proposed a 3D
source localization algorithm with a cross array [9]. First,
the elevation angles are obtained based on the general-
ized ESPRIT method. Similar to the root MUSIC
method, the range parameters are estimated with the
elevation estimates. Finally, a MUSIC pseudo-spectrum
function is used to get the azimuth angles with the ele-
vation and range estimates. Due to the 3D symmetrical
structure, spherical arrays have been widely used in far-
field source localization [23,24]. A spherical microphone
array was used in the near-field, and a new close-talking
microphone array was proposed in [34]. It can adaptively
compensate for the distance and orientation of a near-
field source. Fisher and Rafaely presented a near-field
spherical microphone array and defined the near-field
criterion in terms of the array order and radius [35].
They analyzed spherical microphone array capabilities
in the near-field and designed a radial filter discriminat-
ing the distances between the sources incident from the
same direction [36]. Although the aforementioned work
considers the near-field processing of the spherical micro-
phone array, near-field or mixed field source localization
via a spherical microphone array has not yet been studied.
Based on the recurrent relation of the spherical har-
monics, only DOAs were estimated for mixed field
sources simultaneously [37]. However, how to distinguish
near-field and far-field sources and how to estimate the
ranges of near-field sources were not considered.

The aim of our work is to develop a new method that
is able to localize mixed far-field and near-field sources
simultaneously using spherical arrays in free-field envir-
onment. It can avoid the parameter pairing problem and
complex multidimensional search. Three-dimensional
MUSIC method scans the azimuth, elevation, and range
parameter space and brings very high computational
complexity. Therefore, it is not practical for direct
source localization in 3D space. First, we construct the
mixed near-field and far-field array signal model in the
spherical harmonics domain. The mixed steering matrix
in the spherical harmonics domain only contains the
source DOA and range information. Moreover, the DOA
and range information is decoupled. Exploiting the re-
current relation between spherical harmonics, we extend
the spherical ESPRIT method to simultaneously discrim-
inate directions of multiple far-field and near-field
sources. This avoids two-dimensional parameter space
search and the azimuth and elevation pairing. Based on
the estimated DOAs, the ranges of near-field sources
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can be easily obtained using the one-dimensional
MUSIC algorithm with high resolution.

The remainder of this paper is organized as follows:
Section 2 introduces mixed field array signal model in
the spherical harmonics domain. A two-stage source
localization with spherical arrays is developed in Section 3.
Simulation results in Section 4 are presented to demon-
strate the performance of the proposed algorithm. Con-
clusions are given in Section 5.

2 Array signal model for mixed field sources

To clarify the notations, scalars are denoted as italic let-
ters (a, b, A, B, ...), column vectors as lowercase bold-
face letters (a, b, ...), and matrices as boldface capitals
(A, B, ...). The superscripts T, *, and H denote transpose,
complex conjugation, and conjugate transpose, respect-
ively. diag(-) defines a diagonal matrix and arg(-) calcu-
lates the phase.

The spherical coordinate system is used to describe
the positions of sensors and source signals in 3D space
shown in Figure 1. A total of L identical and isotropic
sensors mount on the rigid spherical surface with radius
R. Each sensor element is unambiguously defined by its
elevation 6, and azimuth ¢, (/=1, 2, ..., L), measured
from the positive z-axis and x-axis, respectively. Thus,
R;= (R, 0, ¢) describes the sensor position. Consider a
point source located at ry=(r; 9, ¢4), where r, is the
distance measured from the center of the spherical array,
and 9; and ¢, represent the elevation and azimuth of
the source, respectively. For the spherical microphone
array with an order N, the near-field extent is suggested
[35,36]

N

VNZ?, (1)

S
d
W ’

v, =X 9,04)

far field

near field

Figure 1 Spherical coordinate system for localization.
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where k is the wavenumber. The maximal wavenumber
is

Kmax = — . (2)

By combining (1) and (2), the criterion for r, to be in
the near-field can be written as

kmax
rg < rN= P R. (3)

Assuming there are D source signals impinging on the
spherical array. The first D; sources are assumed to be
far-field signals, while the remaining D, = D — D sources
locate within the near-field extent of the array. In the
presence of additive noises, the model in the space-
frequency domain is represented as

X(k) = AFSF(k) + ANSN(k) + V(k), (4)

where x(k) = [x1(k) x2(k) x.(k)]" denotes an
observation vector composed of the pressure samples at
each sensor at a frequency corresponding to the wave-

number k. v(k) = [vi(k) vy(k) ve (k)] is a noise
vector, and sp(k) = [s1(k) sy(k) S (k)]" and sy
(k) = [sp,+1(k)  sp,42(k) sp(k)] are far-field

and near-field source signals, respectively. They are as-
sumed to be statistically independent and well separated.
ApeCH*Pr and AneCE*P2 are the corresponding physical
steering matrices assuming the array is in free-field. The
D sources are incident from DOAs @, = (9, ¢4), where
d=1, 2, ..., D. Range information ry, is important only
for near-field sources, where dy=D;+1, D; +2, ..., D.
The objective is to estimate the azimuths and elevations
for far-field sources and joint azimuth-elevation-ranges
for near-field sources.

The localization algorithm is developed under the fol-
lowing assumptions:

1. The number of all sources is known.

2. The incident source signals are statistically
independent.

3. The noise is zero-mean, complex circular Gaussian,
and spatially uniform white, and is statistically inde-
pendent of all the signals [6].

2.1 Spherical harmonic representation for spherical array
processing

One advantage of spherical arrays is that it can be ana-
lyzed within the mathematical framework of the spherical
Fourier transform which greatly simplifies processing in
the space domain. Any square integrable function on a
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sphere g(6, ¢) can be denoted by g,,,, using the following
SFT:

- / ' / "(6,9)[Y7(6, )] sinbdodp,  (5)

where the integral covers the entire surface of the unit
sphere S%, and Y”(6, ) is the spherical harmonic of
order n and degree m defined as

Yo, ¢) = \/ (2"4; l)éq_l_))l’m(cos 0)e™?, (6)

where P(cos) is the associated Legendre polynomial
[38]. The corresponding inverse Fourier transform is

Z annm

n=0 m

(6, 9). (7)
The spherical harmonics are orthonormal, i.e., [19],

/ " / ’ Y™ (6, 9)[Y"(8, $)] sinbdbd¢p
0 0
= 6nn'6mm'7 (8)

where 8,,,,- = 1 for n=n',and 8,,,, = 0 otherwise. Equation 8
is the orthonormality of continuous spherical harmonics.
However, spherical microphone arrays perform spatial
sampling of continuous functions defined on a sphere.
Spatial sampling, similar to time-domain sampling, re-
quires limited spatial bandwidth (limited harmonic order)
to avoid aliasing [39].

Consider the highest order of the spherical micro-
phone array is up to N. Q; = (6, ¢) denotes the elevation
and the azimuth of the /th sensor. Y(Q) is defined as an
L x (N + 1)* spherical harmonic matrix as follows:

Yo() Y Q) Y2(Qu) YH() Y ()

Y(©) = YOO(:QZ) YI’I:(QZ) Y 2(Q,) Yll(zﬂz) YAA,’(:m)
(@) Yo YRQ) YR v

(9)

According to the inverse transform truncated up to
order N in (7), the observations of the spherical micro-
phone array can be expressed in the following form:

x(k) = Y(Q)xm(k),

where x,,,,(k) is a (N +1)* x 1 transform coefficient vec-
tor in the spherical harmonics domain. In the same way,
the noise can be expressed as

v(k) = Y(Q)v,yu(k),

(10)

(11)

where v,,,,(k) is a (N+1)*x 1 transform coefficient vec-
tor in the spherical harmonics domain.

According to the spherical harmonic representation of
the sound field [40,41], when sources are in the far-field
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of an array, the element ag(/, dy, k) of the far-field steer-
ing matrix Ap is independent of the source distance and
can be expressed using spherical harmonics as

ZZb (kR) [

n=0 m=-n

l d17 9d1?¢d1)}*Y:7(9[7¢1)7

(12)

where b,(kR) is the normalized far-field mode strength
and depends on the sphere boundary [8], /=1, 2, ..., L,
and d; =1, 2, ..., D;. The term ag(l, d;, k) describes the
transfer characteristics from the d;th far-field source to
the /th sensor. For concise representation, define @, =
(84 94) to denote the elevation and the azimuth of the
dth source and define a (N + 1) x D; spherical harmonic
matrix including the DOA information of the far-field
sources as

ro@)] @] e [Vi@n)]
[[Yfl(q)l)}] [[Yfl(q)Z)]] [[Yfl((DD1 )}]
Op) = Ylo(ch) ’ Ylo(q)Z) . Ylo(q)Dl) '
Y= g [ri@n)] - [vi(on)]
Y@ [r@)] [ (®p,)]"

(13)

Br is defined as a (N+1)*x (N +1)* diagonal matrix
consisting of the far-field mode strength b,,(kR), i.e.,

Br = dlag(bo(kR) hl(kR) hl (kR), bl(kR), ceey bN(kR), ceey bN(kR)) .
——
T

Therefore, by combining (9), (12), (13), and (14), the
far-field steering matrix can be represented as

= Y(Q)[BrY(®g)]. (15)

If near-field sources impinge on the spherical array,
the element an(/, dy, k) of the near-field steering matrix
Ay can be expressed using spherical harmonics as

Z Z b% (kR, kra,)|

=0 m=-n

l d27

('9‘127 godz)]*Y;n(eh ¢l)7

(16)

where b%(kR,kry,) is the normalized near-field mode
strength and depends on the sphere boundary and the
source distance ry,. Similarly, an(l, dy, k) represents the
transfer characteristics from the d,th near-field source
to the Ilth sensor. The relation of near-field and far-field
mode strengths is

b%(kR, krg) = i " Vb, (kR (kry), (17)



Huang and Wang EURASIP Journal on Advances in Signal Processing 2014, 2014:90

http://asp.eurasipjournals.com/content/2014/1/90

where 12 (kr,) represents the spherical Hankel function
of the second kind [35,36]. Similarly, Y(Dy) is defined as
a (N+1)*x D, matrix made up of the spherical har-
monics of the near-field sources, i.e.,

[ ®D1+1 r [Y ®D1+2 r [YOO((DD)T;
[[ (chM)}] [[ H(®p, 12 )}} [[y—l(%)}}
- ’(®p,11) (®p, +2) YL (®p)]”
YO o] @oa] - @)
[y (DD1+1 ]* Yy (®D1+2)r [Y%(én)]*

(18)

P (KR, krp,11)  bE (KR, krp,2) bP (KR, krp)
bD1+1(kR,krD,+1) bDl+2(kR,k}"D,+2) le(kR,kVD)
By — bilﬂ(kR,krD]H) blgliz(kR,krDl”) bP (KR, krp)
b (KR krpy 1) b (KR Krp,12) b2( )

BPFV(KR, krpy ) DRV (KR, krp, i) V2. (KR, krp)

(19)

The near-field steering matrix is expressed by combin-
ing (9), (16), (18), and (19) as

Ax = Y(Q)[By O Y(On)], (20)

where © is the Hadamard product.

2.2 Array signal model in the spherical harmonics domain
By combining (10), (11), (15), and (20) into (4), the array
signal model is written as

Y (Q)Xum (k) = Y(Q)[BrY (®@r)]sp (k) + Y(Q)
X [BNOY (On)]sn (k)

Y (Q)Vm(K). (21)

According to the least squares criterion, the array sig-
nal model is constructed in the spherical harmonics do-
main as

Xum (k) = Ye(D)sp(k) + Yn(DP)sn (k) + Vi (K),

where Yp(®) = BpY(®Dp) and Yy(®P) = By © Y(Dy) are the
new steering matrix of the far-field and near-field in the
spherical harmonics domain, respectively. Equation 22
can be expressed in a compact form as

xnm(k) = YFN(q))SFN(k) + vﬂm(k)>

where  Yen(®) = [Yp(®) Yyn(®)]eCNI*D s the
new mixed steering matrix in the spherlcal harmonics
domain and spn (k) = [sf (k) sN(k)] In the spherical
harmonics domain, the far-field and near-field mixed
steering matrix is independent of the element positions
of the sampled array. The following localization algo-
rithm in Section 3 is developed based on the array signal
model in (23).

(22)

(23)
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3 Acoustic source localization algorithm

The source localization in mixed field aims to estimate
2D parameters {9, ¢4} for far-field sources and 3D pa-
rameters {ry, 94 ¢4 for near-field sources given the
array observations x(k). Based on the spherical harmonic
model in (23), the common characteristics of the far-
field and near-field sources lie in that only spherical har-
monics in the mixed steering matrix contain the DOA
information. That is, the mixed steering matrix contains
the DOAs of all sources. The difference between these
sources is whether mode strength depends on the source
distance or not. Therefore, DOAs can be estimated using
the recursive relationship of spherical harmonics. Based
on the estimated DOAs, near-field range can be easily
computed by conventional MUSIC algorithm.

3.1 DOA estimation
In order to exploit the recurrent relation between spher-
ical harmonics and avoid complex search in the 3D
parameter space, we develop a spherical ESPRIT-like
algorithm, automatically estimating paired azimuth and
elevation angles for multiple mixed source signals. De-
fine 4 =tan ¢ only containing the DOA information,
where 9 and ¢ are the elevation and azimuth angles of a
source, respectively. According to the recursive relation
for the associated Legendre polynomials of the adjacent
three degrees (m - 1, m, and m + 1) [38] and the spherical
harmonics definition in (6), we get the following relation
that the DOA estimation depends on
2mY"™(9,9) + AL Y9, 0)u" + A

nm=— n

an:’ 1('9’ (0)/4 =0,
(24)

where 1> = ./(n¥m)(n+m+1) [42]. For a source
whether in far-field or in near-field, the recurrent rela-
tionship in (24) is 1ndependent of the corresponding
mode strength b,(kR) or bXkR, kr,). That is, the relation
is still satisfied as follows:

2mby(RR)YI(9, ) + X ba (KR)Y 1 (9, )
+A,, b (kKR) Y™ (9, 0)u = 0,
(25)

or

2mb® (KR, krg) Y™ (9, 9) + At b% (KR, krg) Y™ 1(9, o) u*

nm-n

+A B (KR, krg) Y™ (9, ) = 0.

nm-n

(26)

For a fixed order 7, we choose all rows from Yen(®P) con-
sisting of elements Y, m=-n-n+1,..,n-2,t0o con-
struct a (21— 1) x D matrix B{Y, select m=-n+1,-n+
2,...,n— 1 to construct the second (27 — 1) x D matrix B,
and choose m=-n+2,-n+3,...,n to construct the third
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(21 - 1) x D matrix B{". When the order # varies from 1 to

T
_ NT T NT

N, YS (@) = {(Bﬁ 0 (s) (5") ]

eCN**P_the second chosen N? x D sub-matrix is Yg\;(CD) =

[ (B) (B) - () } " and the third sub-

T T T
matrix is Y(F;;(ﬂ)) = { (B(ll)) (Bg)) (Bj(\})) }
To exploit the recursive relationship of the three sub-
matrices Yg\ll)(CD)7 Y}(;(I)\}(CI))7 and Y](;}\)I(CD) including all
spherical harmonics up to order N, we define four diagonal
matrices as follows:

0= diag(”h/”% "'aﬂD)v (27)
I =diag| 0 ,-1,0,1,...,.-N +1,...,N-1 |, (28)
~ N—— —

n=1 n=2 n=N

+ _ g: =+ =+ + + + +
AT =diag| Ay, A5 13 A0 A0 s o AN vty s AN | s
~—

n=1 n=2

n=N

(29)

where ® contains the DOA information of all incident
sources, I and A* are the three N” x N* diagonal matri-
ces. The recurrent relationship of the three sub-matrices
Y(F’f\)I(CD) (g=-1,0, 1) is described as

Y (D) + ATYR(@)0 + A YL (@)0 = 0.
(30)

We cannot solve (30) directly to estimate the DOAs

because Yg&(@) is unknown. The available data are the
sensor observations. The covariance matrix R,,,(k) of
the transform coefficient vector x,,,(k) can be con-
structed as

R, (k) = E[xnm(k)lem(k)]
= Yen ()R, (k) Y (@)
+ E[Vam (K)V3, (K)],

where Ry(k) = E[s(k)s"(k)]. It can be estimated by the
sample covariance matrix from the sensor samples. The
eigenvalue decomposition (EVD) of R, results in two
orthogonal subspaces:

(31)

R,, = USU" = UX,U/7 + U,Z,U. ", (32)

where USEC(N“)ZXD contains D eigenvectors spanning
the signal subspace of R,,,, and the diagonal matrix X
contains the corresponding eigenvalues. Similarly, U, de-
notes the noise subspace, and X, is built from the
remaining (N + 1>-D eigenvalues of R,,,,,.
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According to (31) and (32), U spans the same range
as that of the mixed steering matrix Ypn(®). Therefore,
the signal subspace U can be transformed into the
mixed steering matrix Yen(®), that is, U= Y (D)T,
where T is a unique non-singular D x D matrix, called
similarity transform matrix. Three sub-matrices U
choosing from the signal subspace Uy satisfy the same
recurrent relationship as

21Ul + ATUWy + AUy = 0, (33)
where y=T '@T. We can rewrite this equation in
block matrix form:

2rul” + By =0, (34)

where E = [A"UV EA+U§1>]6CN2X2D, Y= [\VTflllH]Te
C?P*P has the block conjugate structure. Equation 34
has the following solution:
y = 2(E"E) "E"TUL. (35)
The elevation angle 9, and the azimuth angle ¢, are
easily estimated from the eigenvalues /i,4,,...,j4p of
either the top or the bottom D x D sub-block of ¢ as

follows:

94 = arctan|i,|, ¢, = arg(i,), (36)
where d =1, 2, ..., D. When N? < 2D, this procedure fails.
Hence, the maximum number of sources that can be ac-
curately estimated by this algorithm is D = | N*/2 |, where
the operation l.| is the flooring operation. The three
classical spatial sampling schemes for a spherical micro-
phone array are equiangular, Gaussian, and nearly uni-
form sampling schemes. For a spherical microphone
array with a given order N, the equiangular sampling
scheme requires 4(N + 1)* sensors, the Gaussian sam-
pling scheme demands 2(N + 1)? sensors, while the uni-
form sampling scheme only needs (N + 1) sensors [43].
Therefore, when L sensors collect the information of
acoustic sources, the dimension of the spherical har-
monics space (N + 1)<, that is, the dimension of
localization in the spherical harmonics domain is lower
than that of the element space. The maximal number of
sources that can be uniquely estimated is the nearest in-
teger less than or equal to N*/2.

3.2 Range estimation

The above DOA estimator can provide azimuth and ele-
vation estimates of both far-field and near-field sources.
However, it cannot discriminate far-field or near-field
sources [37]. Only for near-field sources, range informa-
tion must be estimated. When the source is in the near-
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field, the steering vector is dependent on the range in
the spherical harmonics domain:

Yn(ra, @a) = [B§ (KR, kra)[Y§(®a)]" b (KR, kra)
(Y11 (®a)]" b (KR, kra) [Y N (@a)] ]
(37)
Therefore, the near-field MUSIC spectrum [44] is

R 1
pra,da) = . .
0 P0) = ) (U0 Yy 4]

(38)

The near-field search extent is r,; e (R, ry). The range
estimate of the dth source is obtained by

Fa = rr}fxp(rd7 Dy). (39)

The far-field steering vector in the spherical harmonics
domain is independent of the source range:

Ye(Pa) = [bo(kR)[Y§(Qg)]" by (kR)[Y T (D))"

b (kR)[Y N (@a)] ]
(40)
The far-field MUSIC spectrum [44] is
R 1
p(®q) = (41)

¥H (®a) (I-UUL )yp (a)

With the DOA estimates @, = (9d, q?)d) d=1,2,..,D)
in (36), the range estimator calculates the MUSIC spectra
according to (38) and (41). For a DOA estimate Dy, we
compare p(®,) and the peak of p(rs, @4); if the former is
larger than the latter, the source is the far-field one. Other-
wise, the source is the near-field one and the estimated 7,
in (39) automatically pairs with the DOA estimate Dy

3.3 Algorithm summarization
The proposed two-stage algorithm can be summarized
as follows:

Step 1. Array signal modeling: Apply spherical
harmonic representation and construct mixed field
array signal model in the spherical harmonics
domain in (23).

Step 2. DOA estimation: Perform the EVD of R,,,, in
(32) and choose three sub-matrices from the signal
subspace. Construct the recurrent relation of these
sub-matrices in (33) and estimate DOA information
for all sources in (36).

Step 3. Range estimation: Based on the estimated
DOAs, compute the far-field MUSIC spectrum in
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(41) and search the near-field MUSIC spectrum in
(38) to discriminate far-field and near-field sources
and obtain the pairing ranges for the near-field
sources.

Remarks

1. For computational complexity, we mainly consider
the implementation of EVD and one-dimensional
(1D) MUSIC spectral search. In the spherical har-
monics domain, the dimension of covariance matrix
R, is (N +1)? x (N +1)% The computational com-
plexity of the proposed localization algorithm in-
cludes (a) the eigendecomposition of R,,,,, of order
O( (N +1)°%), and (b) 1D spectral search, of order
O((N + 1)4g,)7 where g, is the search number con-
ducted along the range axis [45].

2. Whether the incident sources are far-field ones,
near-field ones, or their mixture, the spherical
ESPRIT-like algorithm in the first stage can estimate
all DOAs. When all incident sources are far-field
ones, only the DOA information is enough. If all
sources locate in near-field, 1D MUSIC spectral
search can find out the pairing range parameters.
When the mixed sources include far-field and
near-field, based on the near-field spectral search,
compute MUSIC spectra in (38) and (41) and distin-
guish the source being far-field or near-field one.

3. The proposed algorithm can localize mixed sources
without parameter pairing and multidimensional
search. In the first stage, the proposed algorithm
estimates DOAs of mixed far-field and near-field
sources. In the second stage, the DOA estimates are
used to compute the 1D MUSIC spectra according
to (38) and (41). The spectral peak corresponds to
the pairing ranges. Therefore, parameter pairing can
be avoided in the proposed method.

I I
40 Near-field source |

= | b L Far-field source

Z

© 20

g

% 0 \¥

0 /

%)

=

= -20/, _____
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Figure 2 MUSIC spectra of source range.
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Figure 3 RMSEs of (a) azimuth, (b) elevation, and (c) range
estimations versus SNR for mixed field.

\

4 Simulations

In this section, we conduct some simulations in free-
field environment to evaluate the proposed localization
algorithm for narrowband and wideband sources. A 32-
element uniform sampling [43] of spherical microphone
array is chosen to estimate source locations. Its radius is
assumed to be 10 cm. The highest spherical harmonics
order is N=4, so the near-field extent of the array is
(R, 0.641), where A is the wavelength. The maximum
number of sources that can be detected by the algorithm
is D=N?/2=8. The DOA (azimuth and elevation) and
range estimations are scaled in units of degree and
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wavelength (or meter), respectively. The performance of
the localization estimation is measured by the root-
mean-square error (RMSE) of 1,000 independent Monte
Carlo trials. In addition, the Bayesian Cramer-Rao bound
(CRB) provides a lower bound on the variance of any es-
timated parameter and defines the ultimate accuracy.
The CRB analysis in [46] assumed all the sources were
from far-field. The CRB analysis in [47] assumed the in-
cident sources were all from near-field. When both far-
field and near-field sources coexisted, the CRB analysis
was provided in [6].

4.1 Narrowband source localization
The first simulation demonstrates the performance of
the proposed algorithm in localizing far-field and near-

1
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Figure 4 RMSEs of (a) azimuth, (b) elevation, and (c) range
estimations from the same direction versus SNR for
mixed field.
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field sources. One far-field source and one near-field
source are located at (ry, @;) = (o0, 45°, 68°) and (ry, ©,) =
(0.291, 60°, 122°), respectively. The number of snapshots
and SNR are fixed at 128 and 15 dB, respectively.
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Figure 6 RMSEs of (a) azimuth, (b) elevation, and (c) range

estimations versus angular gap for mixed field.

Firstly, the azimuths and elevations of the two sources
are estimated. The RMSEs of the azimuth and elevation
estimations are 0.07, 0.22, 0.03, and 0.10, respectively.
Based on the DOA estimations and suppose the two
sources both located in the near-field, MUSIC spectra
for the two sources using (38) of the proposed algorithm
are shown in Figure 2. Assume the two sources both lo-
cated in the far-field, the MUSIC spectra of the two
sources calculated by (41) are -12.39 and —4.73 dB, re-
spectively. From the maximums of the MUSIC spectra,
we can discriminate that one is the near-field source and
the other is the far-field source. The range of the near-
field source can be estimated from the MUSIC spectra.
Therefore, the proposed algorithm can distinguish the
near-field and far-field sources and performs well in local-
izing them.
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Figure 7 RMSEs of (a) azimuth, (b) elevation, and (c) range
estimations versus range for mixed field.

1. RMSE versus SNR: The number of snapshots is set
equal to 128. The two sources are localized in
free-field and a rectangular room with the floor area
71 m?, the ceiling height 3 m, and the reverberation
time 0.7 s [48], respectively. The array is placed in
the center of the rectangular room. When SNR
varies from O to 30 dB, the RMSEs of the azimuths,
elevations, and range estimations are shown in
Figure 3. When SNR increases, the RMSEs of the

azimuths, elevations, and range estimations decrease.

The localization performance degrades in reverberant
environment compared with that in free-field. When
the two sources are incident from the same direction
(45°, 122°), the RMSEs of azimuths, elevations, and
range estimations versus SNR in free-field are shown
in Figure 4. From the figure, we can see that the
proposed algorithm can localize the far-field and
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Table 1 RMSEs of azimuth, elevation, and range
estimations for mixed field

Source Azimuth Elevation Range
(deg) (deg) (wavelength)
Near-field source 1 0.25 0.01 0.002
Near-field source 2 0.03 0.01 0.002
Near-field source 3 042 0.01 0.010
Near-field source 4 0.01 0.02 0.026
Far-field source 5 0.13 0.01 -
Far-field source 6 0.11 0.05 -
Far-field source 7 147 0.03 -
Far-field source 8 0.04 038 -

near-field source incident from the same direction.
Moreover, the proposed algorithm has approximated
estimation accuracy for the far-field and near-field
sources with respect to azimuths and elevations. The
elevation angle estimation accuracy is higher than the
azimuth estimation accuracy. This is because spherical
arrays can provide a larger aperture in the elevation
plane than that in the azimuth plane.

2. RMSE versus snapshot: A crossed array placed in the
X-Z plane is used in the simulation. Each ULA
branch of the array consists of 15 (M =7)
uniformly spaced omni-directional sensors with the
inter-sensor spacing R / M. First, the elevation
angles are obtained based on the generalized ESPRIT
method. Then, the range parameters are estimated
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RMSE (degree)
n

"| —e— source 1, Proposed
—H8— Source 2, Proposed
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Figure 8 RMSEs of (a) azimuth and (b) elevation estimations
versus SNR for far-field.
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using the root MUSIC method based on the of 1,000 Monte Carlo runs are shown in Figure 5.
elevation estimates [9]. Finally, a 1D MUSIC The RMSEs of the azimuth, elevation, and range
pseudo-spectrum is used to search the azimuth estimations decrease as the number of snapshots
angles with the elevation and range estimates. SNR increases. The estimation performance of the

is fixed at 15 dB. When the number of snapshots spherical array is better than that of the cross array.
varies from 100 to 1,100, the average performances This may be due to the symmetrical structure of
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the spherical array in 3D space and the simultaneous
estimation for azimuth and elevation angles of the
proposed method. Both our proposed algorithm and
the three-step estimation method in [9] are based on
the eigendecomposition of the array covariance
matrix. The estimate of the covariance matrix affects
the localization performance. Vershynin proposed
that the sample size Q ~ (N + 1)? suffices to estimate
the covariance by the sample covariance matrix [49].
Therefore, the localization performance of the two
methods gets more stable with the larger number of
the snapshots. The CRBs decrease proportional to
the number of the snapshots. When the number of
snapshots increases, the CRBs get more stable too.
3. RMSE versus angular gap: The snapshot number is
set equal to 128. The SNR is fixed at 15 dB. When
the direction of the far-field source is fixed, the
azimuth and elevation of the near-field source both
vary from 5° to 30°. The RMSE of directions and
range estimations are demonstrated in Figure 6. The
DOA estimation of the far-field source and the range
estimation of the near-field source are insensitive
to the angular gap. The azimuth estimation
performance for the near-field source of the
proposed algorithm changes with the increase of
the angular gap. The RMSE of the elevation
estimation for the near-field source gets slightly smaller.
4. RMSE versus range: Let the number of snapshots
and SNR be 128 and 10 dB, respectively. When the
range of the near-field source varies from 0.221 to
0.581, the RMSEs of DOAs and range estimations
are shown in Figure 7. From the results, we can see that
both of DOAs and range estimations of the near-field
source are very sensitive to the varied range. The
RMSEs of the azimuth, elevation, and range estimations
for the near-field source, which is closer to the
spherical array, are smaller than those of the source
which is farther to the array. However, the location
estimation of the far-field source is insensitive to the
varied range of the near-field source.

The maximal number of sources which can be uniquely
estimated by the proposed algorithm is 8. Four near-field
sources are located at (r;, @;) = (0.16A, 102°, 45°), (ry, ©,) =
(0.29), 122°, 60°), (r3, O3) = (0.44A, 60°, 10°), and (ry, Dy) =
(0.514, 155°, 75°), respectively. Four far-field sources are
located at (rs5, Ds) = (0, 40° 15°), (rg, Dg) = (o0, 168°, 40°),
(r7, @) = (o, 107, 4°), and (rg, Dg) = (co, 140°, 70°), respect-
ively. When the SNR is 40 dB, the estimated RMSEs associ-
ated with the eight sources can be seen in Table 1. They are
lower than 1° except for the azimuth of source 7.

In the second simulation, our proposed algorithm is
used to localize pure far-field sources. Two sources are
located at (r;, @) = (o0, 60°, 122°) and (ry, D,) = (co,
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45°, 68°), respectively. The number of snapshots is set
equal to 128. When SNR varies from 0 to 30 dB, the
RMSEs of azimuths and elevations are shown in
Figure 8. When SNR increases, the estimation perform-
ance of azimuth and elevation gets better.

We consider two sources which are located at (r,, @) =
(o0, 45°, 22°) and (ry, @,)=(co, 45°, 22°+ Agp), with Agp
varying from 0° to 90°. When SNR varies from 0 to 40 dB,
the RMSEs of azimuths and elevations are shown in
Figure 9. When the SNR is low, the angular estimation
RMSEs are larger for all the azimuth differences than
those in high SNRs. Moreover, the azimuth difference of
the two sources has more effect in low SNRs than high
SNRs. In low SNRs, when the two sources are close, the
algorithm estimates the azimuth and elevation with larger
RMSEs. In high SNRs, the azimuth difference has slight
effect on the localization performance. Therefore, the al-
gorithm can estimate two close sources accurately in high
SNRs. When the second source has the same azimuth
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Figure 11 RMSEs of (a) azimuth, (b) elevation, and (b) range
estimations versus SNR for near-field.
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with the first one, its elevation is 45° + A9, with A9 varying
from 0° to 25°. The localization performance is shown in
Figure 10. For different SNRs, the localization perform-
ance with the varying elevation is similar to that with vary-
ing azimuth. However, when the elevation of the second
source is close to 90° in low SNRs, the estimation errors
get larger because the elevation estimation is determined
by the tangent function.

In the third simulation, the proposed method is adopted
to localize pure near-field sources. Two near-field sources
are located at (r;, @) =(0.221, 45°, 68°) and (ry, D,)=
(0444, 60°, 122°), respectively. When the ranges of the
sources are within the near-field extent of the array, the
RMSEs of the azimuths, elevations, and ranges are shown
in Figure 11. From Figure 11, it can be seen that the RMSEs
of the azimuths, elevations, and ranges for the first source,
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which is closer to the spherical array, are smaller than those
of the second source. When the range of the second source
varies from 0.21 to 0.5, the angular and range estimations
are shown in Figure 12. The angular and range estimation
errors of the source closer to the array are smaller than
those of the other source. When the range of the second
source is closer to the boundary of the near-field extent, the
azimuth, elevation, and range estimation errors get larger
for almost all SNRs from 0 to 30 dB.

4.2 Wideband source localization

The proposed algorithm can localize multiple wideband
mixed field sources. A female signal and a male signal ran-
domly chosen from TIMIT database [50] are incident from
the direction (45°, 68°) and (60°, 122°). The male signal
source is located in the far-field of the array. The female
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signal source moves to the near-field of the array with
range r=0.2m. The signal sampling frequency is 16 kHz
with 16 bits per sample. The observed data are decom-
posed into frequency bins using a short-time Fourier trans-
form (STFT) of length 512 with a rectangular window. For
each frequency bin, the sample covariance matrix R,,,,,(k) is

estimated with Q frequency snapshots as follows:
Q 1 @
Ry (k) = Zan(k, q) = azf‘nm(ka q)f(fq—]m(k’ q),

1 q=1

q=

Rl =

(42)
where X,,,(k,q) is the gth snapshot of x,,,,(k). The oper-
ating frequency bandwidth is limited by aliasing at the
higher frequencies and measurement errors at the lower
frequencies [43]. Therefore, the frequency bins we used
are limited to around 2 < kr < N due to errors and spatial
aliasing. The SNR is 10 dB. When the value of kr is
within the extent (2, 4), the RMSEs of azimuth and ele-
vation for two sources are smaller. Therefore, we choose
the frequency bins satisfying the constraint 2 <kr<N to
localize wideband sources.

The wideband source localization results for different
SNRs are denoted in Figure 13. The near-field source an-
gular estimates are more accurate than those of the far-
field source. The length of the observed signals affects the

calculation of the sample covariance matrix in (42) [51].
When the size of the available data is small, the number of
snapshots Q for each frequency bin is small and estimat-
ing the covariance matrix correctly is harder. When the
signal size is large, the correct sample covariance matrix
estimation leads to better localization performance shown
in Figure 14. The SNR is 10 dB. The RMSE changes of the
near-field range estimation are consistent with those of
azimuth and elevation estimates, because the range esti-
mate is based on the angular estimates.

5 Conclusions

In this paper, we developed a two-stage source localization
algorithm jointly estimating elevation, azimuth angles, and
range for the mixed far-field and near-field sources using
spherical array. In the first stage, the 3D localization algo-
rithm estimated the DOAs of all mixed sources. In the
second stage, 1D MUSIC method was used to distinguish
far-field and near-field sources and provided the ranges of
the near-field sources based on the estimated DOAs. The
algorithm had good performance for azimuth, elevation,
and range estimations. It had low computational cost
because it avoided multidimensional search and did not
require parameter pairing procedure. The estimation per-
formance of the far-field sources was not sensitive to
the varied range of the near-field sources. However, the

Figure 14 RMSEs of angular and range estimations versus time for wideband mixed field sources. (a) Angular estimation RMSE versus
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RMSEs of the azimuths, elevations, and ranges for the
near-field source, which was closer to the spherical array,
were smaller than those of the source which was farther
to the array. Spherical array had better performance for
elevation estimation due to its larger aperture in the eleva-
tion plane than azimuth estimation. In our future work,
we will develop range estimation algorithm without 1D
search and incorporate a reverberated signal model to
localize multiple sources in reverberant environment.
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