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Abstract

In this paper we present a novel hybrid algorithm for blind source separation of three speech signals in a real
room environment. The algorithm in addition to using second-order statistics also exploits an information-theoretic
approach, based on higher order statistics, to achieve source separation and is well suited for real-time implementation
due to its fast adaptive methodology. It does not require any prior information or parameter estimation. The algorithm
also uses a novel post-separation speech harmonic alignment that results in an improved performance. Experimental
results in simulated and real environments verify the effectiveness of the proposed method, and analysis demonstrates
that the algorithm is computationally efficient.
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1 Introduction
The blind source separation (BSS) of speech signals also
known as convolutive BSS is a very challenging problem
in real room environments. It can be broadly divided into
two categories, those that use an information-theoretic
approach and those based on de-correlation. Some of the
most widely applied information-theoretic approaches
include independent component analysis (ICA) [1],
maximum likelihood [2], information maximisation [3] and
Kurtosis maximisation [4]. Based on these information-
theoretic approaches, the neural network-based algorithms
presented in [5-8] are unsuitable for implementation of BSS
in real time. The reason is massive complexity, i.e. the
calculation of thousands of adaptive filter coefficients and
also the temporal whitening problem (pp. 340–345 in [9]).
The frequency domain implementation decomposes this

convolutive mixture problem into multiple instantaneous
mixing problems; however, this in turn leads to scaling
and permutation alignment problems (pp. 352–353 in
[9]). To solve this permutation problem, many algorithms
have been proposed, such as in [10] and [11], that exploit
the direction of arrival (DOA) and also speech harmonics.
These DOA-based algorithms are more semi-blind in
nature than blind itself since they are dependent on
certain geometrical arrangement. Another way to resolve
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the permutation alignment issue is to exploit the
correlation property between separated signals at ad-
jacent frequency bands [12]. The reliability of this and
other similar techniques is based on the amount of
correlation and that surely varies case by case. In [13], a
different approach is developed, based on de-correlation in
the frequency domain; the algorithm avoids permutation
with its very slowly converging diagonalisation procedure,
but this slow convergence makes it less suitable for
real-time implementation. Apart from the permutation
problem, there are some other frequency-based limitations
as discussed in detail in [14]. In [15], a secondary algorithm
is proposed, based on time-frequency masking, which
improves the signal-to-interference ratio (SIR) of separated
streams. Such techniques are completely dependent on the
BSS of the primary algorithm, and if the primary fails, then
so does the secondary.
The BSS of more than two sources is a more complicated

and computationally intense problem. The fact can be seen
in [16]: a detailed survey reveals that, of 400 publications
that employed convolutive source separation, only 2% of
the publications dealt with more than two sources. Even for
two sources, it was concluded that only 10% of them really
worked with varying degrees of SIR from 5 to 18 dB
using real room impulse responses. The results are
still questionable since it is very difficult to analyse or
compare different algorithms due to a lack of unified
test bench methods for performance measure [17].
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In this paper a novel algorithm for the BSS of three
speech sources in real room environments is proposed. It
uses both the information-theoretic and de-correlation
approaches to achieve superior source separation with
fast convergence. The algorithm has low complexity and
is optimised for real-time implementation. In addition,
it does not require any prior parameter estimation;
furthermore, a harmonic alignment methodology, presented
in this paper, improves the quality of separated speech in a
real room environment.
The paper is organised as follows: In the following

section, the motivation behind the new hybrid algorithm
will be discussed. In Section 3, the hybrid algorithm will
be presented followed by a discussion of its constituent
parts. In Section 4, a novel harmonic alignment method
will be presented. In Section 5, the performance of the
algorithm will be analysed based on a simulated room
environment. The results from the real room experiment
will be shown in Section 6, followed by discussion (showing
computational load) and conclusion in Sections 7 and 8,
respectively.
The notation that will be used in this paper will be

small letter x for scalar quantities, small and bold letter
x for vector quantities or first-order tensors and bold
and capital letter X for two-dimensional matrices or
second-order tensors, and for three-dimensional matrices
or third-order tensors, it will be similar to two-dimensional

ones but with a double bar on top X:
2 Motivation
The motivation behind the hybrid algorithm will become
evident as we progress in this section. The DOA-based
algorithms presented in [18-21] have considered source
separation cases for more than two sources in real room
environments. However, for this, a single large microphone
that consists of an array of microphones (within it) is used,
which has limitations. The limitations are not only in the
placement of sources in a geometrical arrangement, but
also the performance is dependent on the distance of the
microphone from sources. The source separation for a
speaker behind a speaker or a speaker whose face is
towards the wall (rather than the microphone) also cannot
be achieved through DOA.
Most of the practical scenarios require cases that do

require the placement of arbitrary microphones to pick
up the stronger source signal and cancel the other
weaker interfering signals. For example, in the case of
musical instruments in concerts, acoustics in theatre
performances, meetings in conference rooms, discussion
in parliament houses, etc. All of these cases do require a
BSS algorithm for real-time separation. This research
will show the potential of working with only three
speech sources with an equivalent number of sensors
(microphones), i.e. a critically determined BSS case in a
real room environment.
The case of three statistically independent speech

sources (loudspeakers) and three sensors (microphones)
is considered first without any background noise that can
separately be dealt within a supervised way (explained
later). The mathematical way of expressing this linear time
invariant (LTI) system is shown as

xp nð Þ ¼
XS
q¼1

XK−1

k¼0

hpq kð Þ sq n−kð Þ ð1Þ

where sq is the speech source that is convolved with the FIR
filter containing the impulse response (channel response)
given by hpq between the source and the sensor and then
added at the sensor to give the final convolutive mixture
represented by xp. In the above, K represents the length of
the filters, S represents the total number of sources, i.e.
three in our case, and n represents the sample number.
Equation 1 represents speech signals passing through a
(third-order tensor or three-dimensional) mixing matrix
Hm given by

Hm ¼
h11 h12 h13
h21 h22 h23
h31 h32 h33

2
4

3
5 ð2Þ

To obtain original speech signals s1, s2 and s3, the de-

mixing matrix Wd needs to be calculated. Most of the
algorithms only use simulated room environments for
mixing matrix instead of real room as shown in [22,23].
Apart from this, the temporal whitening caused by the
equalisation filters w11, w22 and w33 will render the out-
put useless. To address this problem, in [24], a linear
predictive codec-based solution is proposed, but that is
not suitable in all cases. In [25], it is stated that the main
difficulty is that audio source separation problems are
usually mathematically ill-posed and to succeed it is
necessary to incorporate additional knowledge about the
mixing process and/or the source signals. However, by def-
inition, blindness implies an absence of prior information.
This research has exploited the fusion of two different

criteria, i.e. one based on de-correlation and the other
based on information theory. The former requires the
implementation in the frequency domain, and the latter
requires that in the time-frequency domain using neural
networks. This fusion used in the hybrid algorithm
improves the SIR performance compared to each technique
if used individually (independently). It obviates the require-
ment for semi-blind array processing methodologies to
resolve the permutation problem. It also does not have any
temporal whitening problem and is suitable for real-time
digital signal processing (DSP) board implementation based
on its low computational load shown later on.
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3 Hybrid algorithm
The hybrid algorithm is a frequency domain multiple
conditioned integrated approach for the solution of
BSS problems respecting speech signals in real room
environments. Its adaptive methodology not only converges
faster but is computationally efficient for real-time
hardware implementation. In blind signal processing,
neither a reference signal nor any prior information
regarding the channel is provided, so the algorithms
proposed in this field use separation criteria that are
actually mere conditions imposed on the output streams.
These include changing the probability density function
from Gaussian to super-Gaussian [3] or by de-correlation
of the output streams [13,26].
The hybrid algorithm proposed here uses two different

conditions instead of one. The conditions and implemen-
tation mechanism are chosen in such a way that they actu-
ally mitigate each other's flaws and work complimentarily
by improving the signal-to-interference ratio at the output
(discussed in the following sections). The block diagram
of the hybrid algorithm is shown in Figure 1.
Here x1(n), x2(n) and x3(n) are three convolved mixed

streams of data coming from the sensors. The output of
the algorithm u1(n), u2(n) and u3(n) are three separated
signals. The hybrid algorithm fuses two approaches
based on two conditions in a sequential manner. The first
approach uses frequency domain diagonalisation based on
a de-correlation condition; the second approach is
neural network feedback based on a statistical independence
Figure 1 Block diagram of the hybrid algorithm showing CFDD and F
condition using information maximisation [3]. The
reason for choosing each condition with its relevant
approach will be discussed in the following subsections.
The implementation mechanism for both of these
approaches is novel. Each structure of the hybrid algo-
rithm, i.e. controlled frequency domain diagonalisation
(CFDD) and frequency domain adaptive feedback separa-
tion (FDAFS), will be discussed in the following two
subsections.

3.1 Controlled frequency domain diagonalisation
Frequency domain diagonalisation is applied here through
a controlled mechanism in order to avoid the permutation
problem similar to that shown by Schobben and Sommen
in [13] for two sources in a real room environment. Joint
diagonalisation of correlation matrices based on the Jacobi
method [27] could also be implemented in the frequency
domain for convolutive mixture problems, but the
adaptive controlled diagonalisation mechanism proposed
here is more robust.
The CFDD starts by converting the time domain BSS

problem into the frequency domain. This simplifies the
time domain (multi-dimensional) matrix inversion problem
to bin-by-bin separation in the frequency domain. The time
to frequency domain conversion process is performed
by using the overlap and save method; a Hanning
window is applied. This is also known as the short-time
Fourier transform (STFT). The length of the fast
Fourier transform is N, the length of the filter in the
DAFS blocks.
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time domain is K and the size of the speech signal
block taken is B.
The frequency domain conversion using the fast

Fourier transform (FFT) of the convolved mixed streams
of data shown in Equation 1 is

Xi kð Þ ¼ F xi nð Þf g; i ¼ 1; 2; 3f g ð3Þ

Rkb ¼
X1 kð ÞX�

1 kð Þ X1 kð ÞX�
2 kð Þ X1 kð ÞX�

3 kð Þ
X2 kð ÞX�

1 kð Þ X2 kð ÞX�
2 kð Þ X2 kð ÞX�

3 kð Þ
X3 kð ÞX�

1 kð Þ X3 kð ÞX�
2 kð Þ X3 kð ÞX�

3 kð Þ

2
4

3
5
b

ð4Þ
where Rkb is a frequency domain correlation matrix
where k denotes the bin number and b denotes the block
number and the asterisk indicates the conjugate value. In
order to obtain the de-mixing (inverse) system adaptively,
a strong correlation should exist over multiple blocks.
However, this is not the case in speech that is stationary
only over 10 to 30 ms, and apart from that, it is
non-stationary. So, the first step of the algorithm is the
block-based correlation constraint, realised as

Rkb ¼ αRk b−1ð Þ þ 1−αð ÞRkb ð5Þ
In the above, α is the weighting factor that can take any

value from 0→ 1. The value recommended for non-
stationary signals like speech is above 0.9. This step can
also be referred as the intersection of solution sets as in
[28]. The initial correlation matrix from which Equation 5
starts is an identity matrix. Now, taking the square root
inverse of the constrained correlation matrix and apply
normalisation,

Wkb ¼ R
−1=2
kb ð6Þ

Wkb ¼ Wkb

Wkbk k ð7Þ

The purpose of the normalisation is to avoid whitening
or scaling problems. Equation 6 removes only cross-
correlation elements of the constrained correlation
matrix WkbRkbWH

kb ¼ I
� �

. However, the whitening forces
the diagonalisation matrix to be an identity matrix; this
results in a variation of power in each bin that results in
spectral distortion. In order to avoid this, the normalisation
shown in Equation 7 is applied to the de-mixing
matrix either by dividing the de-mixing matrix by its
maximum eigenvalue or by the Frobenius norm given
by the following equation:

‖WL;M‖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
i¼1

XM
j¼1

W i;jð Þ
� �2vuut

where L and M are the number of rows and columns of
the matrix, respectively. Prior to this step, all the steps
followed in the algorithm are similar to those proposed
by Schobben and Sommen in their ECoBLISS algorithm
[13]. Unlike the ECoBLISS that uses a hard unitary
matrix condition for the update of the de-mixing matrix
Wkb from the previous blocks, the CFDD uses a stochastic-
based approach for updating. The stochastic-based ap-
proach is similar to that shown for the instantaneous case
of BSS based on the Frobenius norm in [29], but here it is
applied to the convolutive case. The previous block
de-mixing matrix is made unitary by minimisation of
the following cost function and running it in a least
mean square (LMS) manner, i.e.

J 1≜ Wk b−1ð ÞWH
k b−1ð Þ−I

��� ���2
F

ð8Þ

The gradient of the above cost function is

∇w J 1 ¼ 4 Wk b−1ð ÞWH
k b−1ð Þ−I

� �
Wk b−1ð Þ ð9Þ

Finally, the de-mixing matrix is updated as shown in
the following equation:

Wkb ¼ Wk b−1ð Þ � R
kb

−1=2
�

R
−1=2
kb

�� ��
)(

ð10Þ

The above steps are calculated for N/2 bins since the
other half is the conjugate mirror of it. Also, Wkb needs
to be adjusted to avoid circular convolution and perform
linear convolution, a step that can be seen in the next
section too. The original signals s1, s2 and s3 can be recov-
ered by multiplying the de-mixing matrix Wkb with the
mixed streams bin X1(k), X2(k) and X3(k) and then taking
the inverse Fourier transform (IFFT) of the signal to
convert it back to the time domain. The final step before
the inverse STFT is

Y1 kð Þ
Y2 kð Þ
Y3 kð Þ

2
4

3
5
b

¼ Wkb �
X1 kð Þ
X2 kð Þ
X3 kð Þ

2
4

3
5
b

ð11Þ

The permutation problem in the algorithm is resolved
by the linear convolution constraint that results in the
population of zeros in the time domain that links the
otherwise independent frequencies, similar to Parra and
Spence in [30]. However, the length of the filter K versus
frequency resolution constrains the length of the filter to
be less than the typical impulse response of the room,
approximately 200 to 300 ms. This CFDD algorithm pre-
sented here has a more flexible approach based on LMS
and also avoids (three-dimensional) matrix inversion.
However, the process of convergence is deliberately slo-
wed (discussed later) through over-damping to achieve a
robust SIR for all cases. However, this drawback and
short filter length are mitigated with the help of the second
structure, FDAFS, in the hybrid algorithm.
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3.2 Frequency domain adaptive feedback separation
The FDAFS algorithm is based on an information-theoretic
approach. The criterion it uses is information maximisation
or Infomax [3]. This employs a non-linear function, such as
a logistic sigmoid, to exploit the higher order statistics
based on super-Gaussian characteristics of the speech
signal. The time domain feedback (TD-FB) implementation
can be seen in [8] and is expanded to three sources, shown
by the following equations:

ui nð Þ ¼ yi nð Þ þ
X
j≠i

XK
k¼1

wij kð Þ uj n−kð Þ; i; j ¼ 1; 2; 3f g

ð12Þ
In the above equation, the separated output stream is

shown by ui. The coefficients of the de-mixing filters wij

are estimated by

Δwij kð Þ∝ẑ i nð Þ uj n−kð Þ; i≠j ð13Þ
where

ẑ i nð Þ ¼ 1−2 1
1þe−βui nð Þð Þ

. on
The β in the above equation is the slope parameter; in

this algorithm, it is merely assigned the value 1. The
purpose of choosing this feedback neural network
approach without using equalisation filters wii is to avoid
temporal whitening (also equalisation has nothing to do
with separation). It is important to emphasise that the
de-mixing filters avoid the inverse of the deterministic
mixing matrix but still require the inverse of filters h11,
h22 and h33 to estimate the de-mixing filters that also
need to be realisable (for details, see the inverse of
non-minimum phase systems, pp. 348–349 in [9]).
However, it is far less problematic than the inverse of
the determinant mixing matrix due to two reasons.
Firstly, if the sensors are closer to the speech sources, the
unrealisable inverse filtering problem can be avoided all
the time [8]. Secondly, the first structure (CFDD) is
sufficiently robust and FDAFS works sequentially on
already de-correlated speech signals.
The frequency domain implementation structure used

in FDAFS is based on fast block-by-block calculation of
coefficients instead of sample by sample. For this, the
frequency domain block LMS methodology is modified
for feedback adaptation and is shown in Figure 2.
This time-frequency domain implementation shown in

Figure 2 for the filter w12 does not have any permutation
problem. The reason is that the separation is not com-
pletely in the frequency domain: the error is estimated in
the time domain, and therefore, it is not a bin-by-bin
separation as in the case of CFDD. The working details of
the block LMS can be seen in ([31], pp. 350–353); the
above structure is just the interpretation of Equations 12
and 13 whilst using the overlap and save method. Only the
power constraint block is integrated into the structure. That
is needed to normalise the coefficients of each bin with the
corresponding power from each bin of the output signal.
Here the output signal is selected for normalisation instead
of the input signal due to its superior performance.

4 Harmonic alignment
The purpose of using harmonic alignment (HA) is to
exploit the properties of the speech signal to improve the
SIR in a real room environment. The DOA techniques
[10,11] also use speech properties to align harmonics at
lower frequencies where the width of the beam becomes
broader. However, in our case, it is applied in a different
way after the hybrid algorithm on separated speech.
A speech signal can be broadly divided into two parts:

voiced and unvoiced, where the voiced part can be
further divided into formants and fricatives (for details,
see pp. 121–151 in [32]). The formant part consists of
the fundamental frequency (pitch) and the harmonics. It
is this part that is exploited to improve the quality of
separation. First, the pitch of three output streams of the
hybrid algorithm u1, u2 and u3 containing separated
signals is calculated for small segments of speech called
syllables. The size of each syllable is based on the quasi-
stationary property of speech and is typically between 10
and 30 ,ms. Any pitch detection algorithm can be used,
based on the FFT, and must have a high frequency
resolution per bin. For the purpose of completeness,
a pitch detection algorithm is shown as below:

P1 ¼ U1j j;U1 kð Þ ¼ F u1 nð Þf g
P2 ¼ P3 ¼ P4 ¼ P5 ¼ 1

Only a few harmonics are needed to calculate the
pitch since the maximum energy of the formant is based
on initial harmonics. In the above equation, P2, P3, P4
and P5 are the holding vectors of the second, third,
fourth and fifth harmonics, respectively, that are initially
populated with a vector of ones. In order to populate them
with their required harmonics that are the multiples of the
fundamental, the following loop is used:

loop: for q ¼ 1 to N
2− a−1ð Þ= Þ=a�

Pa qð Þ ¼ P1 q � að Þ þ P1 q � aþ cð Þ…f g=a; where c
¼ 1;…; a−1ð Þ; end

In the above, N corresponds to the size of the FFT and
a denotes the harmonic number. The pitch is calculated
by first taking the product of these harmonic vectors and
then obtaining the maximum bin number by applying a
periodogram maximiser as shown below:

m ¼ argmaxn P1 � P2 � P3 � P4 � P5f g ð14Þ
The m corresponds to the bin number that has the

maximum energy in its fundamental and harmonics.
The fundamental frequency is calculated from the bin by



Figure 2 Flow diagram of the FADS de-mixing filter w12.
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using ff = m × (N/fs), where fs is the sampling frequency.
Only the fundamental frequency in the range (50 Hz ≤
ff ≤ 450 Hz) is considered a pitch of the formant part of
human speech, and anything else is either a non-voiced
segment or the noise part (fricatives). Figure 3 shows the
formant and fricative sections of a segment of the speech
signal from a single speaker. The pitch detection only in
formant sections can be seen in Figure 4b. If the harmonic
and pitch are removed from this segment, as shown in
Figure 4c,d, then the resultant signal will contain only the
fricatives and the residual formant (i.e. greatly degraded in
strength). The removal of the harmonic and the pitch will
be discussed shortly.
The pitch is calculated (similar to that shown for a single

speech) for each syllable of the three output streams. The
fundamental of harmonic alignment used here is that each
output stream contains a primary pitch of the separated
speaker and the secondary pitches of the suppressed
interfering speakers. These suppressed speech signals
need to be further suppressed by removing the har-
monic content from them. Let us suppose that in u1
(n) the primary pitch is that of separated signal s1(n)
and the secondary pitches are of suppressed speakers
s2(n) and s3(n). The primary pitch f s1 is calculated from u1
(n) and the secondary pitches f s2 and f s3 are calculated
from u2(n) and u3(n), respectively. The associated ampli-
tudes with these pitches obtained from Equation 14 are
asf 1 , a

s
f 2 and asf 3 . The superscript s shows the syllable

number. The algorithm is stated as follows:

if 50 Hz≤f s2≤450 Hz
if f s2 ¼ f s1 and asf 2≤a

s
f 1 then do nothing

else loop: for c ¼ 1 to d
Zs
1 c �ms

2 � v
	 
 ¼ zeros end

end end

In the above, d is the number of harmonics that needs
to be removed and v is the width of the comb filter that
is needed to remove adjacent frequencies. v can be vari-
able instead of a fixed value, and Zs

1 is the output of HA
of the first stream, initialised by Zs

1 ¼ Us
1 . Similarly, the

pitch frequency from u3(n) can be removed in the same
way. The last step is shown as below:

if 50 Hz≤f s1≤450 Hz

if f s1 ¼ f s2 and asf 1≤a
s
f 2

� �
or f s1 ¼ f s3 and asf 1≤a

s
f 3

� �
then do nothing

else loop: for c ¼ 1 to d
Zs
1 c �ms

1 � v
	 
 ¼ Us

1 c �ms
1 � v

	 

end

end end



Figure 3 The time domain speech signal and its equivalent spectrogram. The section of the sentence that is uttered by the speaker is ‘A
radio system will operate’. After the non-voiced section at the end, it is again a formant section ‘rate’.
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The above step ensures that the quality of the primary
speech signal is not affected, and the reason is that the
whole HA algorithm is based on the FFT that has an
inherent problem of spectral leakage. For this reason,
a comb filter is used, but it has a drawback of removing
additional adjacent frequencies.

5 Simulated room environment experiment and
analysis
The hybrid algorithm has been tested with an artificial
room impulse response based on the Stephen room
acoustic model [33]. Three speech signals were recorded
Figure 4 Speech signal segment, detected pitch, speech segment wit
spectrogram. (a) The segment of the speech signal as shown in Figure 3.
speech segment but pitch and harmonic removed from it (only in formant
separately in an anechoic chamber to preserve the
super-Gaussian characteristic of a pure speech signal,
necessary for the information-theoretic part of the hybrid
algorithm. The simulated room environment denoting
the placement of the microphones and the speakers is
illustrated in Figure 5.
The sampling frequency was 16 kHz, the room

reverberation length was 50 ms and the room reflection
coefficient value was 0.4. The overlap used in both CFDD
and FDAFS was 50%, the recommended optimum value
based on complexity. The size of the Fourier transform
used in CFDD was 2,048 bins and that in FDAFS was
h pitch and harmonic removed, and time domain signal
(b) The pitch detected only in the formant sections. (c) The same
s). (d) The spectrogram of the time domain signal in (c).



Figure 5 Simulated room environment showing the placement of microphones and loudspeakers. The figure is drawn to scale. The 3D
Cartesian coordinates of microphones in metres are (4.52, 2.48, 1.16), (4.52, 2.72, 1.16) and (4.52, 3.00, 1.16) and of loudspeakers are (4.00, 1.30,
2.79), (3.00, 3.20, 0.79) and (5.00, 2.50, 1.79).
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1,600 bins with a time domain filter length of 800 taps
equal to that of room reverberation. The performance of
the hybrid algorithm is based on SIR calculated for each
output stream using the following equation:

SIRq ¼ 10 log

X
n

X3

p¼1
wqp nð Þ � hpq nð Þ � sq nð Þ

��� ���2X
n
uq nð Þ−

X3

p¼1
wqp nð Þ � hpq nð Þ � sq nð Þ

��� ���2
ð15Þ

Here q denotes the stream number. The SIR was
calculated over the entire range of speech signals using a
sliding window syllable of size 20 ms that was equivalent
Table 1 SIR of hybrid algorithm for the experiment performe

0 to 4 4 to 8 8 to 12 12 to 16 16 to

SIR (dB) Input (stream 1) 4.7 0.8 −9.8 4.6 −1

CFDD 5.0 1.8 −4.2 15.8 0.

Hybrid 7.5 4.2 −0.7 23.1 10

Input (stream 2) 4.1 −4.1 0.4 −5.4 −5

CFDD 7.0 −1.9 5.4 0.6 0.

Hybrid 11.1 2.4 14.7 5.3 10

Input (stream 3) −5.2 −1.8 −5.1 −2.2 −0

CFDD −3.2 1.4 3.3 5.7 3.

Hybrid 1.0 6.3 10.4 9.8 10

SAR Average SAR hybrid 32.72 31.24 27.92 26.16 21.

The whole speech length has been divided into 4-s segments, and SIR and SAR are
to be 0.4 with a room impulse response length of 50 ms.
to 320 samples at a sampling frequency of 16 kHz. The
performance of the hybrid algorithm is summarised in
Table 1. The whole speech length was divided into 4-s
segments, and from each segment, the SIR is shown
based on a small section of speech (syllable). Also, the
best performance given by FDAFS if used independently
for separation is not more than 4 to 5 dB which is very
poor and, for this reason, not shown separately. The
same is true for its time domain equivalent TD-FB [8].
Table 1 shows the performance of the hybrid algorithm

for all the three sources. The table also shows the average
signal-to-artefact ratio (SAR) [34] of all the streams of the
hybrid algorithm. Also, the performance of one of the
d in the simulated room environment shown in Figure 5

Time (s)

20 20 to 24 24 to 28 28 to 32 32 to 36 36 to 40 40 to 44

.4 0.8 3.2 −4.4 −1.3 −18.3 −3.1

2 4.8 10.4 5.4 12.2 −12.5 7.6

.4 7.7 14.4 9.2 12.7 −9.3 11.7

.6 −3.1 −10.3 −8.8 −6.5 0.5 −6.4

5 1.1 2.1 6.0 6.0 11.2 4.0

.7 8.4 7.1 10.2 15.9 15.4 8.2

.3 1.9 −21.4 7.5 −1.9 3.4 0.7

6 8.5 −12.8 21.3 12.0 13.5 14.2

.0 13.3 −10.2 25.6 14.5 16.3 15.5

13 19.28 18.12 15.71 15.9 16.87 18.24

calculated on 20-ms syllable within that. The room reverberation value is taken



Figure 6 Input stream 3, speech signal from source 3 and interfering speech signals from sources 1 and 2. (a) Input stream 3 at
microphone 3 containing a speech signal from source 3 and interfering speech signals from sources 1 and 2. (b) The speech signal from source 3
separately. (c) The interfering speech signals from sources 1 and 2 separately.

Figure 7 Output stream 3, speech signal from source 3 and interfering speech signals from sources 1 and 2. (a) Output stream 3 of the
hybrid algorithm containing a separated speech signal from source 3 and suppressed interfering signals from sources 1 and 2. (b) The separated
speech signal from source 3 separately. (c) The suppressed interfering speech signals from sources 1 and 2 separately. (Output gain normalised).
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Figure 8 Spectrograms of the unmixed and separated source signals. (a) The spectrogram of the unmixed source signal as shown in
Figure 6b. (b) The spectrogram of the separated source signal as shown in Figure 7b.
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sources (third) can separately be seen in Figures 6, 7, 8.
These figures show the performance of the method over
the last section of speech, i.e. in the range of 25 to 42 s.
This is due to two reasons: the first is to show the smooth
suppression of interference and the second is to show that
the algorithm retains its minimum point.
It is evident from Table 1 that the hybrid algorithm gives

superior performance to CFDD and FDAFS if used inde-
pendently; after 20 s, it improves the SIR of the input by
12 dB. It is very important to emphasise that the CFDD
coefficients are not updated with each consecutive block
but is updated after the fifth block with α = 0.9. Therefore,
it is more immune to the non-stationary behaviour of the
speech signal, manifests reduced computational load and
converges to a true minimum. This over-damped criterion
is necessary but results in a very slow convergence that is
compensated by the FDAFS (second stage). However, it
has the benefit of reduced complexity since estimation
and update is performed only once in five blocks.
Table 2 Average SIR of hybrid algorithm for the experiment p
Figure 5

0 to 4 4 to 8 8 to 12 12 to 16 16

Average SIR (dB) Input (streams) −0.02 −2.68 −2.69 −3.79 −

CFDD 2.44 0.33 3.06 0.270 1

ECoBLISS 0.04 −1.80 −0.96 −1.01 0

Hybrid 4.13 3.52 7.66 4.30 4

The whole speech length has been divided into 4-s segments, and SIR is calculated
with a room impulse response length of 100 ms.
In Table 1, it can be seen that for input (stream 1) during
the segment from 16 to 20 s, the SIR improvement shown
by the CFDD on a small section of speech is only 1.6 dB. It
is due to an anomaly (permutation misalignments): certain
harmonics that need to be suppressed more are not
suppressed at all. These anomalies do happen due to
the slow learning process of the CFDD but reduce in
amplitude as time progresses. However, these limitations
are addressed in the FDAFS (second stage) as can be seen
in Table 1. It is pertinent to mention that this slow
learning process is to avoid local solution (associated
with the non-stationary nature of speech signals). If
the weight factor is increased in the algorithm (CFDD),
the separation can be achieved in 2 s, but this separation
will be local. The coefficients of this separation when
applied to the next segment of the convolutive mix-
ture of speech signals will not do any separation. So,
either another local solution (permuted) is obtained
(that is useless) or true separation filters are calculated.
erformed in the simulated room environment shown in

Time (s)

to 20 20 to 24 24 to 28 28 to 32 32 to 36 36 to 40 40 to 44

3.72 −0.15 −2.22 −3.90 −2.24 −2.57 −4.34

.85 3.44 3.87 5.848 5.489 7.001 5.081

.618 2.038 2.752 6.42 4.477 8.32 4.158

.93 8.209 6.505 9.213 7.903 10.2 7.889

on 20-ms syllable within that. The room reverberation value is taken to be 0.6



Figure 9 Schematic view of the experiment conducted in the laboratory. It shows the room dimension and the placement of the
microphones and loudspeakers. The heights of the loudspeakers from left to right are 118, 118 and 120 cm, and those of the microphones from
left to right are 102, 98 and 97 cm. The figure is not drawn to scale.
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For this reason, longer speech results (40 s) have been
shown to verify the convergence of the algorithm to its true
minimum and thus obtaining the true separation filters.
In Table 2, the average SIR performance of the algorithms

are shown with completely the same arrangement as that
in Figure 5 but with the room reverberation length of
100 ms and the room reflection coefficient value of
0.6. The results show that the hybrid algorithm gives
improvement in SIR of only above 10 dB due to increased
room reverberation (reflection coefficient). For a compari-
son, the performance of ECoBLISS has also been shown.

6 Real room experimental results
For real room separation, the same set of speech signals
used in the previous section was played out through
loudspeakers for the LTI system. The microphones used
Table 3 Average SIR of hybrid algorithm for the experiment p
Figure 9

0 to 4 4 to 8 8 to 12 12 to

Average SIR (dB) Input (streams) −0.38 0.55 −2.40 −2.4

CFDD 0.49 1.77 −0.72 −0.2

Hybrid 1.43 3.60 1.82 2.42

Improvement CFDD 0.87 1.21 1.67 2.19

Improvement hybrid 1.81 3.04 4.22 4.87

The whole speech length has been divided into 4-s segments, and SIR is calculated
were cardioids, and the arrangement used for the
experiment is shown in Figure 9. The sampling frequency
was 16 kHz, with a filter comprising 2,048 taps and an
FFT size of 4,096 for the CFDD and 4,096 taps and an
FFT size of 8,192 for the FDAFS to accommodate a room
reverberation time of 250 ms.
For the SIR calculation, the impulse responses for the

real room experiment were obtained using the swept
frequency method [35]. The SIR given by the hybrid
algorithm for the experimental arrangement shown in
Figure 9 on all the three output streams was between 7
and 8 dB approximately and is summarised in Table 3.
It was less than the performance in the simulated environ-
ment discussed above. The reason was because of the
reverberation the real room environment lasted several
hundred milliseconds; additionally, the distance of the
erformed in the real room environment shown in

Time (s)

16 16 to 20 20 to 24 24 to 28 28 to 32 32 to 36 36 to 40

4 −1.15 −0.98 4.70 −7.01 0.59 −2.09

5 4.04 3.96 9.40 1.62 8.01 3.06

6.01 5.94 12.55 3.7 9.34 5.74

5.19 4.94 4.70 8.63 7.41 5.15

7.16 6.92 7.85 10.71 8.74 7.83

on 20-ms syllable within that.



Figure 10 The separation performance of the algorithm in a real room environment as shown in Figure 9. Source 1 is being separated
from the interference signal, i.e. sources 2 and 3 in output stream 1. An experimental section is shown in (a) in which the speech signal from
source 1 ends before 42 s and only the interference signal is left behind. The suppression of the interference signal (sources 2 and 3) by the
hybrid and the hybrid and HA can be seen (b).
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microphones from the loudspeakers was significant with
very close room walls. This made the separation more
challenging. The hybrid algorithm suppression of the
interference signal can be seen in Figure 10.
On hearing the separated signals, the speech is intelligible

and is without any distortion. Application of the harmonic
alignment algorithm after the hybrid algorithm further
Figure 11 The improved suppression by using harmonic alignment in
‘Avoid’ spanning 550 ms from one of the speakers is shown to be suppres
improved the suppression on the formant part (harmonic
part) of the interference signal. This improved the SIR of
the signal only in the formant areas of the interference
signal, as can be seen in Figure 10, thus rendering the
interference signal completely unintelligible. This resulted
in an intelligible separated signal with a less annoying
unintelligible background interfering signal. Apart from
addition to the hybrid algorithm. The interference signal word
sed.



Figure 12 Spectrogram of the time domain signals shown in Figure 11. (a) Hybrid algorithm. (b) Hybrid and HA algorithm.
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that, the background noise was negligible in the ex-
periment, therefore not removed in a supervised way
(explained in the next section).
The harmonic alignment-based improved interference

suppression can also be seen in Figures 11 and 12 on a
different section of the speech. For harmonic alignment,
the overlap and add method was used with a syllable
size of 20 ms and FFT size of 4,096. It is pertinent to
mention here that the hybrid algorithm along with
harmonic alignment only performs blind source separation
and does not carry out any equalisation on the separated
streams.

7 Discussion
The hybrid algorithm is well suited for real-time imple-
mentation due to its block-by-block FFT methodology.
The first structure in the hybrid algorithm, the CFDD,
Table 4 Computational load in MMACS for different algorithm

16,000 Hz

Impulse length (ms) 64 128 2

Filter taps (N) 1,024 2,048 4,

MMACS CFDD 69.99 70.61 71

FDAFS 30.04 31.58 33

ECoBLISS 141.23 142.76 14

HYBRID 100.03 102.19 10

TD-FB 298.27 593.18 1
updates only once in five blocks, thus reducing computa-
tional load. If N is the size of FFT and the CFDD's overlap
and add method is running at optimum level with the
filter length equivalent to half that of FFT, then the
average computational cost over five blocks is 19.2 ×
Nlog2N + 1,976.2N operations. Similarly, the computa-
tional cost for the FDAFS structure is 19.2 ×Nlog2N +
411N operations whereas its time domain equivalent
TD-FB cost is (18 ×Nlog2N + 210)fs operations. These
computational costs are calculated based on multiplica-
tion accumulation (MAC) operation of a typical DSP
board. It is important to mention that for complex multi-
plication, six operations have been considered. Similarly
for division or exponential or square root, 20 operations
have been considered depending upon if the Taylor series
expansion or polynomial fit curve is used by a designer.
For the FFT, the number of MAC operation considered
s at sampling frequency of 16 and 48 kHz

Sampling frequency

48,000 Hz

56 21.33 42.66 85.33 170.66

096 1,024 2,048 4,096 8,192

.22 209.99 211.83 213.67 215.52

.12 90.14 94.75 99.36 103.96

4.30 423.69 428.30 432.91 437.52

4.34 300.13 306.58 313.03 319.48

183 894.81 1779.6 3549 7088
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based on radix 2 implementation is 2 ×Nlog2N. The
low computational load in terms of million multiplication-
accumulations (MMACS) per second of the hybrid
algorithm is evident from Table 4.
It can be seen from Table 4 that FDAFS is many times

faster than its time domain equivalent TD-FB that is
similar to frequency domain LMS as compared to its
time domain equivalent (pp. 353 in [31]). The frequency
domain implementation will have two types of latencies
in the algorithm: the first will be the computational
latency calculated from the MMACS of the algorithm
divided by the MMACS capacity of the digital signal
processor and the second is the time it takes to fill
up the block for the FFT. Nothing can be done about the
latter issue; however, regarding processor speed, this is
continually advancing, with even non-FPGA-type devices
routinely available with speeds of a few thousand MMACS.
In this paper we have solely discussed the main source

separation algorithm without discussing background noise
(not the additive sensor noise as taken in most cases). It
has been shown (pp. 397–399 in [36]) that supervised
adaptive filtering using a reference microphone to detect
the noise source based on the least mean squares (LMS)
technique gives the optimum performance in removing
background noise. So, supervised adaptive filtering should
be implemented prior to the use of an unsupervised
hybrid algorithm instead of using acoustic echo cancellation
(AEC) as shown in [13].
The convolutive mixture problem is complex, and in

extremis, the whole source separation scenario becomes
mathematically ill-posed (discussed earlier) and thus noth-
ing works. The hybrid algorithm uses adaptive filtering
methodology that is also unsupervised. So, in the case of
extremis, multiple spurious minima can occur that result in
either the algorithm taking longer to converge to a true
minimum based on step size, or it may not converge at all.
In such cases, in order to achieve separation (convergence
to a true minimum), it is necessary to incorporate additional
knowledge about the mixing process and/or the source
signals; however, this would make the separation process
semi-blind or supervised. Future investigations will focus on
improving the robustness and applicability of the method.

8 Conclusions
In this paper we have presented a novel hybrid algorithm
that uses an integrated, multiple conditions approach to
solve the convolutive mixture problem of speech sources,
instead of relying on only one condition. The performance
of the algorithm based on experiments has been shown
for simulated and real room environments. The proposed
algorithm with its improved SIR using harmonic alignment
and efficient computational complexity is suitable for
hardware implementation for the real-time blind source
separation of speech signals.
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