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Abstract

This article presents an algorithm that handles the detection, positioning, and sizing of submillimeter-sized pores in
welds using radiographic inspection and tracking. The possibility to detect, position, and size pores which have a low
contrast-to-noise ratio increases the value of the nondestructive evaluation of welds by facilitating fatigue life
predictions with lower uncertainty. In this article, a multiple hypothesis tracker with an extended Kalman filter is used
to track an unknown number of pore indications in a sequence of radiographs as an object is rotated. Each pore is not
required to be detected in all radiographs. In addition, in the tracking step, three-dimensional (3-D) positions of pore
defects are calculated. To optimize, set up, and pre-evaluate the algorithm, the article explores a design of
experimental approach in combination with synthetic radiographs of titanium laser welds containing pore defects.
The pre-evaluation on synthetic radiographs at industrially reasonable contrast-to-noise ratios indicate less than 1%
false detection rates at high detection rates and less than 0.1mm of positioning errors for more than 90% of the pores.
A comparison between experimental results of the presented algorithm and a computerized tomography reference
measurement shows qualitatively good agreement in the 3-D positions of approximately 0.1-mm diameter pores in
5-mm-thick Ti-6242.

Keywords: Radiography; Nondestructive evaluation; Chain porosities; Laser welding; Image analysis;
Multiple hypothesis tracker

1 Introduction
Radiographic inspection is frequently used within the
manufacturing industry to detect and characterize defects
in a wide variety of structures. The characterization gen-
erally consists of determining the defect type, size, and
position within the structure. The size together with its
distance to other defects and to the surface are known to
affect the fatigue life of the structure [1]. This results in
three issues: firstly, the size is of interest to measure in
itself; secondly, the size is also of interest since assum-
ing no interaction between the defects, the smallest defect
that can be detected with high probability, will be a param-
eter limiting the predicted fatigue life; and thirdly, the
distance which is of interest is in three-dimensional (3-D).
However, only the distance in two-dimensional (2-D) is

Correspondence: erik.lindgren@chalmers.se
Department of Materials and Manufacturing Technology, Chalmers University
of Technology, Gothenburg SE-412 96, Sweden

available from conventional projection radiography, and
the distance in the third dimension therefore has to be
assumed. These three issues are encountered, for example,
with components built by laser-welded thin lightweight
alloys. Lightweight titanium alloys are extensively used
within the aero industry, and laser welding of these alloys
are increasing. However, the combination of lightweight
alloys and laser welding, including welding methods sim-
ilar to it, has been shown to result in the formation of
clusters of small submillimeter pores in the melted zone
of the weld [2,3]. The pores are small (the average diam-
eter is � 0.4mm), and as isolated defects, their effect on
fatigue life is considered negligible. However, if they can-
not be considered as isolated defects, depending on their
size, theymight no longer be negligible. Therefore, there is
a need to detect small, low contrast-to-noise ratio (CNR)
defects and to measure their size and 3-D positions.
The 3-D positioning has been solved by two funda-

mentally different approaches in the literature. The first
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approach is based on reconstructing the whole bulk vol-
ume using computerized tomography (CT). However, a
complete set of projections over the whole 180° rota-
tion is needed, and some structures, for example planar
structures, are therefore difficult to reconstruct. In certain
situations, the problem with an incomplete rotation set
can be solved by means of limited view tomography [4].
The second approach is based on not reconstructing the
whole volume but rather by focusing on reconstructing
the 3-D position of each defect, referred to as point recon-
struction methods [5]. In point reconstruction, the 3-D
position of the defect is calculated using the defect pro-
jection coordinates in the image plane for a few rotations
and/or translations.
The problem of detecting low CNR defects and of mea-

suring their size has instead received attention within the
more general automatic weld inspection analysis field.
The automatic analysis field approach is in general to seg-
ment out any possible defect [6] and then characterize it
[7-9], for example, by its type (lack of fusion or crack etc).
A merge between the segmentation part of the general
automatic analysis and the 3-D point reconstruction has
been shown to result in a high probability of detecting true
defects and a low probability of detecting false defects,
especially for low CNR defects [10]. After segmenting out
the defect indications in the detector plane, there will be
more false defects than true defects detected due to low
CNR. The true defects will form paths in the detector
plane as the object is rotated or translated, while the false
defects will not. The performance has been improved by
adding the classification step and removing the need for
prior knowledge of the setup geometry in [11]. If the 3-D
positions of the defects are not needed, they can instead
be used implicitly as in [12] where the defects are tracked
during constant translation to yield a computationally less
expensive algorithm.
The currently presented solutions to the coupled low

CNR and 3-D point reconstruction problem all have in
common that the defect needs to be detected in all rota-
tion projections. This need is difficult to fulfill as the
defect CNR decreases. Furthermore, the defect can also
fail to be detected in some rotation projection due to
extreme X-ray interactions. These extreme interactions
will eventually occur, though with low probability, due to
the inherent statistical nature of radiographic inspection.
However, this need of full detection is removed in the
solution proposed here. Instead of being formulated as a
vision system problem and solved by epipolar geometry
as in [10,11], it is explored using general tracking the-
ory [13]. In tracking theory, the state (3-D position) of
an object (defect) is tracked by assigning measurements
(indications) to it as time increases (rotation). In general,
the measurements do not have to be present in all time
points for the object to be successfully tracked. Therefore,

a tracking theory approach will take advantage of the path
of defect indications in the detector plane without mak-
ing it a limitation by demanding the defect to be detected
in all rotations. The main value of this work is that it con-
siders the coupled low CNR and 3-D point reconstruction
problem from a general tracking theory point of view.
The defect size is measured by considering the change

in intensity over the defect indication compared to the
background together with an intensity calibration, a pro-
cedure considered conventional in radiography. However,
a systematic methodology to set up optimal parameters
for the algorithms, including this last one, is proposed.
The methodology consists of using design of experiment
(DOE), robust design, and synthetic radiographs.
The outline of this article is as follows. First, the radio-

graphic inspection procedure together with the algorithm
is described. This is followed by an explanation of how
simulated radiographs are used to set up the algorithm
and to evaluate its performance. The result of the perfor-
mance evaluation using the synthetic radiographs is then
presented. This is followed by a description of the experi-
mental setup and the experimental qualitative results.

2 Algorithm and inspection procedure
The radiographic inspection setup geometry and the pro-
cedure is illustrated in Figure 1. Common setup geometry
parameters such as source to rotation point x coordinate
(Rx), source to detector distance (SDD), and object to
detector distance (ODD) are defined in the figure. The
intended inspection application is to detect, position, and
size submillimeter pore defects in thin (≈ 5mm) laser-
welded titanium. The laser weld geometry parametriza-
tion [14] is also indicated in Figure 1. The parameters
are nominal thickness (T), weld width (B), enforcement
radius (R0) and thickness (δ0), and undercut radius (R1)
and thickness (δ1).
The image analysis of the radiographs faces two main

difficulties, which are illustrated with synthetic radio-
graphs. Firstly, as can be seen in Figure 2, large-scale vari-
ations over small pixel length scales in the projected weld

Figure 1 Radiographic inspection method and cross section of
the weld.
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Figure 2 Weld geometry line profiles. Two line profiles at 0◦ and
25◦ rotation taken from simulated radiographs perpendicular to the
welding direction. Both profiles are arbitrarily scaled and offset for
illustrative purposes.

geometry dominate the gray scale variation compared to
the pore indications shown in Figure 3. The pore indica-
tions in Figure 3 are some 20 to 30 times smaller than the
large-scale variations in Figure 2. Secondly, as indicated
in Figure 3, the CNR of the pore indications are low. For
pores at the size of the detector pixel size, the contrast is
highly sensitive to the pore size. The contrast is approx-
imately proportional to radius3 or even worse depending
on its size compared to the detector pixel size. Further-
more, the pore indication is small in terms of affected
number of detector pixels.
The algorithm is divided into the following three tasks:

segmentation, tracking, and size measurement. The seg-
mentation output is a set of coordinates of pore projection
indications in the radiographs from the different rota-
tions. This list is input to the tracker, which solves for
the 3-D coordinates at the same time as it filters out false
pores. The pores proposed as true pores are then paired
up with their projection coordinates and used as input
to the size measurement algorithm. It should be noted
that the concept is to retrieve what is interesting, the
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Figure 3 Pore indication line profiles. Line profiles from simulated
radiographs representing the low and high �cnr. In total eight pores
are indicated by dotted lines at radii (0.055, 0.065 . . . 0.125mm). The
intensity is approximately 20 to 30 times less than the the intensity in
Figure 2.

pore indications, rather than to first make a low-noise
radiograph.

2.1 Segmentation
The segmentation should output a set of 2-D pixel coor-
dinates representing the mass centers of all pore indica-
tions in each of the radiographs. It is preferred to have
a high true-positive rate, a low false-positive rate, a high
precision in the mass centers, and a high uniqueness.
Where a high uniqueness is defined as each pore coor-
dinates is only listed once among the coordinates, three
different segmentation methods (see Figure 4) have been
evaluated: a radial symmetry based, a cross correlation,
and an energy weighted cross correlation. To address the
uniqueness, a merger algorithm common to all methods is
applied as a final step.

2.1.1 Radial symmetry
The idealized pore will be projected with circular symme-
try in the intensity pixel values around the mass center
point when the intensity is otherwise constant. Therefore,
a high level of circular symmetry is expected to be a good
measure of a pore projection center. In [15], a measure
of local symmetry based on normalized axial moments is
derived and implemented as a discrete symmetry trans-
form (DST). The DST is calculated as given in [15,16]
according to

DST(i, j) = 1 −
√∑

k(Tk(i, j)2)
nrs

−
(∑

k Tk(i, j)
nrs

)2
,

(1)

Tk(i, j) = 1
Tmax

∑
(l,m)εCr

|(i − l) sin(
kπ
nrs

) (2)

− ( j − m) cos(
kπ
nrs

)|lrs × I(l,m).

The sum in Tk(i, j) is summed over the indexes which
are on the boundary of the pixelated circle Cr of radius
rrs with pixels centered in (i, j). In total, nrs number of
local axial moments Tk at the order lrs are calculated and
summed over with k = 0, . . . , nrs −1 at each i, j. The max-
imum value of Tk is then used as the normalization factor

Figure 4 Segmentation overview. Overview of the different
segmentation methods of the algorithm.
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Tmax. The transform will look for symmetry around the
axis with slope given by kπ/nrs, that is, axes in the case of
nrs > 1.
In [15], the DST is only applied at points of nonunifor-

mity; here, the nonuniformity stage is changed to identify
potential pore projection center points instead. The fol-
lowing differential expression is proposed to identify a
symmetric peak around the second index j with possible
radius ≈ rrs:

E(i, j) = [ I(i, j + rrs) − I(i, j + rrs + 1)]
+[ I(i, j − rrs) − I(i, j − rrs − 1)] , (3)

where the direction of index j is perpendicular to the
weld geometry. E will be large when slopes are opposite
around (i, j) and, for example, identical to zero for a per-
fect line. As a final step, the DSTmatrix is convoluted with
a Gaussian kernel G with standard deviation σrs resulting
in a correlation image:

Crs(i, j) = (E(i, j) × DST(i, j)) � G. (4)

This procedure is run irs number of times for different rrs,
with the result averaged. It should be noted that when the
number of axial moments is set to 1 (nrs = 1), the correla-
tion image will only depend on E(i, j) since DST(i, j) = 1
for all i, j.

2.1.2 Cross correlation
If a mathematical model of the pore projection can be
derived, such a model can be correlated against the image
to find correlation maximums and hence the locations of
the pore indications. The same linear X-ray attenuation
model as in [14] is used but with the detector approxi-
mated as ideal and the X-rays approximated as parallel.
The 2-D projection of the pore with radius rcc pixels
centered in c is approximated as

K(i, j) ∼ e2μ
√

r2cc−[(i−c)2+(j−c)2] − 1, (5)

where μ is the linear attenuation per pixel for the sur-
rounding material. Furthermore, the equation is only valid
for (i − c)2 + (j − c)2 ≤ r2cc.
The detector model used for the synthetic radiographs

will smooth the pore projection indications due to its
point spread function. This smoothing will also be present
in real radiographs. However, due to the idealized detec-
tor model used, this effect is not included in Equation 5.
Furthermore, the buildup factor (fraction of scattered to
direct radiation) is assumed to be approximately constant
over the area of the projected pore. This has been shown
to hold for this application in [14]. Finally, probably the
least valid assumption is that the background intensity
profile, in this case dominated by the weld geometry, is
changing little compared to the change due to the pore.

This assumption is not valid, and therefore, geometry-
related intensity changes must be reduced. This reduction
is done using a simple local median with radius rme,
I�(i, j) = I(i, j) −Mediank,lεrme I(i± k, j± l). As a last step,
the normalized cross correlation is calculated at each pixel
against the model proposed in Equation 5 according to the
standard equation:

Ccc(i, j) = (6)∑
(l,m) K(l,m) × I�(i + l, j + m)√∑

(l,m)(K(l,m) − 〈K〉)2 × I�(i + l, j + m)2
,

where the summation is over all indexes within a square
of size scc and 〈〉 denote average. A value close to 1 will
indicate a high similarity to K.
A variation of the cross correlation method is also con-

sidered and referred to as energy weighted cross correla-
tion. The cross correlation is scaled with the energy in the
intensity according to

Cene(i, j) = Ccc(i, j) ×
∑
(l,m)

I�(i + l, j + m)2, (7)

where the indexes l,m is given by K(l,m) 	= 0.

2.1.3 Mean shift merging
The last step of the segmentation is a merger algorithm,
which intends to make the coordinates unique. The algo-
rithm is based on the mean shift algorithm [17]. The
mean shift algorithm is generally used to find high-density
regions (clusters) in multidimensional spaces. Here, it is
used to find the centers of pore indication clusters in 2-D.
In more detail, the merger iteratively selects the pixels

in the correlation image with values larger than CT . For
each pixel above CT , the mean shift algorithm is restarted
and iterated until it has converged into a local maximum
in density. At each iteration, the mass center within a
radius rms is calculated and compared with the previous
mass center, the mean shift vector. In the next iteration,
this next proposed mass center is used. This is repeated
until the solution is considered as having converged, with
the mean shift vector changing less than δms percent. The
converged coordinates are incrementally averaged in bins
of 1-pixel sizes. As a consequence, indications closer than
≈ rms will not be resolvable.

2.2 Tracking
The tracker should not only invert the 3-D to 2-D X-ray
projection for the defects to solve for the 3-D physical
coordinates of the defects in the weld but at the same time
also handle the high false-positive rate from the segmen-
tation algorithm. Formally, a tracker tracks a state X of
a single or multiple objects by assigning measurements
Y to different objects as time increases (data associa-
tion). The measurement is predicted, and the state of each
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object is updated when a new measurement is assigned
to it (filtering). The measurements are the set of pore
projection coordinates in the detector plane given by the
segmentation.
The filtering step consists of measurement prediction

and object state vector update. It is often handled by a
member of the Kalman filter family (see for example [18]).
In this article, the extended Kalman filter (EKF) is used
since the measurement function Y = h(X) is nonlinear.
The nonlinearity is rather low, and the EKF is assumed to
be sufficient. The filter state variables are the 3-D coordi-
nates p = (px, py, pz) of each of the pores and the rotation
angle ω. The mass center coordinates m of the projection
of an ideal pore following the notations in Figure 5 are
given by

my = SDD[Tx sinω + Ty cosω + Ry − Sy]
Tx cosω − Ty sinω + Rx

+ Sy,

mz = SDD[ pz − Sz]
Tx cosω − Ty sinω + Rx

+ Sz, (8)

Tx = px − Rx,
Ty = py − Ry,

where m is in millimeters and is translated and scaled
into the detector plane before it is used. These equations
are then linearized in the EKF framework, and a stan-
dard Kalman filter approach is applied. The measurement
errors are assumed to be Gaussian with a diagonal covari-
ance matrix. The diagonal elements are denoted R for
the pore indication coordinates and Rω for the angle. The
states will typically oscillate weakly, an effect which can
be modeled by a nonzero state covariance matrix. How-
ever, it is set to zero since the oscillations are assumed
to be negligible compared to the measurement errors.
Being linearized, the EKF is sensitive to the initial state.
However, in some cases an initial state close to the true
state can be derived from two measurements; therefore,
the state initiation is delayed until measurements from
two rotations are present. Allowing rotation only around
one of the euclidean base vectors, one can solve the two

Figure 5 Setup geometry. The pore mass center with position
vector p is rotated with an angle ω around the z-axis with respect to
the rotation point (Rx , Ry , 0). The pore is projected on the detector
plane atm = (SDD,my ,mz) (see also Figure 1).

equations in Equation 8 for the two unknown coordi-
nates ( px, py). Additionally, pz is approximately known
from the rotation axis limitations. The state initiation is
accepted if Gx0 < px < Gx1 and otherwise rejected.
The gates Gx0 and Gx1 are approximated from the setup
geometry. The initial state could also be derived using
the formalism of vision systems, relaxing the demand on
rotation axis, though this approach has not been taken
here.
One data association method suitable for the situation

is the multiple hypothesis tracker (MHT) originally pre-
sented in [19]. It is suitable when the number of objects
to track is not known a priori and/or when the clutter
density is high. The implementation derived is very sim-
ilar to the ‘Structured Branching’ MHT as described in
[20]. The assumptions made are that each object gener-
ates at most one measurement but each measurement can
originate from many different objects. The last assump-
tion accepts overlapping pore projections in some of the
rotations.
In the nomenclature of tracking, as the object changes

its state in some partly known way, the measurements
belonging to it forms a track and the track can be used
to solve for the state. The main idea of the MHT is that
it computes many possible tracks from different combina-
tions of measurements and selects only themost probable.
The different combinations can be kept in a tree, with the
path from each leaf to the root representing one solution.
The probability for each track (object) to be a true positive
is, if it is not properly normalized, referred to as its score.
The score is constructed by the summation over all nodes,
one at each rotation k, for each track as log likelihoods
according to

scorek = scorek−1 + 	score, (9)
	score = −d20, (10)

	score = Smht × ln
[
1/

√
det(RS)

]
− d2, (11)

where Equation 10 refers to the case of no measurement
(the pore indication is not detected in the radiograph)
and Equation 11 refers to when a measurement is present.
RS is the measurement residual covariance matrix, which
increases with R, Rω, and the covariance matrix calculated
in the Kalman filter step. Smht is a scaling parameter to
weight the two terms. Further, d2 is a normalized statisti-
cal distance indicating how far away the measurement is
from the prediction with respect to the uncertainty indi-
cated by RS. See [13] for an in-depth discussion on the
constants and the scores.
In the last paragraphs of this subsection, (row X) will

be used to refer to row number X in the following pseu-
docode of the implementation:
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1 for each rotation
2 for each root
3 for each leaf
4 for each measurement
5 gate
6 add node
7 add no measurement node
8 for each leaf
9 prune
10 add roots
11 decide
12 combine

Adding new nodes to the tree is done with great care for
the tree not to grow too large. The gates Gz and Gy are
applied on the two detector coordinates (row 5). If the dif-
ference between the previous measurement and the new
one is within the gates, a new node for the measurement
is added (row 6). There is always a node added for the
no measurement case (row 7). The no measurement case
represents the hypothesis that the measurement was not
detected in the current rotation.
Apart from the gating, a pruning of the tree is also con-

ducted. At the pruning (row 9), the leaves with 〈score〉 =
scorek/k ≥ T1 are accepted and kept while the rest are
rejected and pruned. In addition, a maximum limit of
five leaves per root is applied, where the leaves with the
highest 〈score〉 are kept. These two constants are cho-
sen to yield reasonable run times. The pruning is skipped
for those trees which have less than three rotations since
two rotations are required for deriving the initial state
alone.
At the first rotation, all measurements lead to new track

roots, but at later rotations, only the measurements which
are far away from any current track prediction are added
(row 10). The distance to other track threshold is given
by d2min > d2upd, where dmin is the minimum distance to
any track prediction for the measurement at the current
rotation. This is done to assure that those measurements
which are likely not to belong to any existing track are
identified as new roots.
At the decide stage (row 11), the single most proba-

ble track (pore) from each tree root is selected and either
accepted or rejected. The most probable track is the leaf
with the highest 〈score〉. In addition, the following condi-
tions must be met in order for the selected tracks to be
accepted: 〈score〉 ≥ T2, Gx0 < px < Gx1, and it should
have less than ilost number of no measurement nodes.
As a final step (row 12), the tracks (pore proposals)

which have states close to each other are combined. This
combine step is required since the creation of new tracks
might lead tomultiple pore proposals originating from the
same physical pore. The distances between all pair of solu-
tions are verified not to be closer than δu (in millimeters);

if so, the highest 〈score〉 solution is chosen. This is iterated
until there are no solutions closer than δu (in millime-
ters). The solution will, in most cases, not be unique but
is believed to represent reality just as good as any of the
other solution. As a consequence, δu becomes a resolution
limiting parameter.

2.3 Size measurement
Two possible approaches to measure the size of a pore is
either by its projection spatial size or intensity. A projec-
tion spatial size approach is assumed to have lower reso-
lution in size than an intensity based for pore sizes at the
order of the detector pixel size. Therefore, an intensity-
based approach is used, where a scalar depending on the
intensity is constructed to correlate with the pore size.
Different scalar proposals are constructed in three steps.
Firstly, the natural logarithm is optionally applied to the
radiograph. Secondly, the weld geometry background (see
Figure 2) is removed by subtracting the local median of
size rme from the original radiograph as

I�(i, j) = I(i, j) − Mediank,l≤rme I(i ± k, j ± l). (12)

Thirdly, a sum U is constructed for the pore indication
centered at (i0, j0) according to

U =
∑

i=i0,j=j0±rsiz

F[ I�(i, j)] , (13)

where the index j is along the direction perpendicular to
the weld direction. Three functions F are evaluated: linear
F = I�, absolute value F = |I�|, and square F = (I�)2. The
sum U is then averaged over the radiographs at different
rotations. The proposed method will yield relative pore
sizes; to get real pore sizes, a calibration step is required,
which is not elaborated on in this article.

3 Setup and performance evaluation with
simulations

As has been shown in the previous sections, there is a
set of algorithm control parameters, which need to be set
for the algorithm to work. An iterative DOE approach in
which parameters are screened, typically not full factor
experimental matrices, and frozen out if not important for
the calculated performance response has been used. The
algorithm is made self-evaluating (see Figure 6) by sim-
ulating the inspection. The inspection simulation output,
a rotational sequence of simulated radiographs, is input
to the algorithm, and its performance is evaluated for a
number of such simulated inspections.
A robust design framework [21] is used where the fac-

tors affecting the algorithm are separated into noise and
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Figure 6 Algorithm evaluation overview. Overview of the
evaluation of the whole algorithm.

control factors. A noise factor consists of two sets of
min and max values for a list of radiograph sequence
simulation control factors. Each set of min andmax values
represents one level of the noise factor. As can be seen
in Table 1, three different noise factors at two levels (NF
low and high) are used: �cnr, �geo, and �det. The �cnr
represents the inherent statistical nature of radiographic
inspection. It consists of the two main CNR controlling
parameters, D and S, in the X-ray system model. They
control the ratio of high to low spatial frequency noise in
the radiographs and the overall noise level. The �geo rep-
resents process variation in the weld geometry. The high
level reproduces a variation similar to the weld class with
medium geometry requirements. Finally, the �det con-
sists of the width of the detector point spread function,
with Lorentzian shape. The X-ray detector is not further

specified apart from its pixel size, which is set to 0.05mm.
For a detailed discussion on the noise parameters and the
X-ray model together with its restricted validity range,
see [14,22]. The performance evaluation should be inter-
preted as a performance indication due to the rather
unspecified X-ray setup, with its advantage of a potentially
high degree of generalization, and the simplified synthetic
radiograph model.
The simulation of a single inspection of a single weld

with pores consists of a sequence of radiographs taken at
different rotations. The sequence is denoted as rscan for
rotational scan. The rotation angles, amplitude and count,
as given in Table 1 are chosen for the inspection procedure
to be industrially feasible and without any other optimiza-
tion. A large amount of rscans is then pre-generated and
grouped together in sets having the same noise factor set-
tings. These groups will have different amount of inherent
variation. The control factors belonging to a noise factor
all have their values set to random numbers. The ran-
dom numbers are drawn from uniform distributions with
ranges set to either NF low or NF high as indicated in
Table 1. For example,�geo equals H indicate that for those
rscans the width parameter (B) on the source side has
been uniformly random-sampled within 2.6 to 3.4 mm
and so on. Finally, for each rscan, a unique set of pore
positions and sizes are randomly sampled from a uni-
form distribution (see Table 1). The position distribution

Table 1 Radiograph simulation parameters and noise factors

Grouping Parameter Unit NF Fixed at NF low NF high

Pores Min interspacing mm 0.35

Count 8

Positions mm Uniform random

Min to max radius mm

Weld Plate thickness (T) mm 5

Width (B) DS mm �geo 12 5 ± 1

Reinforcement (δ0) DS mm �geo 1.5 0.75 ± 0.2

Undercut (δ1) DS mm �geo 0.5 0.75 ± 0.2

Width (B) SS mm �geo 8 3 ± 0.4

Reinforcement (δ0) SS mm �geo 0.8 0.55 ± 0.2

Undercut (δ1) SS mm �geo 0.4 0.55 ± 0.2

Setup SDD mm 600

ODD mm 25

Rotation angle (ω) degrees 0, 5, 10, 15, 20, 25

Rotation point (Rx) mm 567

X-ray Attenuation mm−1 0.124

D �cnr 110 160

S �cnr 6, 000 12, 000

PSF width (σdet) pixel �det 0.93 0.93 ± 0.08

See Figure 1 for details on weld and setup geometry. DS and SS refer to detector and source side, equivalent to face and root side. NF is shorthand for noise factor.
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is limited by aminimum allowed interspacing between the
pores.
The algorithm control parameters are varied in an

experiment matrix followed by a performance measure-
ment. For eachmatrix row, the algorithm is run for a small
number of different rscans to get some variation in the
input. This is essential since the main difficulty is to han-
dle the variation in the input, not a limited number of
special cases.
The setup of the algorithm control parameters is sep-

arated and suboptimized with the segmentation and the
tracker screened one at a time. Two responses are used
to set up and compare the different segmentation meth-
ods. The overall aim is to find as many pores as possible
but even more so to know that no pores larger than
some defined size is missed. In addition, the tracker will
be able to handle some missing measurements for each
pore (ilost). One might argue that a good measure of the
segmentation performance is the averaged worst case sce-
nario. Therefore, the rotational probability of a hit is used
as one of the responses and defined as

POHrot ≡ 〈min(POHp)〉rscans, (14)

where POHp = TP/N with TP being the true-positive
count for pore p over all the N rotations, and POHrot ×N
is the number of rotation radiographs a pore is detected
in. Another relevant response is the measure of the cost
of detecting the TPs in terms of the number of false pos-
itives per rotation FProt ≡ 〈〈FPr〉rotations〉rscans, where FPr
is the total false-positive count for each rotation when TP
is maximized.
For both the above responses, each pixel output by the

merger procedure, which is the last step in the segmen-
tation algorithm, must be classified as either a TP or
FP. The merger procedure is set to retrieve at most Cn
number of the highest valued pixels from the correlation
image, referred to as candidate pores. In addition, the
ground truth is known since the expected pixel coordi-
nates for each pore can be calculated using Equation 8. To
associate each true pore projection with one candidate, a
simple nearest neighbor approach with no re-sampling is
used. First, the real euclidian distances between each true
known pore and all Cn candidates are calculated. This is
followed by iteratively selecting the pair with the smallest
interspacing distance until all p true pores are associ-
ated with one-pore candidates. The associated pairs might
not be unique, but the method is simple and fast and is
believed to be a good measure on the average. Finally, to
be considered a TP, the distance to the nearest true pore
should be less than 1.2 pixel; the threshold is chosen to be
slightly larger than 1 pixel.
The tracker is set up and evaluated by setting the last

threshold T2 high enough to ensure that all candidates
that made it through the tree pruning are present. Each

pore candidate consists of its real 3-D coordinates, which
are compared with the known exact positions using the
same nearest neighbor approach as in the segmentation
evaluation. The candidate is then considered a TP if the
distance to the closest true pore is less than a predefined
threshold (0.25mm). If at this stage all pores are found
(TP = P), a measure of the relative performance of the
settings used in the algorithm is the separation of the
scores for the TP and FP classifications. The concept of
sensitivity, a measure of separation, is introduced in this
context as

Sensitivity = 〈score〉TP − 〈score〉FP√
s2TP + s2FP

, (15)

where the averages are over all pores in all rscans at the
same time, and the s denotes the standard deviation of
each of the groups. This is equivalent to the statistic used
in common statistical hypothesis testing; note also its sim-
ilarity to the Taguchi signal to noise ratio (see for example
[21]). Two critical assumptions made are that the stan-
dard deviation is a good measure of the relative spread in
the data and that the score distribution shape is approxi-
mately constant. One possible cost for finding a lot of the
pores and maximizing sensitivity is the precision in their
3-D positions. Therefore, the error in positioning is added
as a response. The error is defined as the distance between
the true 3-D position (input to the simulation) and the
one retrieved as a result from the tracker. The spread in
the errors is then accounted for when constructing the
scalar response by approximating and setting it to the 97th
sample quantile [23] of the error in position using all the
TPs.
Both the decision on TP and FP at the segmentation

setup and the state model in the Kalman filter is based on
a simplified but very similar X-ray interaction model as
the model used for synthetic radiographs. Therefore, both
the segmentation and tracker evaluation could poten-
tially contain an inverse crime [24], but they do not since
statistical noise is added to the radiographs.

3.1 Probability of a hit
A common method to quantify the performance of an
NDE system is to use the methodology of probability of
detection (POD). The standard POD against defect size
plot is constructed by keeping as much as possible con-
stant while changing the characteristic size of the defect.
In order to get a high confidence in the POD, it is nec-
essary to have many well-defined defects with the same
size. However, to produce well-defined defects is both
expensive and time consuming; the same is true for simu-
lations, which can be computationally expensive. Different
schemes to handle this have been developed; for exam-
ple, [25,26] is frequently used within the aero industry.
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Assumptions are made on the POD curve shape and
underlying statistical distributions in order to facilitate
an effective approximation of the confidence intervals,
assumptions which are unrealistic for this automatic NDE
system. Others [27] try to approximate the confidence
intervals with the use of sophisticated DOEmethods com-
bined with less strict assumptions on the NDE system.
However, in this article, the POD and the 95% lower
confidence interval (POD95) methods of [28] is used.
In [28], the hit/miss formulation is used, where each

defect is either detected (hit) or not detected (miss). As
already noted in the previous section, in the present work,
a hit is defined as detecting and 3-D positioning of a pore
to an accuracy of 0.25 mm. Anything else is a miss or a
false positive. This threshold is set to less than the min-
imum pore interspacing (see Table 1) but large enough
to be a relevant length scale. The probability of a hit is
used and defined as POH = TP/P, and used to discrim-
inate it from the usual meaning of the POD. Assuming
that each pore has the same POH as all the other pores
in the same range interval, the binomial distribution can
be used as in [28]. The main advantage in using the bino-
mial approximation is that the confidence intervals can
be estimated from TP and P using standard methods and
implementations.
In order to get a high confidence in the POH using few

defects, the optimized probability method [28] has been
used. The method is outlined here for completeness (see
[28] for details). Iteratively, for one radius range at a time, a
set of POHs at a lower confidence level of 95% (POH95) is
calculated by including one lower radius interval at a time
into the calculation. For each radius range, the POH95 is
set to the largest of these POH95s. A critical assumption is
that the true detectability increases with increased defect
size. Curves produced using the optimized method will in
general extend the high POH region into lower sizes but
at the same time be conservative.
The false detection rate FDR = FP/(FP + TP) is used as

a measure of false alarms. This is believed to be relevant
since the pore distribution output from the tracker and in
the future input to the fatigue life model will consist of
FP + TP number of pores.

3.2 Size measurement
A robust scalar measure of the error in size measurement
is used to compare different size measurement methods.
The ground truth for the size of each pore is known
together with the projection coordinates in each radio-
graph output from the tracker algorithm. The error mea-
sure is constructed by first calculating the U as given in
Equation 13 for each pore in each rotation in all rscans.
Pairs of a known radius together with a calculated U
is produced. The radius is discretized into a number of
radius intervals [ r − 	r, r], where 	r is a parameter

indicating the required resolution. For each radius inter-
val, the range of U is calculated [U0,U1]. This is followed
by selecting the set of all radius R havingU0 ≤ U ≤ U1, in
order to calculate the new radius interval range as R+ =
max(R) − r and R− = min(R) − r. Finally, the scalar mea-
sure of the relative performance E = E++E− is calculated
by summing over N radius intervals ri according to

Ek = 1
N	r

N∑
ri=1

|Rk|, (16)

where k = ±. A high performance is indicated by E being
close to 1. It should be noted that the method makes no
assumptions on the shape of the correlation between U
and the radius and also accounts for the outliers.

4 Simulation results
This section is both an example of the setup and evalua-
tion methodology presented in the previous section and
a description of the simulation results. In the setup and
evaluation, the algorithm is divided into three parts and
performed in the following order: the segmentation, the
tracker, and the size measurement. Each part is optimized
and evaluated with all the other parts of the algorithm
fixed at optimum performance.

4.1 Segmentation
All three segmentation methods are individually opti-
mized in order to select the one with the highest per-
formance. For each segmentation method and for each
control parameter row in the experimental matrix (con-
figuration), all four combinations of the (L) and (H) of
the noise factors �geo and �cnr are evaluated. The best
result for each method and noise factor combination is
presented in Table 2, where the best result is defined
by maximizing POHrot, followed by minimizing FProt if
there is more than one configuration with the maximum
POHrot. The best configuration chosen this way will typ-
ically be different for each of the four different noise
factor combinations. The main conclusion from Table 2 is
that the cross correlation with energy term method have
the lowest performance (POHrot × 6 = 2.8 at �geo =
H,�cnr = L), and it is therefore excluded from further
considerations.
The definition of the best configuration is then extended

to include the rule that the best configuration for each
segmentation method should be the same for all noise
factor combinations. As indicated in Table 3, the radial
symmetry method still performs better in all noise factor
combinations than the correlationmethod. Common con-
trol parameters to both methods are the merger settings
rms = 2.8 px and δms = 2%. The best configuration for the
cross correlation method is rme = 4 px, scc = 5 px, and
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Table 2 Segmentationmethods screening

�cnr �geo Method POHrot × 6 FProt

L L Corr 4.0 104

L L Radial 4.5 320

L L Corr energy 4.0 160

H L Corr 3.8 80

H L Radial 5.5 16

H L Corr energy 5 24

L H Corr 3.0 440

L H Radial 5.0 400

L H Corr energy 2.8 560

H H Corr 3.4 400

H H Radial 5.3 24

H H Corr energy 4.0 480

Cn is fixed at 450 for �geo = L and 600 for �geo = H. Corr, cross correlation;
Corr energy, cross correlation with energy as given by Equation 7; Radial, radial
symmetry.

rcc = 0.1mm. The best radial symmetry method config-
uration is rrs = 1 px and 2 px, irs = 2, nrs = 1, lrs = 1,
and σrs = 1.55 px. As can be seen, in the optimal radial
symmetrymethod configuration, the DST is not active but
only the symmetry differential operator E.
A more detailed performance evaluation is conducted

on the radial symmetry method, which was the best seg-
mentation method. In Table 4, the effect on POHrot and
FProt when extending the pore radius range down to
0.055mm and changing the �cnr levels can be seen. The
CNR for the 0.055mm pore is roughly CNR ≈ 1 ± 1 for
�cnr = L′ and CNR ≈ 7 ± 1 for �cnr = H ′. The segmen-
tation is evaluated using the same experimental matrix as
used in Table 3, and the optimum configuration is veri-
fied to be the same. Furthermore, the conclusion is that for
the current radius range, the change in POHrot is mainly
due to the change in CNR and the noise spatial frequency

Table 3 Segmentations methods with constant control
parameters

�cnr �geo Method POHrot × 6 FProt

L L Corr 3.3 280

L L Radial 4.3 360

H L Corr 3.0 280

H L Radial 5.5 104

L H Corr 2.8 520

L H Radial 5.0 400

H H Corr 3.3 520

H H Radial 5.0 24

Results for the segmentation algorithm with constant segmentation control
parameters for each method. The notation is the same as in Table 2.

Table 4 Radial symmetry segmentation at different CNR

�cnr S D Radius POHrot FProt
[ 104] (mm) [ 6]

L′ 2.4 160 0.055 3.8 280

L′ 2.4 160 0.085 4.8 16

L′ 2.4 160 0.10 6.0 0

M′ 5 270 0.055 5.3 168

H′ 8 350 0.055 6.0 0

Results for segmentation method radial symmetry when changing the
minimum pore radius and the CNR (�cnr). The radius represent the minimum
radius in the pore distributions, and the max radius is fixed at 0.13 mm.

characteristics (different �cnr ), rather than the change in
spatial size of the 2-D indication.

4.2 Tracking
The tracker part of the algorithm is optimized and eval-
uated with the segmentation control parameters fixed.
The two optimized responses are the sensitivity and the
97th quantile of the positioning error. First, an iterative
approach using DOE screening and space filling experi-
mental matrices is conducted. The number of rows in the
experimental matrix (configurations) for sets 1, 2, and 3 in
Table 5 are 15, 40, and 60. Each configuration is evaluated

Table 5 Tracker DOE iterations

Set Name Min Max Frozen Unit

1 T1 −300 −200 −300

T2 −2 −1.8 103

d2upd 6 8 8 105

d20 20 80 20

δu 0.33 0.35 mm

R 1.4 8 10−5 mm2

Rω 7 10 10−7 rad2

P0x,y,z 0.01 0.03 mm

P0ω 1 3 1 10−4 rad

Smht 6 15

2 T2 −10 −9 −9 103

δu 0.25 0.35 0.25 mm2

R 2 20 10−5 mm2

Rω 7 30 10−7 rad2

P0x 0.01 0.1 0.05 mm

Smht 3 15

3 R 2 20 6.5 10−5 mm2

Rω 7 30 10 10−7 rad2

Smht 3 15

Overview of the iterative DOE approach leading to, in this case, one sensitivity
control parameter Smht. Frozen refers to fixed value after conclusions were
drawn using the responses of the active set. The parameters P0x , P

0
y , P

0
z , S

0
ω are the

diagonal elements of the initial covariance matrix in the tracker.



Lindgren EURASIP Journal on Advances in Signal Processing 2014, 2014:9 Page 11 of 17
http://asp.eurasipjournals.com/content/2014/1/9

Normalized control factor

Se
ns

iti
vi

ty

4

5

6

7

8

0 1

R

0 1

R ⋅ Smht

0 1

Smht

Figure 7 Tracker parameters R and Smht. Correlations found in set
3 as the result of sets 1 and 2 in Table 5. Each control factor or their
combination is normalized by translation and scaling.

on eight rscans. SinceCn is held fixed and POHmonitored
to be close to 1, the clutter density can be considered con-
stant. The gates are also fixed atGz = 4mm,Gy = 30mm,
Gx0 = 565mm, and Gx1 = 579mm. In addition, at most,
two measurements are accepted to be lost (ilost = 4). The
results of the iterative process can be seen in Table 5. As
can be seen in Figure 7 in combination with Table 5, R
can be frozen out and Smht is then used to maximize the
sensitivity.
In order to explore which noise factor with the highest

effect on the sensitivity, the tracker is evaluated with the
noise factors set to difficult one at a time and once for all
of them. For each noise factor combination, the tracker
is evaluated using two different levels of Smht and CT . As
can be seen in Figure 8, it is the CNR (�cnr) that has the
largest effect on the sensitivity, not the width of the detec-
tor point spread function (�det) nor the process variation
in the weld geometries (�geo).
In order to set a value on Smht, a full factor experiment

on Smht andCT is executed on a set of rscans with themost
difficult noise factors combined (�cnr = L, �geo = H,
�det = H). As can be seen in Figure 9, approximately 5 is
a good value on Smht. Furthermore, the 97th percentile of
the error in positioning is within 0.131 to 0.138 mm.
As a final setup and optimization step, the effect of dif-

ferent minimum radii in the pore radius distribution on
the performance is explored. Three sets of rscans with
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Figure 8 Sensitivity for different noise factors. Sensitivity is shown
for different combinations of noise factors and two levels on Smht and
CT .
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Figure 9 Sensitivity against Smht at different CT . Sensitivity as the
whole algorithm is swept for different CT and Smht. The data is based
on �cnr = L, �geo = H, and �det = H and each point in the plot is
based on 20 rscans.

different minimum pore radii 0.055, 0.085, and 0.1mm
(maximum radius constant at 0.13mm) are generated.
The�cnr settings are changed to S = 24, 000 andD = 160.
The results based on four rscans can be seen in Figure 10.
The higher the sensitivity, the less sensitive to T2 (robust)
are the POH and FDR and the lower the FDR for a given
POH is expected to be. The effect can be seen in the figure
as the different behaviors of the two innermost lines (dif-
ferent Smht) where the T2 values of the dashed line has
been translated and re-scaled for visual comparison.
For the purpose of performance evaluation, two new

sets of rscans are generated with minimum pore radius
0.055mm and nonstandard high and low �cnr given by
S/D = 50, 000/270 and S/D = 30, 000/200. The algo-
rithm configuration is the same in both cases with Smht =
5, CT = 1.87, and constant T2. The resulting POH95 plot-
ted against pore radius is given in Figure 11, where the
�cnr = H is based on 50 rscans and �cnr = L is based on
200 rscans. As can be seen, the POH95 is higher for the
�cnr = H compared to �cnr = L. Furthermore, the con-
vergence of the POH for two radius ranges from Figure 11
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Figure 10 POH and FDR against T2. Radius refers to minimum
radius. Only the FDR for the smallest radius is shown; the remaining
ones are similar.
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Figure 11 POH95 against radius. POH95 is calculated using the
optimized probability method [28]. The radius intervals are
approximately 0.005mm and the radius taken as the max radius in
the interval. The FDR is less than 1%.

as can be seen in Figure 12. Convergence is considered
as being reached in both cases since other uncertainties
due to the simplified synthetic radiograph model and the
unspecified general X-ray setup are assumed to be higher.
Finally, the performance in terms of the error in posi-

tioning is evaluated. As can be seen in Figure 13, with a
q-plot of the error, it is less than 0.05mm for 80% of the
pores in the �cnr = L case. In addition, out of the 358
pores which were found in Figure 13, 10 were missing one
measurement and 3 were missing two measurements.

4.3 Size measurement
The results for the optimization and selection of the
optimum size measurement method are presented in
Figure 14. The best configuration is chosen to be F = I2,
pre-logarithm on image, rsiz = 2 px, and rme = 10 px. In
addition, the performance is evaluated in terms of reso-
lution in radius. The resolution is indicated in Figure 15,
which shows the real true radius (known) plotted against
the measured radius. However, the X-ray model used does
not include scattered radiation, which is assumed to lower
this sizing resolution even more.

Number of rscans
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Figure 12 Convergence of POH. POH against number of rscans for
two different radius ranges (R). The range is given as the average
radius over the rscan subset and the data is the same as in Figure 11.
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Figure 13 Error in positioning. Quantile plot for error in positioning
for the radius = 0.055 to 0.13mm case. The graph is based on 50
rscans of the �cnr = L case in Figure 11.

5 Experimental setup
The experimental radiographic setup is the same as
already illustrated in Figures 1 and 5. It is a conventional
radiographic setup with a motorized rotational stage. The
X-ray source is a General Electric ISOVOLT 450M2 (Fair-
field, CT, USA) with a focus size of 0.4mm. The radio-
graphic setup parameters are held fixed at a tube voltage
of 120 kV, current of 5.8mA, and exposure time of 29 s.
The detector is a high-resolution (pixel size 0.0135mm)

digital detector optimized for high-energy (450 keV)
applications (see [29] for details). It is an indirect detec-
tor with a scintillator connected to a CCD camera. The
scintillator-camera connection is a bent fiber optic bun-
dle. The bundle introduces detector plane spatial dis-
tortions with smooth spatial dependence; however, no
corrections are applied.
Four pre-processing steps are applied to the raw radio-

graphs. First, the dark-field radiograph, which is the zero
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Figure 14 Optimization of the sizing method. Optimization of
error E+ in Equation 16 on the sizing procedure; data is based on 12
rscans containing pores of radius 0.055 to 0.13mm and using the
�cnr = L settings used in Figure 11. The radius intervals are based on
	r = 0.0075mm.
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Figure 15 Sizing error. Real radius ranges for each radius r
representing the range [ r − 0.0075mm, r], selected using the same
algorithm as when calculating R+ and R− . Function F = (I�)2,
rme = 10 px, and I� = ln I are applied on the radiograph. Datasets are
the same as in Figure 11.

exposure detector intensity level, is subtracted from the
radiograph. Second, a flat-field correction is applied, in
which each pixel is divided by its value at exposure of
a homogeneous similar body as the one to inspect and
multiplied by the average flat-field value. The flat-field
correction is necessary since each pixel responds slightly
individual to radiation.
Some pixels respond to radiation which is so different

compared to the rest that it is required to classify them as
noninformation-bearing pixels, the bad pixels. The algo-
rithm chosen for bad pixel handling is that of [30] with
some minor changes. More sophisticated algorithms have
been proposed (see for example [31]), but in this article,
a simple bad pixel handling is assumed to be sufficient.
Each pixel in the flat field is compared to the median of
its neighbors (15× 15 px kernel). If the absolute deviation
from the median is larger than 2.9 standard deviations, it
is classified as a bad pixel. Typically, around 3% are clas-
sified as bad (fixed bad pixel map); this is expected and is
caused by the special kind of scintillator used. As a third
pre-processing step, each pixel labeled as bad is then sub-
stituted in the current radiograph by the median value of
its neighbors (5× 5 px kernel). Often, there are clusters of
bad pixels, and of course, any indication at the same size
and inside such a cluster would be averaged away. In the
fourth and final pre-processing step, the pixels are aver-
aged 2 × 2 into pixel size 0.027mm (binned) to increase
the CNR at the cost of resolution.
The aim of this work is not to find the most optimal

radiographic setup and settings. However, a higher CNR
(for example, due to a microfocus X-ray source, differ-
ent X-ray energy or exposure time) was indicated (see
Section 4) to increase the algorithm performance. There-
fore, an experiment on both a high and a low CNR, labeled
CNR+ and CNR−, is conducted. In the CNR+ case, the
average over eight exposures at each rotation angle is used;

the average is taken before the first pre-processing step. In
the CNR− case, four exposures are instead averaged.
The reference measurement of the sample is made with

a commercial CT metrology system, Carl Zeiss Metrotom
800 (Oberkochen, Germany). The sample is a titanium
alloy laser weld (Ti-6242, Ti6Al2Sn4Zr2Mo), which is cut
out from a large plate into a 5 × 10 × 30mm volume.
The sample volume is reconstructed with a voxel size
(discretized volume size) of 0.018mm. For large objects,
consisting of more than a few voxels, the accuracy and
precision in their mass center 3-D position is typically
subvoxel. However, for the small objects (the pores) in this
article, precision and accuracy are assumed instead to be
at the order of the voxel size [32].

6 Experimental results
The radiographic image quality is indicated using a
DIN62AL 10 ISO 16 (INTECH NDE, Edmonton, Alberta,
Canada) wire penetrameter. The quality is shown in
Figure 16 with the penetrameter on the source side of a
homogeneous Ti-6242 plate. A faint linear indication of
the smallest wire (0.1mm) can be seen in the CNR+ case
and the second smallest wire (0.125mm) in the CNR−
case. The detectability of this penetrameter does not indi-
cate the detectability of the pores’ 1:1 ratio. However, the
overall quality of the radiograph is visualized.
A single rotation radiograph for both CNR cases of

the actual weld is shown in Figure 17. The two boxes
indicate the selected region of interest, which is held con-
stant during the analysis at approximately 900× 240 pixel.
Horizontal line profiles over three different pore indica-
tions from Figure 17 is shown in Figure 18. The CNR is
approximately around 2.

Figure 16 Image quality of the radiographs. The DIN62AL 10 ISO
16 wire penetrameter on an ≈ 4.87-mm-thick Ti-6242 plate. Both
CNR+ and CNR− are shown, and the radiographs are cropped to
approximately 150 × 220 pixels.
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Figure 17 Experimental radiographs. Experimental radiographs of the weld for both CNR cases. The region of interest is also indicated by the
boxes.

The setup geometry as indicated in Figures 1 and 5 is
derived using the same procedure, settings, and calibra-
tion sample as in [33]. In short, a block of plastic with five
ball-bearing steel balls (diameter 0.5mm) cast inside at
different depths and y-z positions is measured with a CT
metrology system. The sample is then inspected with the
same radiographic setup as will later be used for the algo-
rithm. The steel balls are detected, and an evolutionary
algorithm is used to derive a setup geometry parameter
set from the known steel ball interspacing positions in
3-D. For details, see [33]. A setup geometry was derived
and verified to give approximately 0.1-mm maximum
positioning errors. The error was approximated by rerun-
ning the analysis discarding the prior knowledge of the
steel ball 3-D positions. Referring back to Figure 5,
the derived setup geometry parameters used are Rx =
649.9421mm, Ry = 8.4612mm, Rz = 12.9290mm,
Sx = 0.0000mm, Sy = 10.8245mm, Sz = 13.3204mm,
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Figure 18 Pore indication line profiles. Three typical line profiles
over the pore indications in Figure 17 along the horizontal direction.

and SDD = 717.5830mm. The object to detector dis-
tance ODD ≈ 25mm; it is however not required by the
algorithm and therefore only manually approximated.
The algorithm parameters are held fixed for both the

CNR cases. The radial symmetry method is used, and
its parameters are the same as the ones used to produce
Table 4. The merger parameters are also the same as those
used in Table 4 except for the number of pore indica-
tions to retrieve in each radiograph, which is CT = 600.
Most of the tracker parameter values are the same as the
frozen ones in Table 5, except for the final score (probabil-
ity) threshold T2 = 1.8, the intermediate score threshold
T1 = −1, 000, the score when no measurement is found
d20 = 70, the measurement covariance R = 3.5 ×
10−5 mm2, the threshold for merging 3-D positions δu =
0.08mm, and the weight when comparing prediction to
measured indication Smht = 3. The δu had to be lowered
since the pore interspaces in the real samples were lower
than assumed.
The nominal thickness of the plate is measured with

a mechanical caliper and compared to both CT and the
algorithm in this article (abbreviated DR). For both the
CT and DR cases, the thickness is measured using three
points on one side of the surface to construct a plane;
the perpendicular distance to a single point on the other
side of the plate is then taken as the thickness. For the
DR case, the points consisted of 0.5-mm high-tolerance
ball-bearing steel balls, which the algorithm was set up to
detect and position. The algorithm parameter values were
the same as the for the calibration procedure described in
[33]. The result of the three different thickness measure-
ments are 4.86±0.02mm for caliper, 4.93mm for CT, and
4.73mm for DR. This indicates an overall magnitude of
the error in positioning.
The pore reference sample (ground truth) is created by

manual pore detection in the CT visualization program,



Lindgren EURASIP Journal on Advances in Signal Processing 2014, 2014:9 Page 15 of 17
http://asp.eurasipjournals.com/content/2014/1/9

CNR −

CNR +

CT, r ≥ 0.05 mm

CT, r ≥ 0.045 mm

10 15 20 25

2
3

4
5

6
7

8
2

3
4

5
6

7
8

2
3

4
5

6
7

8
2

3
4

5
6

7
8

z [mm]

x 
[m

m
]

Figure 19 Pore depth (x) against weld length (z) position. The
depth coordinate x against weld length coordinate z of the pores for
DR CNR− and CNR+ and CT at two different lower radius thresholds.
The weld root enforcement height is δ0 ≈ 0.5mm (caliper), and it is
located on the detector side at high high x coordinates. Dashed lines
indicate the base plate surfaces.

Volume Graphics. Additionally, the diameter and 3-D
position of each detected pore are also measured man-
ually in the visualization program. The DR pore 3-D
position coordinate system is then manually translated
and rotated to match the six largest pores from the CT

measurement, a procedure known as registration. The
positioning errors between the two point sets (DR and
CT) are found to be approximately ≤ 0.1mm, which
is consistent with the validation of the derived setup
geometry above. Furthermore, the pore radius range in
the reference sample is found to be 0.03 to 0.065mm,
where the smaller radius range POD is assumed to be less
than 1.
In Figures 19,20,21,22, the two DR cases, CNR+ and

CNR−, are compared to the CT reference measurement.
The pore sizes are scaled with an arbitrary number, which
is different for CT and DR. In the DR case, the size of each
each pore is derived using the same sizing control parame-
ters as used in Figure 15 before scaling. Note that the sizes
of the pores and aspect ratios between the axes are scaled
for visualization, not to reproduce correct scaling. The
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Figure 20 Pore lateral (y) against weld length (z) position. The
pore lateral coordinate y against weld length coordinate z for DR
CNR− and CNR+ and CT at two different lower radius thresholds.
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Figure 21 Pore depth (x) against weld length (z) position at
different CT radius thresholds. The pore depth coordinate x against
weld length coordinate z for both DR CNR+ and CT. The radius (r)
represents two different lower thresholds in the CT results.

pore 3-D positionsmeasured with the proposed algorithm
(DR) agree qualitatively well with the CT reference.
A qualitative POH measurement is indicated in Table 6.

Each DR pore is manually matched to one of the CT refer-
ence pores and classified as detected, or if no CT reference
pore is close enough (see Figures 19,20,21,22), it is classi-
fied as a false positive. The information in Table 6 should
be seen as a rough estimate of where the POH starts to
decrease, in this case, at the diameter of approximately
0.1mm. In addition, as expected, the POH is higher for
the CNR+ than for the CNR− case. As for the false posi-
tives, it can be seen in Figures 21 and 22 that many pores
can be mistaken for false positives unless smaller pores
are included in the reference measurement. The num-
ber of false positives are low when the small pores (r ≥
0.03mm) are included. The two pores in the DR cases
at x, y, z ≈ 2, 11, 18mm can be seen as grooves on the
surface of the sample. This adds up to in total one false
positive in the CNR+ case at (x, y, z) ≈ (2.5, 11, 18)mm.
Finally, among the pores found in Table 6, three missed
one measurement in the CNR+ case and two in the
CNR− cases. The conclusion is that the algorithm can
detect pores without requiring them to be detected in all
projections.
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Figure 22 Pore lateral (y) against weld length (z) position at
different CT radius thresholds. The pore lateral coordinate y against
weld length coordinate z for both DR CNR+ and CT. The radius (r)
represents two different lower thresholds in the CT results.

7 Conclusions
In this article, an algorithm has been derived to handle
the detection, positioning, and sizing of submillimeter-
sized pore defects in thin laser-welded titanium inspected
with radiography. The algorithm has been set up and pre-
evaluated on synthetic radiographs using a DOE method-
ology. In addition, it has been qualitatively evaluated on
real experimental welds. The algorithm is based on gen-
eral tracking theory, in contrast to the previous solutions
in literature, which are based on a vision system approach.
In addition, it does not require the defects to be detected
in all rotation projections. This relaxed demand on detec-
tion in all projections is important for detecting low CNR
defects with radiographic inspection.

Table 6 Detected pores for both DR and CT

Min radius CT DR CNR+ DR CNR−
(mm) (n) (n) (n)

0.055 6 6 6

0.05 15 14 11

0.045 21 17 14

The pores are manually matched with each other using Figures 19,20,21,22.
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The qualitative experimental comparison shows good
agreement between the 3-D positions found using the
proposed algorithm and the computerized tomography
reference measurements. In addition, performance evalu-
ation on both the synthetic and the experimental radio-
graphs indicate that the probability of a hit increases
with CNR; hence, as the hardware performance used for
inspection will improve in the future, the performance of
the algorithm will too. The synthetic and the experimen-
tal radiographs both indicate a low false-defect detection
rate. However, the defect size measurement part of the
algorithm could not be experimentally verified due to very
low resolution in the reference measurements.
In the future, a quantitative experimental benchmark

of the proposed algorithm and its inspection procedure
needs to be conducted. Furthermore, in order to detect
and position the defects which are not detected in all
projections more efficiently, other trackers or modifica-
tions to the multiple hypothesis tracker used here could
be interesting to explore.
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