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Abstract

Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot
match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome
difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This

paper provides multiple local feature representations and their fusion scheme based on a support vector regression
(SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)-
and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for

regression

each involved test dataset without predefinition or manual modulation. Several comparative experiments on
JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can
generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion
strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative
experiments show that our approach may outperform other popular iris systems.
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Introduction

The first iris recognition system was proposed by Daug-
man in 1993 and is still the state-of-the-art technique
used today [1,2]. Wildes’ iris biometric method is another
important approach [3,4]. Subsequently, a large number of
algorithms have been developed to develop an iris prac-
tical system with less control [5-7]. However, the com-
mercial iris recognition system still has problems, such
as intra-class variations (e.g., iris texture affected by age-
ing), inter-class similarities (leads to false acceptance), and
noise in data (e.g., illumination effect to iris image pixels)
[8].

Feature extraction is a crucial stage for addressing
these problems [9]. Two options exist to improve iris
recognition performance. One option is to find effec-
tive and fast iris representation for various acquisition
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conditions. Daugman presented iris texture using Gabor
phase-based code that is invariant under the non-affine
elastic distortion [2]. Huang et al. proposed a new rota-
tion invariant iris feature based on the non-separable
wavelet and the Markov random model [10]. These meth-
ods analyzed iris texture properties in the frequency
domain based on Fourier and wavelet transforms. How-
ever, these methods have the disadvantage of fixed trans-
form kernels and cannot pertinently match the changing
nature of different iris datasets. Some researchers select
an optimal features subset based on filtered coefficients
to enhance their distinctive information [11], but what
these researchers adopted for filtering is still a predefined
log-Gabor wavelet. Chang et al. discovered an unconven-
tional approach that applied an improved empirical mode
decomposition (EMD) method. The EMD method is a
multi-resolution decomposition technique without any
predetermined filter or wavelet function to the iris pat-
tern extraction [12]. Moreover, several approaches exist
that directly scan geometric descriptors at the iris images.
Mehrotra et al. selected iris local features using the scale
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invariant feature transform (SIFT) [13]. However, several
key problems, such as illumination variations, environ-
mental conditions, and device variations, cannot be fully
addressed using a single form of iris feature.

The second option is to extract multiple iris features
and then combine them to compensate for the weak-
ness of a single feature in particular situations. Raja Sekar
et al. presented a fusion method of statistical and co-
occurrence features that were extracted from the curvelet
and ridgelet transformed images. The Manhattan distance
and the multiclass classifier with a logistic function were
used to generate the final classification result [14]. Tan
et al. utilized ordinal measures, color analysis, texture
representation, and semantic information as iris features
as well as the weighted sum rule to generate the fused
score for classification [15]. Gong et al. selected three
wavelength bands to represent an iris and then inte-
grated them using agglomerative clustering based on a
two-dimensional principal component analysis [16]. The
fusion of multiple features is regarded as a positive step
towards the development of extremely ambitious types of
iris recognition [17]. However, the fusion of multiple fea-
tures should overcome the challenge of the heterogeneous
manifestation of various features.

In this paper, we focus on both options described
above to handle the challenges of illumination variation,
environmental conditions, and device variations in iris
recognition. To find more effective iris features, we use
optimized Gabor filters instead of fixed Gabor kernels
to characterize iris texture information. Because Gabor
transformation can achieve the best trade-off in spa-
tial and frequency resolution [18], several iris systems
characterize iris features using Gabor coefficients after
Daugman’s introduction [19-21]. Most of these algorithms
require predefined Gabor basis functions, but when we
tried to determine the Gabor parameters in the Gabor
function, different options emerged from the existing lit-
eratures [22-25] (Table 1), which suggests that no unified
pattern of Gabor filters exists for various texture repre-
sentations. We applied empirical Gabor filters on our self-
developed JLUBR-IRIS dataset to the CASIA-V4-Interval
dataset to extract the same Gabor features. The obtained
distance distribution histograms (DDHs) on these two

Table 1 The Gabor filter selection from different
literatures on the CASIA-I dataset

First Covered frequency  Scaling Scale Orientation
author band factor  number number
Li [22] 32 2 4 4

Ma [23] 64 2 6 4
Nabti [24] N/A N/A 4 6

Li [25] N/A N/A N/A 4
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datasets are shown in Figures 1 and 2. The enormous
difference in the performance of the datasets demon-
strates that no universally applicable Gabor filters exist
for all the datasets. Motivated by this, we preferred to
extract further informative iris texture features by adopt-
ing suitable Gabor filters. However, explicit solution was
seldom found in the existing literature for obtaining the
proper Gabor parameters for its basic function. Several
researchers executed the Gabor filter selection based on
several predefined candidate filters [26,27]. The above-
described approaches require that their candidates cover
and target the most informative band (MIB) of involved
iris samples. These approaches achieved excellent results
on certain iris datasets, but cannot be adapted to arbi-
trary iris datasets. Chou et al. reduced the free Gabor
parameters by preserving only the horizontal frequency
components and achieved the optimal multi-scale Gabor
filters by using the Gene Algorithm [28]. This method has
a faster optimization process, while the problems of local
optimum and texture loss surfaced. Tsai et al. tuned the
parameters of a Gabor filter by using the particle swarm
optimization (PSO) algorithm to generate the optimal
Gabor filters one by one [29].

The algorithm benefited from the immense global
searching ability of PSO and can obtain an optimal sin-
gle Gabor filter. However, the whole Gabor filter set may
not be effective. Possible overlaps may exist among the
Gabor bands and may include redundant information for
the Gabor features. To address this problem, we propose
a Gabor filter optimization algorithm based on PSO and
its binary version Boolean PSO (BPSO). In our work,
the lower dimensional parameters of the Gabor filter set
with an orthogonal kernel constraint condition are ana-
lyzed. For the real values and integer values in Gabor set
parameters, PSO and BPSO rules are utilized to obtain
the optimal Gabor bands for each involved dataset. Our
method can adaptively determine the amount of Gabor
filters, bandwidth, and covered frequency bandwidth to
generate the orthogonal Gabor filters in place of manual
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Figure 1 DDH for the JLUBR-IRIS dataset.
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modulation. The optimized Gabor filters may cater to the
diverse frequency coverage of various iris datasets and are
related to the capture device, acquisition condition, and
individual physiology. Moreover, local features can offer a
closer analysis of the uniqueness of the iris texture but are
generally included in the irregular distribution of the iris
image blocks such as crypts, freckles, coronas, stripes, and
furrows [30]. Therefore, we divided the Gabor response
magnitude and phase to generate local feature vectors,
where iris texture can be further preserved. Compared
with the traditional localized mode of iris image division,
our localized method occurred after convolution and may
avoid the blocking effect in the process of image division.

To fuse multiple iris features, we extract two differ-
ent types of Gabor features to describe the iris texture
from the energy spectrum and frequency domain and then
combine them using a new non-linear fusion strategy. The
Gabor response magnitude is the model of orientation for
the selective neuron in the primary visual cortex [31] and
is related to the local energy spectrum, while the Gabor
phase can capture the information from the wavelet’s zero

crossing [2]. An advantage of our multiple feature extrac-
tion is lower computational complexity because both fea-
tures can be calculated by only one Gabor transformation.
Furthermore, in the process of Gabor transformation, DC-
free Gabor kernel is adopted because of its invariance
property to the ambient illumination [32], while Gabor
phase features of irises are assigned regardless of how low
the image contrast, illumination, and camera gain [33].
Thereby, our proposed system involved extensive Gabor
energy features that may perform more robustness and
reliability when illumination variation exists. For the com-
bination of the two kinds of Gabor features, we prefer
a more flexible score level fusion as opposed to a fea-
ture level fusion, which needs to address the heterogeneity
of various features, and a decision level fusion, which
involves less information [34]. The match score is a real
value measure of the similarity between the input and
template biometric feature vectors. In score level fusion,
all real value scores from multiple features will be com-
bined into a real value to arrive at a final recognition deci-
sion. A robust and effective score fusion method based on
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Figure 3 The architecture of the proposed iris recognition system.
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Figure 4 The flowchart of the Gabor filter optimization by PSO and BPSO.

support vector regression (SVR) is proposed in this paper.
This method may fuse matching scores from different fea-
tures using a non-linear and high-dimensional regression
function, which will better fit the non-correlations among
matching scores from multiple features.

The architecture of the proposed iris recognition sys-
tem is shown in Figure 3. It is generally known that a
captured iris image contains not only the meaningful tex-
ture part but also some un-useful parts (e.g., eyelid and
pupil) [22]. So, separating the meaningful region, called
region of interest (ROI), from the captured iris images
should be carried out. Otherwise, the extra noises will be
taken in following stages and affect the effectiveness of
iris feature extraction. In our system, we separate the iris
region from the iris captured images by the Canny oper-
ator and the Hough transformation [35] and then employ
the ROI extraction of Yu et al. to provide more precise
iris templates [22]. This method uses the longest-chord-
based method to determine the location of the pupil and
then uses a circular template to search the outer boundary
of the ROL. During the feature extraction stage, the local
Gabor energy and phase representations are produced by

the same Gabor filters with parameters that have been
optimized by the proposed PSO and BPSO. Next, all
matching scores from both Gabor features are sent into a
trained SVR model and are mapped to a single scalar score
to make the final decision.

The remainder of this paper is organized as follows:
Section ‘Gabor filters’ introduces the generation process
of two types of local Gabor features and their matching
scores. Section ‘Gabor filter optimization by PSO and
BPSO’ illustrates the Gabor filter optimization by PSO
and BPSO. Section ‘Score fusion scheme based on SVR’
describes multiple Gabor feature fusion schemes based on
SVR. Section ‘Experimental results’ presents the exper-
imental setup and results. Finally, Section ‘Conclusion’
concludes the paper.

Gabor filters
Gabor function
Various expressions of the Gabor basic function exist
in the spatial and frequency domains. Compared with
the frequency expression, the spatial expression can be
directly represented in a discrete form for the convolution

Figure 5 Samples from different acquisition times and six illumination levels.
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Table 2 Dataset description

Number Dataset Class Samples Enrollment  Test
perclass perclass perclass

1 CASIA-I 50 7 4 3

2 CASIA-V4-Interval 50 71010 5 2to5

3 JLUBR-IRIS 50 45 25 20

of iris images. The Gaussian envelope should fall com-
pletely into discrete bins so that the filtered coefficient
values are negligible outside a limited length discrete fil-
ter [36]. In the spatial domain, a general function of the
two-dimensional Gabor kernel is defined as follows [22]:

IS

koo |12 leawlizl®
” 0'5” e 27 [ —e T (1)

Gu,v (Z) =
From Equation 1, we can see that the Gabor function
is a product of a Gaussian envelope and a complex plane
wave, where 1 and v determine the objective orientation
and scale, respectively. The center of the receptive field is
z = (%,7). The norm operator is || e ||. The standard deriva-
tion of the Gaussian envelope is o, which determines the
ratio of the Gaussian width to the wavelength. We adopt
the DC-free Gabor kernel that offers an invariance prop-
erty to the ambient illumination change in the iris image
acquisition [37]. The wave vector is defined as follows:

kM,v = veid)“ (2)

Kz = cos(ky,vz) + isin(ky,z), (3)
where k, and ¢, are the frequency and orientation of
targeted texture.

Multi-channel Gabor filters
A set of multi-channel Gabor filters should be used to
provide the basis for distinguishing irises [38]. Due to the
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non-uniform frequency distribution of the iris texture and
to obtain isotropy in the orientations, we choose transfer
functions that have size variations and lattice discretiza-
tion [39]. The selection of frequency k, in Equation 4 can
be computed as follows:

kvzl(max/fv v:O’IJ"';M_]-) (4')

where Kpax is the maximum frequency that defines the
covered frequency band, f is the frequency scaling fac-
tor, and M defines the number of all extracted scales. An
important wavelet property that provides the orthogonal
basis to Gabor functions is inherited by Equation 4 [38].
The standard derivation o is 0 = Kpax/2(2M — 1). The
selection of targeted angles is ¢,, calculated as follows:

¢M:MN/N uw=12---,N (5)

In that, N is the number of targeted orientations. There-
fore, a quadruple of Gabor parameters {Kmax,f, M, N}
determines a set of Gabor filters.

Two types of localized Gabor features

In this paper, we extract two different types of local Gabor
features based on the Gabor responses and their division.
To generate local Gabor features, using Gabor response
division instead of image division can eliminate the block-
ing effect in the process of convolution. The blocking
effect of image division will lead some staircase noises
into Gabor transformation [40]. If several iris characteris-
tics exist in a localized block, they will be degraded such
that the block boundary looks like the edge. Further, the
accuracy and reliability of the Gabor features will be badly
hurt.

One type of localized Gabor feature in our work is gen-
erated by dividing each Gabor response magnitude into
r x ¢ size blocks. The statistical means of all blocks con-
stitute a local energy Gabor feature because the Gabor
response magnitude is related to the local energy spec-

N7 A
/ ¥

Figure 6 An example of false non-match due to eyelid and eyelash occlusion on the CASIA-| dataset.




He et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:95

http://asp.eurasipjournals.com/content/2014/1/95

Page 6 of 17

iy =,

e b & o

-\‘.‘-‘,".'-MM“ - 7, .

Figure 7 An example of false non-match due to eyelid and eyelash occlusion on the CASIA-V4-Interval dataset.

5

trum. The matching score may be calculated using the
Euclidean distance (ED). To eliminate the effects of
dimension, the Ly norm of each iris feature may be desig-
nated in the ED computation.

The second type of localized Gabor feature, called
the local Gabor phase feature, is generated by dividing
each Gabor response phase into r x c¢ size blocks. Next,
each block is encoded in accordance with the Daug-
man rule [1]. Hamming distance (HD) is used to com-
pute across a population of unrelated phase codes bit by
bit.

Gabor filter optimization by PSO and BPSO

The concepts of PSO and BPSO

As a swarm intelligence method, PSO was developed by
Kennedy and Eberhart [41] and has been a remarkable
technique for optimization problems in a real value field
due to its strong global search capability [42]. In PSO,
a population of particles P; = (p;1,pi2, - »Pin) is ini-
tialized for an optimal solution by updating their values
with its own velocity V; = (vi1,v12,- - ,Vin). In recur-
sions, all particles and their velocities are replaced by
the best previous position of the current particle P i

and the best previous position of all particles Gpest as
follows:

vij(t+1) =wx vj(t) +c1 X1 X (P}’,jest — pij()

+ o X 12 X (Gpest — pij(0)j =1,2,---,n
(6)

pijt+1) = pij®) +vij(t + 1), )

where p; ; is the ith and jth dimensional particle. The iner-
tial weight is w and is generated in the range [0,1] [43]. The
velocity v;; is restricted to the range [~ Vinax, Vinax|-

A fitness function is defined to evaluate the position of
the particles. After a limited number of recursions, the
particle that satisfies the global best fitness is chosen as
the optimal result.

Despite the successful application of PSO in a real num-
ber field, the updated strategy of velocity and position
cannot be directly applied to our Gabor filter optimiza-
tion due to the discrete search field of parameters M and
N. Kennedy and Eberhart provided the concept and prin-
ciple of PSO in a discrete domain, named BPSO [44]. In
BPSO, the definition of velocity is developed into a prob-

Figure 8 An example of false non-match due to eyelid and eyelash occlusion on the JLUBR-IRIS dataset.
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ability in which a certain bit position will receive 1 value
[45]. Equations 8 and 9 are rewritten as follows:

vijt+1) = c1 ® (P @ pij(1))
+ 2 ® (Gbest @pi,j(t))j =12,...,mn (8)

and
pijt +1) = pij(6) D vyt + 1), )

where @ means the ‘xor’ operator, and ® and + are the
‘and’ and ‘or’ operators, respectively. c1 and c2 control the
probability that every bit of (Pl?;’st ® pij(t)) and (Gpest @
pij(2)) will take 1 value. The constraint of maximum veloc-
ity still exists in BPSO but limits the number of 1-value
bits in velocity.

Gabor energy features on CASIA-I

Our localized way
4. - |[ lexisting localized way

150

r

Figure 10 The relationship between the DIs and the block sizes
in different localized ways. The Dls are obtained by the Gabor
energy features on the CASIA-| dataset.

Gabor filter optimization by PSO and BPSO

In the implementation of Gabor filter optimization, four
Gabor parameters formed four-dimensional position of
each particle. At the initial phase, we set the population
of particles as 10 and the maximum number of iterations
as 100. After initialized random values to the position
and velocity of all particles, all enrollments of iris sample
are involved in filtering with the Gabor filters represented
in each particle to extract local Gabor energy and phase
features. We thus can quantitatively assess the discrimi-
native ability of the Gabor energy and phase features as
fitness. The indicator used for evaluation in our work is
the discriminative indexes (DIs) as follows:

d= | inter — Mintral ) (10)

2 2
Tinter +6intra
2

Gabor phase features on CASIA-|

4 . Our localized way
Existing localized way

150

0 o

Figure 11 The relationship between the DIs and the block sizes
in different localized ways. The DIs are obtained by the Gabor
phase features on the CASIA-I dataset.
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Gabor Energy features on CASIA-V4-Interval
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Figure 12 The relationship between the DIs and the block sizes
in different localized ways. The DIs are obtained by the Gabor
energy features on the CASIA-V4-Interval dataset.

Gabor energy features on JLUBR-IRIS
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Figure 14 The relationship between the DIs and the block sizes
in different localized ways. The DIs are obtained by the Gabor
energy features on the JLUBR-IRIS dataset.

where 1 and o2 denote the mean and variance of inter-
class and intra-class distance, respectively. The fitness of
an optimal objective therefore can be defined as follows:

fitness = o - denergy + (1 — @) - dphase (11)

where denergys and dphase are the DI values, respectively,
produced by the Gabor energy and phase features accord-
ing to the Gabor filters represented in each particle. The
larger the fitness points, the better the position in the
problem space. In this paper, optimized Gabor filters
should achieve a trade-off of performance between the
energy feature and the phase feature, so that the scale
factor « is set 0.5. In each recursion, according to their

Gabor phase features on CASIA-V4-Interval

4 ' Our localized way
existing localized way

150

0 o0

Figure 13 The relationship between the DIs and the block sizes
in different localized ways. The DIs are obtained by the Gabor
phase features on the CASIA-V4-Interval dataset.

fitness values, we can determine the best previous posi-
tion of each particle P, and the best previous position
of all particles Gpest to update the velocity and the posi-
tion of all particles. During the execution of iterations,
two real-number parameters Ky,x and f will follow the
PSO rules, while the discrete parameters M and N follow
the BPSO rules. At the end of the iterations, all we have
to do for determining the best particle is just to observe
their fitness values of all particles and figure out the parti-
cle with the largest fitness value. The best fitness suggests
that its corresponding Gabor filters best fit the MIB of the
involved iris dataset, as they generate local Gabor energy
and phase features with greatest distinctive ability. The

Gabor phase features on JLUBR-IRIS

Our localized way
4 : existing localized way |-

150

0o r

Figure 15 The relationship between the DIs and the block sizes
in different localized ways. The DIs are obtained by the Gabor
phase features on the JLUBR-IRIS dataset.
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Figure 16 The fitness values of PSO and BPSO on the CASIA-I dataset.

flowchart of the Gabor filter optimization algorithm is
shown in Figure 4.

Score fusion scheme based on SVR

After we achieve the most appropriate Gabor filters to
extract most informative energy and phase features, the
combination of their discriminative ability should be con-
sidered. In score fusion level, the linear weighted strategy
is frequently used in some literatures [46,47]. In our work,
due to the uncorrelated matching scores from the Gabor

energy and phase features, a non-linear fusion rule based
on SVR is adopted. The idea of SVR is based on the com-
putation of a regression function in a high-dimensional
feature space where the input data are mapped via a non-
linear function [48]. The regression function f(x) in SVR
can be denoted as follows:

k
f@) =Y (B —B)Kxx) +b i=12.. .k (12

i=1

4.5+

Discriminative index

43— -

—a— 1st - Fold
—e—2nd - Fold
—4— 3rd - Fold
—*—4th - Fold
—x— 5th - Fold

1
50 60 70 80 90 100

Number of recursions
Figure 17 The fitness values of PSO and BPSO on the CASIA-V4-Interval dataset.
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Figure 18 The fitness values of PSO and BPSO on the JLUBR-IRIS dataset.

where k is the number of training data. The Lagrangian
multipliers g}, B; are found by solving a quadratic pro-
gramming problem [49], and b is the bias. A kernel
function K(u,v) performs the non-linear mapping. Any
symmetric function that satisfies Mercer’s condition can
be chosen as K(u, v). The usual kernels include dot, poly-
nomial, radial basis function (RBF), and neuron kernels [50].

We take advantage of the SVR to fit a function f(x),
which may map multiple matching scores to a fused score
to make the final decision of arbitrary one-to-one identity.
The ED and HD of the Gabor energy and phase features in
a comparison are formed as an input vector, both of which
have been normalized to the [0, 1] real-value range. This
intrinsic characteristic of matching scores just might nat-
urally avoid the question of heterogeneous input of fusion.
To train a SVR model, all input data with labels from arbi-
trary one-to-one comparisons of enrolled irises are used
to train an SVR model. The authentic comparisons will be
labeled 0 as the observed value, while the imposter com-
parisons will be labeled 1. In the forecast mode of trained
SVR, an input score vector may be mapped to a real value
as its fused score. This value can be considered to inte-
grate multiple local Gabor features to measure similarity
between two irises. A lower value (close to the authentic

label) obtained by output of the SVR demonstrates that
the test iris and the involved enrolled iris are in the same
pattern class. In light of this principle, only a reasonable
threshold should be chosen to complete the classification
decision.

Experimental results

Datasets

For the purpose of sufficiently investigating iris recogni-
tion performance under changing illuminations, acquisition
deflection, ageing, and other circumstances, we established
anew JLUBR-IRIS dataset using our self-developed online
iris image capture system [51]. Informed, written con-
sent was obtained from all participants for iris collection.
The images in the JLUBR-IRIS dataset were gathered
under various illumination levels from indoors. A class
of samples from different acquisition times and different
illumination levels is shown in Figure 5.

In this paper, three datasets, including the JLUBR-IRIS,
CASIA-I, and CASIA-V4-Interval datasets, are used to
examine the effectiveness of the proposed algorithm. Due
to the weaker contrast of texture in the Asian iris as
opposed to the European iris, all experimental subjects
from the three chosen datasets are Chinese people to

Table 3 Optimized fitness and optimized Gabor filters on three datasets

Dataset Dl/predefined Gabor Dl/optimized Gabor Gabor parameters

Energy Phase Energy Phase Kmax f M N
CASIA-| 3213 3.102 3.893 3.906 38.199 0.800 6 31
CASIA-V4-Interval 3.007 3.164 3.704 3618 19.504 0.569 6 27
JLUBR-IRIS 3.030 2.570 4173 3.785 10.125 0.333 12 7
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Table 4 The DI values from the fused scores via NU-SVR
with four kernels on three datasets

Dataset Kernels

Linear Poly RBF Sigmoid
CASIA-| 4178 2.710 4422 0.797
CASIA-V4-Interval 3488 2124 3.947 1.248
JLUBR-IRIS 2.642 4.183 3.563 0.486

control comparability [52,53]. Table 2 shows the experi-
mental settings for the three datasets.

Every iris image in Table 2 is manually selected from
accurate iris region segmentation by the Canny operator
and the Hough transformation [35] to prevent interfer-
ence caused by iris misalignment.

Results

First, we would like to report the experiments that explain
the necessity of ROI extraction in our system. As stated in
the above description, several noises including eyelashes
may occlude the effective regions of the iris for feature
extraction and cause false non-matching in intra-class
comparisons [54]. Moreover, the various sizes of eyelids
in normalized iris images also may damage the similar-
ity between two irises from a pattern class. The typical
examples from the two main conditions on three datasets
are illustrated in Figures 6,7,8. We designate the three iris
datasets within ROI and without ROI extraction for the
experiments using local Gabor energy and phase features
and observe the effect of precise ROI segmentation on
iris recognition performance. In order to achieve unbi-
ased results, the comparative experiments within ROI and
without ROI extraction are based on the same fixed Gabor
filters (Kmax = 64.f = 2,M = 6,N = 4) introduced
in the literature [23] and the same localized block size.
Their obtained correct recognition rate (CRR) of intra-
class comparisons can be found in Figure 9. As the exper-
imental results show, 19.28%, 21.73%, and 19.88% false
non-matches of intra-class comparisons can be prevented
by the ROI extraction when using Gabor energy features
on three iris datasets, respectively. Meanwhile 19.31%,

Page 11 0of 17

19.87%, and 22.84% false non-matches of intra-class com-
parisons can be reduced when using Gabor phase features
on three iris datasets, respectively. It means that all kinds
of useful iris feature extraction should be performed only
when the ROI region may be functioned well and the
redundant eyelids and eyelashes can be excluded from the
stage. The ROI extraction is thus an indispensable part in
our system. The greatest improvement of CRR emerges on
JLUBR-IRIS among three iris datasets, which implies that
the iris images from this dataset contain more challenging
disturbances including eyelids and eyelashes.

Next, we initialized the comparison between the dif-
ferent localized feature extraction methods for the three
adopted iris datasets. We also use the fixed Gabor filters
(Kmax = 64,f = 2,M = 6, N = 4) to extract the Gabor
features. In this test, we divide the ROI images to generate
features that represent the existing localized method [55].
Various grid search-based block sizes are used to analyze
two localized ways. Figures 10,11,12,13,14,15 shows the
relationships between DIs and block sizes in two local-
ized means. From Figures 10,11,12,13,14,15, the smallest
block size is not the most suitable for localized features,
and if the block size is focused excessively on the minute
texture, the local features will not enhance the iris texture
information but will include redundant noises. Therefore,
the block size of localization has to be adjusted for dif-
ferent batch samples. Furthermore, for Gabor energy and
phase features, our proposed localized way can obtain
more powerful local features and can reveal that our local-
ized approach may conserve more texture in the process
of image division and convolution. In all of the following
experiments, the localized block size that obtains the best
discriminative ability will be adopted.

Put the performance on three datasets all together
and we can find that the local Gabor features, extracted
by using the chosen Gabor filters, perform better on
CASIA-I and CASIA-V4-Interval than JLUBR-IRIS obvi-
ously. In the next experiment, we therefore attempted
to implement the Gabor filter optimization based on
PSO and BPSO with the enrollments of three datasets.
To obtain unbiased Gabor filters, we conducted fivefold
experiments to achieve the best fitness among them as
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Figure 19 The DDH of fused scores on the CASIA-I dataset.
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Figure 20 The DDH of fused scores on the CASIA-V4-Interval dataset.

the optimal results. The optimization details of PSO and
BPSO on three iris datasets are shown in Figures 16,17,18.
From Figures 16,17,18, the fitness values in each fivefold
optimization can be converged around a certain value in
which the global best fitness and its corresponding parti-
cle is selected as the optimal solution. The details of the
fitness and optimized Gabor parameters can be found in
Table 3. Compared with the above-described Gabor fil-
ters, both Gabor energy and phase features achieve greater
DI values and show more discriminative and informative
Gabor features created by using optimized Gabor filters.
Meanwhile, the optimized Gabor filters are best suited
to extract the two types of local Gabor features simul-
taneously as a result of the definition of fitness. Due to
the predefined Gabor filters as an empirical selection for
the CASIA-I dataset, the improvements caused by the
optimized Gabor filters on the CASIA-I and CASIA-V4-
Interval dataset are not so obvious. However, a greater
DI value can be found at the JLUBR-IRIS dataset, which
explains the necessity of the Gabor filter optimization for
various datasets and validates our PSO- and BPSO-based
Gabor filter optimization.

After achieving local Gabor energy and phase features
and by using optimized Gabor filters, we attempted to
train the SVR models to combine both matching scores of
the two features to make an iris classification. The regres-
sion mode of the library for support vector machines
(LibSVM) [56] tool is employed to train an SVR model. We
tried four kernels and checked a grid of 8}, ; parameters

using the simple tool LibSVM provided. Table 4 shows
the DI values of the fused scores from four types of SVR
kernels on three datasets. According to Table 4, the DI
values of the fused scores showed a great improvement
compared with the DI valves produced by a single Gabor
feature. None of the best DI values from the SVR mod-
els with the linear kernel among three datasets reflect
the non-linear correlation of the Gabor energy and phase
features. The DDHs of the fused scores based on the
corresponding trained SVR model on three datasets are
shown in Figures 19,20,21. From Figures 19,20,21, the
fused values from the authentic/imposter comparisons
are much closer to the authentic label (0)/imposter label
(1). Therefore, we can select a reasonable threshold to
make the final decision. We draw the receiver operat-
ing characteristic (ROC) curves of a single feature by
non-optimal Gabor filters, a single feature by optimized
Gabor filters, and a fusion as shown in Figures 22,23,24.
As shown in Figures 22,23,24, the best performance in
this paper on each dataset had all been created by the
fusion of multiple Gabor features. The EER from the opti-
mized Gabor multi-feature fusion reached 0.07%, 0.461%,
and 0.344% on CASIA-I, CASIA-v4-Interval, and JLUBR-
IRIS datasets, respectively. The fusion method achieved
almost perfect results on the CASIA-I dataset due to the
good quality of its samples. The JLUBR-IRIS dataset is
the most challenging iris dataset but had superior fusion
results when compared to the CASIA-V4-Interval dataset
because the more samples that are involved in the training
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Figure 21 The DDH of fused scores on the JLUBR-IRIS dataset.
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Figure 22 The ROC curves of different experiments on the CASIA-I dataset. The experiments include using a single feature by non-optimal
Gabor filters, using a single feature by optimized Gabor filters, and using a fusion.

SVR model, the better mapping regressive function can
be obtained. Thus, a better performance of the fused
score can be further staged. In fusion experiments on the
CASIA-V4-Interval dataset, we can only randomly extract
five samples per class as the training set, and the rest
is sampled as the test set due to its class size. Instead,
due to the larger class size of the JLUBR-IRIS dataset, we
could randomly extract 25 samples per class as the train-
ing set and the remaining 20 samples as the test set. Thus,

through sufficient sample training, the more effective SVR
model of JLUBR-IRIS dataset was established. Further-
more, from the overall ROC curves on each dataset, the
local features can result in the lowest ROC curves by using
optimized Gabor filters, which explains the necessity of
Gabor filter optimization and multiple local Gabor feature
fusion.

In order to show the sensitivity of our system to
illumination variation, we performed six comparative
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Figure 23 The ROC curves of different experiments on the CASIA-V4-Interval dataset. The experiments include using a single feature by
non-optimal Gabor filters, using a single feature by optimized Gabor filters, and using a fusion.
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Figure 24 The ROC curves of different experiments on the JLUBR-IRIS dataset. The experiments include using a single feature by non-optimal
Gabor filters, using a single feature by optimized Gabor filters, and using a fusion.

experiments with test images under various illumination
levels on the JLUBR-IRIS dataset. Taking advantage of
its different acquisition illuminations and adequate iris
images (an example can be found in Figure 5), we form
random samples from each pattern class under differ-
ent illumination levels in an increasing way as the test
set in the experiments, but the amount of the test set
in each experiment still remains constant. These test
samples are used to extract their multiple local Gabor
features using optimal Gabor filters and to generate the
fused scores via the above-described trained SVR model.
Their ROC curves demonstrate the effect of variance
of illumination levels on iris recognition rate in our
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Figure 25 The ROC curves of the experiments with iris images
under different illumination levels.

proposed system. It can be observed from Figure 25
that the performance of our multiple Gabor features
and fusion scheme exhibits highly illumination invari-
ance when illumination variation exists in the test sam-
ples. Due to the different iris samples among different
experiments, they produce not identical but parallel ROC
curves. The experiment with iris images under six differ-
ent illuminations also can achieve comparable recognition
performance to the ones with iris samples under fewer
illumination levels. It illustrates that our system may
be capable of performing illumination invariation in iris
recognition by means of the adopted DC-free Gabor ker-
nel, optimal Gabor filters, and fusion of multiple Gabor
features.

According to the literature [54], Ma et al. realized the
iris recognition of Daugman [1], Boles and Boashash [5],
and his own proposed algorithm on the CASIA-I dataset.
We combined our result on the CASIA-I dataset with
the results of Ma et al. and compared them as shown in
Table 5. From Table 5, we achieved an equal recognition

Table 5 A comparison of the different systems on the
CASIA-l dataset

Methodology CRR (%) EER (%)
Daugman [1] 100 0.08
Boles et al. [5] 92.64 8.13
Ma et al. [56] 100 0.07
Wildes et al. [4] N/A 1.76
Proposed 100 0.07
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rate compared to the system of Ma et al. on the CASIA-
I dataset. Compared to other approaches, our method
involved richer texture representations to make a classifi-
cation, which led to the best performance. Furthermore,
a more challenging verification mode was adopted in our
experiment as opposed to the identification mode adopted
in [54]. Our results demonstrate a slight improvement
compared to all other methods.

We further conducted comparative experiments on the
JLUBR-IRIS dataset with the same experimental proto-
col. Figure 26 shows the ROC curves from these experi-
ments. In Figure 26, our proposed method outperformed
the other methods in terms of a lower ROC curve
and EER value. Our method used optimal Gabor filters
and multiple Gabor feature fusion to include more tar-
geted and informative iris texture properties in the classi-
fication decision stage. The system of Boles et al. utilized
little information along a concentric iris circle, while that
of Wildes et al. made several low-pass filters to achieve

Table 6 Execution speeds of various operations for an iris
match

Operation Time (msec)
Localized and normalized iris region 141
Optimized Gabor filters filtering 236
Localized energy and phase feature generation 52
Multi-feature dissimilarity scores of two irises 29
Gabor multi-feature fusion decision on trained SVR 32

The speeds were taken using an Intel Core2 Quad Q9400 2.66-GHz processor.

more distinctive features. Ma et al. encoded a local shape
position using a particular class of wavelet transforma-
tion. These methods require a proper predefined set of
wavelets to consolidate its robustness and accuracy, and
the lack of performance by these wavelets may be caused
by unofficial wavelets in our experiments. The Gabor
phase code of Daugman is more robust and distinctive
when compared with those of the other existing methods.
The experimental results show that our system had excel-
lent performance as compared with Daugman’s system,
which uses fewer Gabor features and an unknown Gabor
filter selection.

The execution time of our proposed iris recognition
system should be divided into two parts: training and
recognition. The training part, including Gabor filter opti-
mization and SVR modeling, is time consuming. Fortu-
nately, the training part can be performed in the period
of limited use (such as system initialization or at midnight
each day) and is almost oblivious for the use of iris recog-
nition. The average iris matching speed on our Intel Core2
Quad Q9400 2.66-GHz processor is shown in Table 6. An
execution time of 0.38 s/comparison of the two irises can
be satisfied for the real-time iris recognition system.

Conclusion

This paper has introduced an iris recognition system with
multiple local Gabor feature extractions and fusion. This
system uses two types of Gabor features generated by
dividing the Gabor response magnitude and phase to rep-
resent an iris. This system then trains an SVR model to
fuse them at score level for identification. In the process
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of Gabor filtering, adopted Gabor filters are optimized
by a proposed PSO and BPSO optimization method. Our
system has the advantages of adaptively tuning Gabor
parameters and embedding richer informative texture
into features and non-linear fusion strategies. The exper-
imental results on our self-developed JLUBR-IRIS, public
CASIA-I, and CASIA-V4-Interval iris datasets indicate
that our localized method can avoid blocking effects to
save more information when compared with other exist-
ing localized ways. The discriminative ability of the Gabor
features demonstrates that the optimized Gabor filters
may match the most informative frequency band iris tex-
ture than the predefined filters. Our score fusion by an
SVR model is superior to other single-feature methods in
terms of DI and ROC curves. In this paper, we also com-
pared the proposed method with other algorithms and
proved its validity and superiority.
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