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Abstract

In this paper, a third-order moment-based estimation of signal parameters via rotational invariance techniques
(ESPRIT) algorithm is proposed for passive localization of near-field sources. By properly choosing sensor outputs of
the symmetric uniform linear array, two special third-order moment matrices are constructed, in which the steering
matrix is the function of electric angle y, while the rotational factor is the function of electric angles y and ¢. With
the singular value decomposition (SVD) operation, all direction-of-arrivals (DOAs) are estimated from a polynomial
rooting version. After substituting the DOA information into the steering matrix, the rotational factor is determined

proposed algorithm.

via the total least squares (TLS) version, and the related range estimations are performed. Compared with the
high-order ESPRIT method, the proposed algorithm requires a lower computational burden, and it avoids the
parameter-match procedure. Computer simulations are carried out to demonstrate the performance of the
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1 Introduction

In the last decades, low-complexity parameter estima-
tion has become an important topic required for radar,
sonar, as well as communication [1,2]. Various efficient
solutions have been developed to cope with this issue.
However, most of these algorithms mainly focused on the
far-field source localization, such as the multiple signal
classification (MUSIC) method [3], estimation of signal
parameters via rotational invariance techniques (ESPRIT)
method [4], and their derivatives [5,6]. In order to locate
the near-field sources [7], several effective methods have
also been derived, which can be sorted as the follow-
ing two versions. The first version is named as spec-
tral searching methods, in which the two-dimensional
(2-D) MUSIC [8] was the original solution to the near-
field source localization problem. To cope with the
computationally inefficient 2-D searching procedure, a
symmetric uniform linear array-based method [9] was
proposed. Based on [9], resorting to the polynomial root-
ing, an improved method [10] was developed, which
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has further avoided the one-dimensional (1-D) searching
procedure.

The other version, based on the rotational invariance
of the underlying signal subspace induced by the trans-
lational invariance of the sensor array, is named as the
closed-form solutions. In this version, the high-order
ESPRIT method [11,12] is especially noteworthy. This
method was based on the cumulant domain data and
adopted the total least squares (TLS) solution to obtain
the direction-of-arrival (DOA) and range estimations,
which avoided the computationally inefficient 2-D spec-
tral search. However, two slight disadvantages of the
high-order ESPRIT method are that (1) the construc-
tion of four cumulant matrices leads to an additional
computational burden and (2) a parameter-pairing pro-
cedure is required for avoiding the estimation failure
problem.

In this paper, we present a computationally more effi-
cient ESPRIT algorithm to locate near-field sources. The
main task in the first step is to estimate the electric
angle y, whereas in the second step, ¢ related to y
is estimated for each near-field source. For the sake of
reducing the computational load, we compute the third-
order moments of sensor outputs and construct only
two special (N x N)-dimensional matrices M; and My.
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Since the steering matrix is the function of only elec-
tric angle y, we can adopt the polynomial rooting solu-
tion to obtain the DOA estimations for all near-field
sources. Instead of estimating two rotational factors from
different eigenvalue-decompositions (EVDs) encountered
in [11,12], the proposed algorithm estimates the only one
rotational factor from the TLS version, which can avoid
the unknown permutation ambiguity accompanied by
EVD, that is, the auto-pairing for DOA and range can be
realized.

The remainder of this paper is organized as follows:
Section 2 describes the near-field source localization
model. In Section 3, an efficient third-order moment-
based ESPRIT algorithm is proposed to deal with the near-
field source localization problem, and the performance
analysis of the proposed algorithm is also addressed.
Section 4 shows the simulation results. Section 5 presents
the conclusion of the whole paper.

2 Near-field signal model

Suppose that M near-field signals impinge on a symmet-
ric uniform linear array (ULA) introduced by Liang and
Yang [13]. This sensor array consists of L = 2N + 1 sen-
sors with element spacing d, and its array center is the
phase reference point. With a proper rate that satisfies the
Nyquist rate, the sampled signal received by the /th sensor
can be written as

M
X(t) =) sm(t)e/™ + my (), 1)

m=1

where s, (¢) is the source signal, (%) is the additive sensor
noise, and 1y, is the delay associated with the mth source
signal propagation time from Oth to /th sensor. After being
approximated by the Fresnel approximation, 7, has the
following form [11,12]:

T = Lym + P, )

where y,, and ¢,, are called electric angles and given by

d .
Vi = —2T 5 sin 6y, (3)
d2
m =TT — cos? O (4)
Ay

where A represents the wavelength of the source signal
and 6, and r;,, denote azimuth DOA and range of the mth
near-field source signal, respectively. For the rest of this
paper, the following assumptions are required to hold:

1) The source signals are statistically independent,
zero-mean narrowband stationary processes with
nonzero kurtosis;
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2) The sensor noise is zero-mean Gaussian process, and
independent of the source signals;

3) The sensor array is a symmetric ULA with element
spacing d < A/4, and the source number M is not
more than the half of the sensor number L, which
means M < N.

3 The proposed algorithm

In this section, we firstly review the definition of the
third-order moment introduced in [14]. Then, by prop-
erly choosing the array outputs, two special third-order
moment matrices are constructed, and a joint MUSIC-
and ESPRIT-based solution is derived for the near-field
source localization. Finally, the theoretical analysis includ-
ing computational complexity and parameter match is
carried out, which further evaluates the performance of
the proposed algorithm.

3.1 Construction of third-order moment matrix
The proposed algorithm exploits the richness of the third-
order moment of array outputs, which is defined as [14]

T

1
0,n,—n) = lim —
m3,(0, n, —n) T%OT; )

x E {x0 (8) % (t+71) &*, (t4+12) |

where n € [—N,N], the superscript * denotes conju-
gate operation, and T represents the number of snapshots.
Converging in the mean-square sense, the estimation of
(5) is expressed as [14]

T
1
(0,1, —n) = 3 a0 () (t4T0) 47, (¢472).
t=1

(6)

With the given signal model (1), we further obtain

m3x(0, n, —n)

T M
1
722 2 smsm (t+T) ), (t+12)
t=1 m=1
X ejfnmefjf—nm

M
1 )
=> T > sm(O)sm(t+11) 5}, (t+T2)e/>
m=1 t=1
M
=) ms, (1)
m=1
(7)
where 1 = 11 + 72, and m3, (7) represents the third-

order moment of the mth source signal.
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Based on (7), we can construct two spatial third-order
moment matrices M; and My, in which the (k, g)th ele-
ments are respectively given by

Ml (k)q) - mS,x(O!k — 4,9 — k)

M
— Z mss,, (7)e/2k=D¥m

m=1

(8)

M2 (k¢ q) = m?),x(_l’k — 49,9 — k)

I . , )
— Z mss (T)e/(fym+¢m)elz(/<7q)ym'

m=1
In matrix form, we have

M; = AM3; (1) A" (10)

M; = AQ®M;; (1) A (11)
where the superscript H is conjugate transpose operation,
M3 (1) is the third-order moment matrix of source sig-
nals, A = [aj,ay,...,ay] is the (N x M)-dimensional
. . i (N — T .

steering matrix, a,, = [1,e’2Vm, ., e2N I)Vm] is the
steering vector, and Q® is the (M x M)-dimensional
rotational factor and satisfies

Q = diag (e 7,77, ...

’e—/VM) (12)

® = diag (ej¢‘,ej¢2, ces ei‘pM) . (13)
Considering the third-order moment matrices in (10) and
(11), one can form the (2N x N)-dimensional matrix

M — M; ] [ AMs,(r) A7
T My | | AR®M;3, () A |

3.2 DOAs estimation for near-field sources

In this paper, assume that the value of M is known or cor-
rectly estimated by the Akaike information criterion (AIC)
of the minimum description length (MDL) detection cri-
terion [15]. Implementing a singular value decomposition
(SVD) operation to M yields

or=| 5 |7T=] afe |

C2N><M

(14)

(15)

where U € is composed of the left singular vec-
tors related to non-zero singular values, which spans the
signal subspace of M, U; € CNXM_ and Uy, € CN*M
span the signal subspaces of M; and My, respectively,
and the matrix T € CM*M s the unique non-singular
one.
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Note that the azimuth DOAs for all the incoming
sources can be estimated by finding the M peaks from the
following 1-D MUSIC spectral function

P) = (a(@)“ (1 - U1U11'I) a(G))_l (16)

where I denotes the identity matrix.

In order to reduce the computational burden and
improve the estimation accuracy, we obtain search-free
estimator of DOAs based on polynomial rooting.

Denote z = e/?”, we have

AN (17)

aiz) = [Lz,2%

The spectral function (16) can be rewritten in the follow-
ing polynomial [16,17]

P(z) = aT(1/2) (1 - U1U{‘) a(2) (18)

and the DOAs of all the incoming sources can be esti-
mated from the M closest to the unit circle roots of (18).

3.3 Range estimation for near-field sources

With the obtained azimuth DOA information, we can eas-
ily obtain the estimations (denoted by A and €) of A and
Q. Consider the total least squares (TLS) solution of the
relation U1 T = A, let V be the (2M x 2M)-dimensional
matrix of the right singular vectors of [ U, A ], if the

matrix is divided into four (M x M)-dimensional parti-
tions as [11,12]

Vi1 Viz

V= , 19
[V21 sz} (19)

then the solution for the TLS problem is given by
Tris = —ViaVyy - (20)

A similar approach will lead to the solution of Q&

& i -1

(sm)m = —EpEy), 1)

where Ejo and Ejy are the corresponding partitions of
the matrix E, which is generated from the right singular

vectors of[ A Uzi'TLs ]
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Therefore, the estimation ¢,, related to 7, can be deter-
mined as follows:

¢m = angle ((S}(i)) TLs (m, m)) — angle (S_Z(m, m)) .

(22)
Finally, the range estimation of near-field sources is given
by
d? ~

T = T —— cos? On-
m

(23)

3.4 Theoretical analysis of the proposed algorithm

The proposed algorithm is based on a symmetric ULA
with odd-numbered sensors, but the high-order ESPRIT
method [11,12] requires even ones. For the sake of sim-
plicity, we assume that the two algorithms adopt an array
of 2N + 2 sensors and that of 2N + 1 ones in the rest of
this paper. In this section, we assess the performance of
the proposed method from two ways, i.e, computational
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1) Computational complexity: Regarding the
computational complexity, we compare the major
multiplications involved in statistical matrix
construction, EVD or SVD implementation, and
MUSIC spectrum search. The high-order ESPRIT
method constructs four (N + 1) x (N + 1)-
dimensional cumulant matrices, and performs the
EVD of one (3N + 3) x (3N + 3)-dimensional matrix,
so the resulting multiplications are in order of

O (36(N + 1)2T +4/3 (3N + 3)%) (24)
where T is the snapshot number. The proposed
algorithm constructs two (N x N)-dimensional
third-order moment matrices M; and Mo,
implements the SVD of one (2N x N)-dimensional
matrix M, as well as executes once root-polynomial
construction and solution for DOA estimation, the
resulting multiplications are in order of

complexity and parameter match. O (2N 2T + 8/3N> 4+ 2MN ). (25)
2 T T T T
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Figure 1 The RMSEs of azimuth DOA estimations for two near-field sources versus SNR. 6; = 35°,r1 = 031,60, =20° 1, = 05A, T = 1,024,
500 independent trials.
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It is obvious that the proposed method is
computationally more efficient than the high-order
ESPRIT method.
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correspondence with those of Q. That is, the
auto-pairing for DOA and range is realized.

2) Parameter match: The high-order ESPRIT method 4 Computer simulation results
implements the EVDs of two matrices to separately In this section, we explicit some simulation results to
estimate DOA and range of near-field sources. evaluate the performance of the proposed algorithm. For
Although the eigenvectors related to non-zero all examples, a symmetric ULA with 15 sensors and ele-
eigenvalues from one EVD are equivalent to those of ~ ment spacing 0.25X is displayed. According to the def-
another EVD, the order may be different from each inition in [13], the Fresnel region of the above array
other. Therefore, an additional procedure is required  is r € (0.16A,25)). The source signals are set as the
to pairing them in a sense (see [7], section 2.4 for zero-mean exponentially distributed ones. The sensor
details). The proposed method firstly estimates noise is assumed to be spatial white complex Gaussian,
DOAs using (16) and subs~titutes ‘them into A and €2 and the signal-to-noise ratio(SNR) is defined relative
to obtain the estimations A and £, respectively. to each signal. For comparison, we simultaneously exe-
Based on this, the estimation of ® can be obtained cute the high-order ESPRIT method [11,12] and the
from the TLS version shown in (19). Since there are near-field Cramer-Rao bound (CRB) [18]. Note that the
no EVD operations for estimating the only one high-order ESPRIT method is based on a ULA with even-
rotational factor ®, the unknown permutation numbered sensors, so we adopt 16 sensors for it in the
ambiguity accompanied by EVD can be avoided, and  following experiments. The presented results are evalu-
the diagonal elements of 2@ are in one-to-one ated by the estimated root mean square error (RMSE)
2
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Figure 2 The RMSEs of azimuth range estimations for two near-field sources versus SNR. 6; =35°,r1 = 031,60, =20° 1, = 0.5A4, T = 1,024,
500 independent trials.
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from the average results of 500 independent Monte Carlo
simulations.

In the first example, we examine the estimation accu-
racy of the proposed algorithm versus the SNRs. The
localization parameters for two near-field sources are
(35°, 0.3A) and (20°, 0.51), respectively. The third-
order moment matrices are constructed using estimates
(T =1,024,7=0). When the SNR varies from —5 to
20 dB, Figures 1 and 2 show the RMSEs of DOA
and range estimations using the proposed algorithm,
respectively.

For comparison, both the high-order ESPRIT method
and the near-field CRB are also presented. It can be
seen from Figure 1 that the proposed algorithm out-
performs the high-order ESPRIT solution in estimating
DOAs of two near-field sources, and the RMSEs are rea-
sonably close to the near-field CRB. However, for the
range estimation, the proposed algorithm slightly under-
performs the high-order ESPRIT method. Note that the
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high-order ESPRIT method requires more computations
than the proposed method, and it requires an additional
parameter-pairing procedure.

In the second example, we assess the performance of
the proposed algorithm versus the number of snapshots.
The other simulation conditions are similar to the first
example except that the SNR is set at 2 dB, and the num-
ber of snapshots is varied from 7T = 400 to T = 2,000.
The RMSEs of DOA and range estimations for the pro-
posed method are displayed in Figure 3, and compared
with the high-order ESPRIT method and the near-field
CRB. We can see from this figure that the results are
similar to those of the first example. The RMSEs of
the proposed algorithm decrease monotonically with the
number of snapshots. For the DOA estimations of both
near-field signals, the proposed method shows a more
satisfactory performance than the high-order ESPRIT
method, and the related RMSEs are reasonably close to the
near-field CRB.

RMSE(degree)

-2

102 I T T T T T T T
source 1 the proposed method
—¥— source 2 the proposed method
— — —source 1 the high-order ESPRIT method
10' N o — % —source 2 the high-order ESPRIT method
S source 1 the near-field CRB ]
NN _ - —%—-source 2 the near-field CRB
~*-:I:*1\*~* _ -~
ST TR s -\:*‘—_—::‘*:______"_*—_—_::*
10° | -

10 ' '

400 600 800

r, = 0.5A, SNR = 2 dB, 500 independent trials.

| | | | |
1000 1200 1400 1600 1800 2000

The Number of Snapshots

Figure 3 The RMSEs of azimuth DOAs estimations for two near-field sources versus the number of snapshots. 6; =35°,r; = 03,6, = 20°,
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Figure 4 Computational complexity of the proposed algorithm and the high-order ESPRIT method versus the number of snapshots.
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In the last example, the computational burden of the
proposed algorithm is compared with the high-order
ESPRIT method. The number of sensors is 2N + 2 = 10.
When the number of snapshots is varied from 7' = 0 to
T = 2,000, Figure 4 shows the computational complex-
ity of the proposed algorithm and that of the high-order
ESPRIT method.

It can be seen from this figure that the proposed algo-
rithm is computationally less complex than the high-order
ESPRIT method.

5 Conclusion

This paper has presented a third-order moment-based
ESPRIT method to cope with the near-field source local-
ization problem. Our investigation has shown that the
proposed method is capable of yielding reasonably good
estimation of azimuth DOAs of near-field sources. Com-
pared with the high-order ESPRIT method, the proposed
method is efficient in the sense that it requires a lower

computational burden, as well as realizes the auto-pairing
for DOA and range.
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