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Abstract

Moving object detection plays a key role in video surveillance. A number of object detection methods have been
proposed in the spatial domain. In this paper, we propose a compressed sensing (CS)-based algorithm for the
detection of moving object in video sequences. First, we propose an object detection model to simultaneously
reconstruct the foreground, background, and video sequence using the sampled measurement. Then, we use the
reconstructed video sequence to estimate a confidence map to improve the foreground reconstruction result.
Experimental results show that the proposed moving object detection algorithm outperforms the state-of-the-art
approaches and is robust to the movement turbulence and sudden illumination changes.
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1 Introduction
With the strong market demand on sensor networks for
video surveillance purpose, the design of multimedia
sensors equipped with high-resolution video acquisition
systems to adapt to particular environment and the lim-
ited bandwidth is of crucial importance. In the multi-
media sensor networks, the video sequences captured
are first encoded and then transmitted to the processing
center for video analysis. Moving object detection, aim-
ing to locate and segment interesting objects in a video
sequence, is a key to video surveillance.
A common approach for detecting moving objects,

called background subtraction (BS) [1], is to estimate a
background model first, and then compare video frames
with the background model to detect the moving objects.
When processing real video surveillance sequences, BS al-
gorithms face with several challenges such as sudden illu-
mination changes, movement turbulence, etc. [2]. A
sudden illumination change strongly affects the appear-
ance of the background and thus causes false foreground
subtraction. Movement turbulence may contain (1) peri-
odical or irregular turbulences such as waving trees and
water ripples; (2) the objects being suddenly introduced or
removed from the scene. It is still an open problem to
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eliminate the movement turbulence due to its complex
structure. Recently, Tsai et al. [3] proposed a fast back-
ground subtraction scheme using independent component
analysis (ICA) for object detection. This scheme is tolerant
of sudden illumination changes in indoor surveillance vid-
eos. Zhang et al. [4] proposed a kernel similarity modeling
method for motion detection in complex and dynamic en-
vironments. This approach is robust to simple movement
turbulence. Kim et al. [5] proposed a fuzzy color histo-
gram (FHC)-based background subtraction algorithm
to detect the moving object in the dynamic background.
This algorithm can minimize the color variations gener-
ated by background motion. Chen et al. [6] suggested a
hierarchical background model based on the fact that the
background images consist of different objects whose con-
ditions may change frequently. In the same year, Han et al.
[7] proposed a piecewise background model which inte-
grates color, gradient, and Haar-like features to handle
spatiotemporal variations. This model is robust to the
illumination change and shadow effect. All the afore-
mentioned BS algorithms operate in the spatial domain
and require a large amount of training sequences to es-
timate a background model. The training process always
imposes high computational complexity, so it actually
limits the application of BS algorithms in the multi-
media sensor networks.
Compressed sensing (CS) [8-10] is a recently proposed

sampling method which states that if a signal is sparse, it
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can be faithfully reconstructed from a small number of
random measurements. The number of measurements
required by CS is much smaller than that required by
Nyquist sampling rate. CS can perform image sensing
and compression simultaneously with low computational
complexity. It has the superiority in reducing the com-
putational cost of video encoder [11]. Due to its advan-
tages, CS has become an attractive solution in object
detection. One early attempt of using CS algorithm for
object detection is to utilize the sampled measurements
of the image background to train an object silhouette
firstly, and then use the trained object silhouette to de-
tect the moving object [12]. This algorithm needs a large
amount of storage and computation for training the ob-
ject silhouette, which is not suitable for real-time multi-
media sensor networks. In 2012, Jiang et al. [13]
proposed an object detection model to perform low-
rank and sparse decomposition by using the compressed
measurements. Although this model adapts to the lim-
ited bandwidth of multimedia sensor networks, it is not
robust to the movement turbulence and sudden illumin-
ation change because the wavelet transform coefficients
of the video sequence are not sparse when encountering
with the movement turbulence. In 2013, Yang et al. [14]
proposed a CS-based algorithm for object detection.
This algorithm can exactly and simultaneously recon-
struct the video foreground and background by using
only 10% of sampled measurements. However, it still
uses the wavelet transform as [13] does to achieve sparse
decomposition. This causes false foreground reconstruc-
tion in the movement turbulence and sudden illumin-
ation change. Write et al. [15] proposed an algorithm
called compressive principal component pursuit for ana-
lyzing the performance of the natural convex heuristic of
solving the problem as to how to recover the low-rank
matrix and the sparse component from a small set of
linear measurement. This algorithm can be used to
achieve object detection in the compressed domain. In
this paper, we propose a new CS-based algorithm for de-
tecting moving object. We firstly use three-dimensional
circulant sampling method to obtain sampled measure-
ment, based on which we reconstruct simultaneously
the video foreground and background by solving an
optimization problem. The main contributions of this
paper are as follows:

1. There is a key problem as to how to obtain a robust
video foreground reconstruction result using the
compressed measurement. In order to solve this
problem, we first propose a new object detection
model to simultaneously reconstruct the video
foreground, background, and video sequence using a
small number of compressed measurements. Then,
we use the reconstructed video sequence to estimate
a confidence map, which is used to further refine
the foreground reconstruction result.

2. An efficient alternating algorithm is proposed for
solving the minimization problem of the new object
detection model. We prove that the alternating
algorithm is guaranteed to yield a feasible
background, foreground, and video reconstruction
result.

The paper is organized as follows: Section 2 discusses
how to solve the key problem in the CS-based object de-
tection algorithm. Section 3 develops an alternating al-
gorithm for solving the new object detection model. The
experimental results of the proposed approach are then
given in Section 4. Finally, conclusion is provided in
Section 5.

2 Problem formulation
The authors of [16] have proposed a three-dimensional
circulant sampling method, as shown in Figure 1, which
can perform video sensing and compression simultan-
eously with low computational complexity and easy
hardware implementation. This method achieves video
compression in two steps: the first step is random con-
volution, which yields circulant measurements Cxt
through convolving the original vectorized video frames
xt (t = 1, 2, …, T) with a circulant matrix C. The second
step is random subsampling, which aims to reduce the
number of circulant measurements Cxt. In this step, a
random permutation is first applied to each vector Cxt
by a permutation matrix P. Then the permuted vectors
(measurements) PCxt are each subsampled utilizing a
subsampling matrix St to generate the compressed (di-
mension-reduced) measurements at = StPCxt. In the
figure, the whole compressed measurements are denoted
by matrix A = [a1, a2 …, aT].
Given the sampled measurement matrix A, how to re-

construct the foreground and background becomes a
key problem in the CS-based object detection. In 2009,
Candes et al. proposed a robust principal component
analysis (RPCA) model to simultaneously reconstruct
the video foreground and background by solving the fol-
lowing minimization problem:

min
B;F

Bk k� þ λ Fk k1 s: t: X ¼ B þ F ð1Þ

where X ∈ R(MN) × T is the original video sequence, and
B and F represent the background and foreground of
the video, respectively. There are two drawbacks with
the RPCA model. (1) RPCA cannot reconstruct B and F
using the sampled measurement A directly because the
original video sequence X is required in object detection.
Obviously, the requirement for the original video re-
construction imposes a high computational complexity.



Figure 1 The framework of the three-dimensional circulant sampling method.
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(2) In RPCA, the foreground reconstruction result is
robust only to the corruption that has a sparse distribu-
tion [17,18]. In the real-world video sequence, however,
there rarely exists the movement turbulence that is
sparse in nature.
The so-called three-dimensional total variation

(TV3D) has recently been proposed for CS-based video
reconstruction [16], which can exploit both intra-frame
and inter-frame correlations of the video sequence. The
advantage of TV3D is that it can guarantee the perform-
ance of video reconstruction result with a low computa-
tional complexity (O (3 ×MN × T)). The TV3D model is
formulated as:

TV3D Xð Þ ¼ D1Xk k1 þ D2Xk k1 þ ρ D3Xk k1 ð2Þ
where D1 and D2 are, respectively, the horizontal and
vertical difference operators within a frame, and D3 is
the time-varying difference operator.
In order to detect the moving object from the sampled

measurement directly, we propose a new object detec-
tion model, by combining TV3D and RPCA, that can
simultaneously reconstruct foreground, background, and
video sequence. The proposed object detection model is
described as:

min
B;F;X

TV3D Xð Þ þ γ � rank Bð Þ þ η Fk k1
s: t:ΦX¼A;X ¼ Bþ F

ð3Þ

where X = [x1, x2, …, xT] represents the original video
sequence to be reconstructed B = [b1, b2, …, bT] is the
background, F = [f1, f2 …, fT] is the foreground (moving
object), and Φ is the measurement matrix. Since the ac-
curacy of the reconstructed background and foreground
relies on the performance of the video reconstruction re-
sult, the TV3D is used to enhance the quality of the
reconstructed video. As mentioned earlier, TV3D has a
low computational complexity (see (2)), while (3) gives a
similar computational complexity as RPCA does. There-
fore, problem (3) is less insensitive to the variable
initialization, and we can initialize X, B and F as zero
matrices. Note that solving the minimization problem
of rank(B) in (3) is NP-hard due to its nonconvexity
and discontinuous nature [17]. We would like to relax
the rank(B) function through a nuclear norm, leading
(3) to:

min
B;F;X

X3
i¼1

ai DiXk k1 þ γ Bk k� þ η Fk k1
s: t: ΦX ¼ A;X ¼ B þ F

ð4Þ

The difference between problem (4) and the 3DCS
model in [16] is that: the 3DCS model is aimed to give a
high video reconstruction result, where not only TV3D
is used for video reconstruction but also the nuclear
norm is adopted to make use of the low-rank property
of the video sequence in the wavelet domain. Problem
(4) in this paper is, however, aimed to exactly recon-
struct the video foreground and background using a
small number of sampled measurements. To achieve this
goal, we employ TV3D to guarantee the exact low-rank
and sparse decomposition.
By solving problem (4), we can obtain the recon-

structed foreground F̂ , background B̂ , and the video se-

quence X̂ . Since the reconstructed F̂ is not robust to
strong movement turbulence, Borenstein et al. have pro-
posed in [19] an algorithm to achieve an excellent image
segmentation performance by using a confidence map
to identify the image region. Inspired by this idea, we
use the reconstructed video sequence X̂ to construct a
confidence map denoted as O = [o1, o2 …, oT], where the
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element of O is 0 or 1. We then use O to further im-

prove the reconstructed foreground F̂ through ⊙ F̂ ,
where ⊙ denotes the Hadamard (point-wise) product.
Note that the confidence map is a binary matrix, in
which the location of the movement turbulence is set to
0 and the location of the moving object is set to 1.
In real-world video surveillance, movement turbulence

is repetitive and locally centered [20,21], which can be
modeled by Gaussian distribution [22,23]. In this paper,
we utilize the following mixed Gaussian model to esti-
mate the intensity distribution of a pixel undergoing
movement turbulence [22].

f xij
� � ¼ ωf 1 xij; μx; σx

� �þ 1−ωð Þf 2 xij; μp;Σp

� �
ð5Þ

where f(xij) represents the probability density of a pixel
xij at jth element in the ith column of X̂ , ω is the weight
of the two Gaussian models, μx and σx are the mean and
the standard deviation, which are estimated by the EM
algorithm, and μp and Σp are the mean and the covari-
ance matrix, which are estimated from the particle tra-
jectory of xij [22]. Particle trajectory aims to capture
the deformation caused by movement turbulence,
which can be obtained by using Lagrangian particle
trajectory advection approach [24,25].
The confidence map is obtained as follows: we first es-

timate each pixel’s probability density f(xij) using (5),
then we decide which pixels belong to the movement
turbulence and which ones belong to the moving object
using an threshold θ. If f(xij) > θ, we set it as 1. Other-
wise, we set it as 0. The obtained binary matrix is the
final confidence map.

3 Reconstruction algorithm
In problem (4), we generalize the process of video compres-
sion as at =Φxt. Since we use P, C, and St (t = 1, 2, …, T)
to generate the compressed measurement A (see Figure 1),
we should use the specific form rt =Cxt and StPrt = at
(t = 1, 2, …, T) to replace the ΦX =A in (4) and rewrite
it as:

min
B;F;Gi

X3
i¼1

αi Gik k1 þ γ Bk k� þ η Fk k1

s:t: Gi ¼ DiX; X ¼ Bþ F;R ¼ CX; StPrt ¼ at t ¼ 1; 2;…;Tð Þ
ð6Þ

where R = [r1, r2, …, rT] is the circulant measurement.
Next, we propose an alternating algorithm for the re-

construction of X, B, and F in (6). Each iteration of the
alternating algorithm contains two steps: R-step, which
aims at reconstructing the original video X; and S-step,
which is to segment background and foreground.
In R-step, we reconstruct X by solving the following
problem:

min
Gi

X3
i¼1

αi Gik k1 s:t: Gi ¼ DiX;R ¼ CX; StPrt

¼ at t ¼ 1; 2;…;Tð Þ ð7Þ

We adopt the augmented Lagrange multiplier (ALM)
algorithm [26] to solve problem (7). The augmented
Lagrange function of (7) is given by:

ℒ X;Gi;R;λi;υð Þ ¼
X3
i¼1

Gik k1 þ
βi
2

Gi−DiX−λik k2F
� �

þ β4
2

R−CX−υk k2F s:t: StPrt ¼ at t¼ 1;2;…;Tð Þ
ð8Þ

where λi and υ are Lagrange multiplier matrices. The
constrained optimization problem in (7) has been re-
placed by problem (8). The ALM algorithm is to solve
the minimization problem of (8) by iteratively minimiz-
ing the Lagrange function and updating the Lagrange
multiplier,

Gkþ1
i ;Rkþ1;Xkþ1

� � ¼ arg min
X;Gi;R

ℒ X;Gi;R; λi; υð Þ ð9Þ

λkþ1
i ¼ λki −τ Gkþ1

i −DiXkþ1
� �

∀i ¼ 1; 2; 3 ð10Þ

υkþ1 ¼ υk−τ Rkþ1−CXkþ1
� � ð11Þ

Note that it is difficult to solve (9) directly. One can
use an alternating strategy to minimize the augmented
Lagrange function with respect to each component sep-
arately, namely,

Gkþ1
i ¼ arg min

Gi

ℒ Gi;Xk ;Rk ; λki ; υ
k

� � ð12Þ

Rkþ1 ¼ arg min
R

ℒ R;Gkþ1
i ;Xk ; λki ; υ

k
� � ð13Þ

Xkþ1 ¼ arg min
X

ℒ X;Gkþ1
i ;Rkþ1; λki ; υ

k
� � ð14Þ

The sub-problem in (12) is solved as follows:

Gkþ1
i ¼ S1=βi DiXk þ λki

� � ð15Þ
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where Sα(·) is a soft-thresholding operator, which is
defined, for a scalar x, as:

Sα xð Þ ¼ sign xð Þ⋅max xj j−α; 0f g ð16Þ

where α is represented as a soft-thresholding. Suppose
there is a matrix Z = (zij). Then, Sα(Z) outputs a matrix
which defines an operator for matrix Z with respect to
scalar α, i.e., the elements of Sα(Z) follow the definition
in (16).
Next, we solve the sub-problem (13) through the fol-

lowing two steps [16].

rkþ1
t ¼ Cxkt t ¼ 1; 2;…;Tð Þ ð17Þ
rkþ1
t PicStð Þ ¼ at t ¼ 1; 2;…;Tð Þ ð18Þ

where PicSt is the index of measurements which is
selected by St, and rt is the tth column in R.
In sub-problem (14), X is updated through solving a

quadratic problem.
By fixing Xk + 1, we reconstruct B and F in S-step by

solving the following problem:

min
B;F

γ Bk k� þ η Fk k1s:t: Xkþ1 ¼ Bþ F ð19Þ

The augmented Lagrange function of (19) can be
expressed as:

ℒ F;B;Yð Þ ¼ Bk k� þ η Fk k1þ < Xkþ1−B−F;Y

> þ β5
2

Xkþ1−B−F
�� ��2

F ð20Þ

where Y is the Lagrange multiplier matrix, and < ·, · > de-
notes the matrix inner product. We use ALM algorithm
to solve the minimization problem in (20) by the follow-
ing two steps:

Fkþ1;Bkþ1
� � ¼ arg min

F;B
ℒ F;B;Yð Þ ð21Þ

Ykþ1 ¼ Yk þ μ Xkþ1−Bkþ1−Fkþ1
� � ð22Þ

Similarly, we use an alternating strategy to minimize
problem (21) with respect to each component separately:

Fkþ1 ¼ arg min
F

ℒ F;Bk ;Yk
� � ð23Þ

Bkþ1 ¼ arg min
B

ℒ B;Fkþ1;Yk
� � ð24Þ

The complete algorithm proposed to solve problem (6)
is summarized in Algorithm 1 below.
In the above algorithm, M ¼
X3
i¼1

αiβiD
T
i Di þ β4C

TC ,

Dα(·) is the singular value shrinkage operator [27], which
is defined as follows: suppose the SVD of a matrix Z is
given by Z =UΣVT, where Σ is an rectangular diagonal
matrix in which each diagonal entries Σii is the singular
value of Z, U and V are real unitary matrix. The singular
value shrinkage operator for matrix Z is defined as Dα

Zð Þ ¼ USα Σð ÞVT , where Sα(·) is soft-thresholding oper-
ator for matrix Σ with respect to α. In Algorithm 1, the



Table 2 Sequence information used in experiments

Name Size (m × n × T) Ref.

Airport 176 × 144 × 30

Lobby 160 × 128 × 30
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termination criterion is set as
Xkþ1−Xkk kF

Xkk kF

¼ 10−6 consid-

ering that the reconstruction of B and F rely on the re-
construction of X.
The solution to problem (7) does not guarantee a glo-

bal minimum solution for problem (6). Moreover, it is
difficult to rigorously prove the convergence of the pro-
posed alternating algorithm for problem (7). But we can
prove that there exists a feasible solution for X, B, and F
that can minimize the cost function in (6). This feasible
solution is stated in the following theorem.

Theorem 1: The sequence {Xk}, {Bk}, and {Fk} gener-
ated in Algorithm 1 are bounded, and there exists a feas-
ible point (X*, B*, F*) for the solution of problem (6).
The proof of Theorem 1 is given in Appendix.

4 Experimented results
In this section, we perform numerical experiments to
show the performance of the proposed object detection
algorithm. We focus on the illustration of the moving
object reconstruction result and show that the new ob-
ject detection algorithm is robust to the movement
turbulence.
For quantitative evaluation, we utilize F-measure to

evaluate the accuracy of the moving object detection re-
sult. The F-measure is defined as:

F‐measure ¼ 2� precision � recallð Þ
precision þ recall

ð25Þ

where ‘precision’ and ‘recall’ are given by:

precision ¼ TP
TPþ FP

; recall ¼ TP
TPþ FN

ð26Þ

‘Precision’ and ‘recall’ are two kinds of classification
accuracy parameters which are widely used to measure
the accuracy of the background subtraction result [28].
In the ‘precision’ and ‘recall’, TP, FP, and FN are the
number of true positives, the number of false positives,
and the number of false negatives, respectively. The
higher the F-measure, the better the accuracy of the
moving object detection is. The major parameters used
in Algorithm 1 are shown in Table 1. In our experi-
ments, we compare the proposed object detection algo-
rithm with the RPCA method as well as a widely used
background subtraction algorithm called improved
Guassian mixture model (GMM) [29]. Both RPCA and
Table 1 Parameters used in solving the proposed
reconstruction model

η1 β1 β2 β3 β4 β5 τ μ
1ffiffiffiffiffiffiffiffi
M�N

p 100 100 100 100 100 1.6 1
GMM are operated in the spatial domain. All the experi-
ments are performed on an Acer PC (CPU is Inter(R)
Core(TM) i3-2310 M 2.10 GHz).
The testing video sequence for all the experiments are

chosen from the database which are detailed in Table 2.

4.1 The new object detection model
Here, we choose Fountain sequence as an example to
show first the video reconstruction result of the new ob-
ject detection model. In this experiment, we compare
the video reconstruction result of the proposed object
detection model with three known video reconstruction
sparsity measures: 2DTV, DWT, and 2DTV +DWT. The
simulation results in terms of peak signal-to-noise ratio
(PSNR) of the four methods are shown in Figure 2.
It is seen that the PSNR of the reconstructed video

using the proposed object detection model is signifi-
cantly higher than that of 2DTV, DWT, and 2DTV +
DWT. Figure 3 shows the twentieth frame of the original
video sequence and the corresponding reconstruction
results of the four methods. Evidently, the reconstructed
video frame using the proposed object detection model
is clearer than that from 2DTV, DWT, and 2DTV +
DWT. We can conclude from this experiment that the
proposed reconstruction model is able to yield superior
video reconstruction performance.
Next, we illustrate the video reconstruction and object

detection results of our proposed model versus the sam-
pling rate as shown in Figure 4. The chosen video se-
quence is from an airport video which contains a large
amount of edge information and thus can highlight the
difference of video foreground reconstruction results at
different sampling rates. In addition, we compare our
object detection results with compressive principal com-
ponent pursuit (PCP) in Figure 4, which clearly shows
the advantage of using TV3D norm in our object detec-
tion model.
Clearly, Figure 4b,c,d give an exact foreground recon-

struction result, where in order to see the difference
among three images, we have given the local magnified
images of the foreground reconstruction result. It is seen
that Figure 4d gives the best foreground reconstruction
Canteen 160 × 120 × 30

Shopping mall 320 × 256 × 30 [30]

Campus 160 × 128 × 40

Fountain 160 × 128 × 40

Pedestrian 360 × 240 × 30 [31]



Figure 2 PSNR performance at sampling rate 40%.

Kang et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:15 Page 7 of 15
result. Figure 4c gives a slightly better performance than
Figure 4b does. This is because the sampling rate used
in Figure 4c is higher than that in Figure 4b. Figure 4a
does not give a clear foreground reconstruction result
due to the poor performance of the video reconstruction
result. Comparing with Figure 4a,b,c,d, Figure 4e,f,g,h
give poor video foreground and background reconstruc-
tion results. This is because that Figure 4e, f, g, h are re-
constructed by compressive PCP, which is a special case
of problem (6) when αi = 0 (i = 1, 2, 3). In this special
case, the poor video reconstruction performance has be-
come the bottleneck that precludes good video back-
ground and foreground reconstruction at low sampling
rate. We can conclude from this experiment that using
TV3D norm in our model can guarantee a high object
detection performance at low sampling rate. In addition
to the above subjective measure of the object detection
performances at different sampling rates, we choose
PSNR and root mean square error (RMSE) as objective
evaluation parameters to further illustrate the perform-
ance of the proposed object detection model and com-
pressive PCP at different sampling rates.
In Table 3, PSNR is used to measure the video recon-

struction result and RMSE_B is utilized to evaluate the
Figure 3 The 20th frame of original video sequence and reconstructio
model, PSNR: 36.25 dB. (c) 2DTV, PSNR: 27.08 dB. (d) 2DTV + DWT, PSNR: 26
RMSE of the background reconstruction result. From
Figure 4 and Table 3, we could see that at 20% sampling
rate, the PSNR of our video reconstruction result is
already above 30 dB, this means that we have obtained
enough information for the exact foreground recon-
struction result.

4.2 The moving object detection result
Here, we illustrate the performance of the proposed object
detection algorithm with an emphasis on the reconstruc-
tion of foreground and background. In order to compare
with GMM algorithm, we give the binary form of our fore-
ground reconstruction result in the following experiments.
We choose four indoor video sequences (airport, lobby,
canteen, and shopping mall) to illustrate that the proposed
object detection algorithm is able to give a similar per-
formance as the popular spatial-domain moving object de-
tection methods do. The reconstruction results of our
proposed algorithm for four indoor video sequences are
shown in Figure 5, where columns 1 to 4 are the moving
object detection results of airport, lobby, canteen, and
shopping mall video sequences, respectively. It is seen that
our proposed algorithm using only 20% sampled measure-
ment can give a similar moving object detection perform-
ance as the RPCA and GMM methods do. In the lobby
and canteen video sequences, the proposed moving object
detection algorithm is able to reduce the shadow turbu-
lence. Table 4 gives objective evaluation results in terms of
the F-measure of the proposed algorithm along with the
two known methods for the four video sequences. We can
see that the F-measure of the proposed object detection
algorithm is obviously higher than that of the GMM
method. From this experiment, we can conclude that the
proposed moving object detection algorithm is able to
exactly detect the moving object using only 20% sampled
measurements in the indoor video sequences.
Figure 6 shows object detection results of the lobby

video sequence with a sudden illumination change from
the 10th frame to 11th frame. It is clearly seen that the
proposed algorithm is robust to the sudden illumination
changes of the indoor video sequence.
We now illustrate the performance of the proposed al-

gorithm in outdoor video sequence. The outdoor video
n results. (a) Original video. (b) The proposed object detection
.11 dB. (e) DWT, PSNR: 23.06 dB.



Figure 4 The object detection performances at different sampling rate. (a) The background first row and foreground second row
reconstruction results using proposed model at 10% sampling rate. (b) The background and foreground reconstruction results using proposed
model at 30% sampling rate. (c) The background and foreground reconstruction results using proposed model at 50% sampling rate. (d) The
background and foreground reconstruction results using RPCA. The third row of a, b, c, d are the local magnification images. (e, f, g, h) are the
background and foreground reconstruction results using compressive PCP at 10%, 30%, 50%, and 70% sampling rate, respectively.
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sequence usually contains strong movement turbulence.
We choose campus, fountain, and pedestrian video se-
quences for this experiment. The pedestrian video se-
quence is captured by a COTS camera (the SONRY
DCW-TRV 740).
This test case is very challenging because the whole

video sequence is strongly disturbed by the swaying tree
and flag. From Figure 7, it is obvious that the proposed al-
gorithm is able to effectively eliminate the turbulence of
the swaying trees (Figure 7b), while RPCA is not robust
to this kind of strong movement turbulence (Figure 7c).
The post-processing result of RPCA (Figure 7e) can give a
slightly better performance than the proposed algorithm
does. Although the GMM method can reduce the
movement turbulence (Figure 7d), its foreground recon-
struction result is not better than that of the proposed ob-
ject detection algorithm. We can conclude from this
experiment that the proposed object detection algorithm
is able to give a robust foreground reconstruction result
using only 40% sampled measurement.
In this experiment, the background involves a huge

fountain, which would strongly disturb the moving object.
It is seen from Figure 8 that the new object detection algo-
rithm is able to efficiently eliminate the fountain turbu-
lence, and it gives a better foreground reconstruction
result than the GMM method does (Figure 8b,d). RPCA
is still not robust to this kind of movement turbulence
(Figure 8c). The post-processing result of RPCA (Figure 8e)



Table 3 Evaluation of the proposed model at different sampling rate

Sampling rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Proposed object detection model

PSNR 24.06 31.81 34.20 36.77 40.37 43.61 46.35 49.45 RMSE_B in RPCA

dB dB dB dB dB dB dB dB

RMSE_B 0.080 0.061 0.059 0.057 0.052 0.049 0.047 0.046

Compressive PCP

PSNR 4.61 5.16 6.83 7.19 7.32 12.51 22.43 30.56 Model is 0.045

dB dB dB dB dB dB dB dB

RMSE_B 0.924 0.828 0.632 0.577 0.522 0.292 0.130 0.079

Figure 5 Object detection results of four indoor video sequences. (a) The four kinds of original video sequences. (b, c) The reconstructed
background and foreground using the proposed object detection algorithm. (d) The reconstructed foreground using RPCA. (e) The reconstructed
foreground using GMM. The sampling rate of our object detection algorithm is 20%. The 24th frame of the airport sequence, 11th frame of the
lobby sequence, 19th frame of the canteen sequence and 6th frame of the shopping mall sequence are randomly selected.
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Table 4 Quality evaluation (F-measure) of the detection
results in Figure 5

Sequence Proposed RPCA GMM

Airport 0.55 0.56 0.50

Lobby 0.56 0.45 0.43

Canteen 0.63 0.61 0.59

Shopping mall 0.49 0.50 0.39
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is better than the proposed algorithm due to the fact that
RPCA is operated in the spatial domain. The original
video sequence can give RPCA a large amount of detailed
information.
We choose a real-world outdoor video sequence to

conduct this experiment. The chosen video sequence
contains ordinary turbulence such as shadow and cam-
eral noise. We randomly select four frames to show the
moving object detection performance of different
methods. It is clearly shown in Figure 9b that the pro-
posed object detection algorithm is able to exactly
distinguish the contour outlines of the moving per-
son. It can completely eliminate the cameral noise.
Both of RPCA and GMM (see Figure 9c,d) could not
give a clear moving object detection result. The aver-
aged F-measure of Figures 7, 8, and 9 are given in
Table 5, which show that the proposed algorithm
gives an obviously higher F-measure than the RPCA
and GMM methods do.

5 Conclusion
In this paper, we have proposed a CS-based algorithm
for detecting the moving object in video sequences. In
order to achieve robust foreground reconstruction result
using only a small number of sampled measurements,
we have first proposed an object detection model to sim-
ultaneously reconstruct the foreground, background, and
Figure 6 Object detection results of lobby video sequence with sudd
reconstruction result. (b) The 11th video foreground reconstruction result.
sequence. The second column is the foreground reconstruction results of t
foreground reconstruction results. Finally, the fourth one is the foreground
the original video sequence using the sampled measure-
ments. Then, the reconstructed video sequence is used
to estimate a confidence map to refine the foreground
reconstruction result. It has been shown through experi-
ment that the proposed moving object detection algo-
rithm can give a good performance for both indoor and
outdoor video sequences. Especially for outdoor video
sequence, the proposed reconstruction model is able to
effectively eliminate the movement turbulence such as
waving trees, water fountain, and video noise. In conclu-
sion, the proposed moving object detection algorithm
can achieve an accuracy comparable to some known
spatial-domain methods with a significantly reduced
number of sampled measurements. The limitation of the
proposed method includes: (1) In Algorithm 1, solving
nuclear norm imposes high computational complexity.
(2) There is a lack of theoretical analysis of the impact
of the sampling rate on the object detection result. To
solve those problems in future work, (1) we will use an
online version of object detection model to achieve
background reconstruction, and (2) we will refer to [15]
for possible theoretical analysis of the performance of
the proposed model.

6 Appendix: Proof of Theorem 1
The proof of Theorem 1 is based on following two
Lemmas.

Lemma 1: Let aki ¼ λki −τ Gkþ1
i −DiXk

� �
i ¼ 1; 2; 3ð Þ ,

bk =Yk + μ(Xk + 1−Bk + 1 − Fk) ck =Yk + μ(Xk + 1 −Bk + 1−
Fk + 1). The sequence aki


 �
i ¼ 1; 2; 3ð Þ , {bk} and {ck} are

bounded.
Proof of Lemma 1
(i) We prove first aki


 �
i ¼ 1; 2; 3ð Þ is bounded.

In each iteration of Algorithm 1, Gi, (i = 1, 2, 3) is up-
dated through solving problem (7), and B and F are
en illumination change. (a) The 10th video foreground
The first column is the 10th and 11th frames of the original video
he proposed object detection algorithm. The third column is RPCA’s
reconstruction results of GMM.



Figure 7 Object detection results of campus video sequence. (a) Original video sequence. (b) Reconstructed foreground using the proposed
algorithm. (c) Reconstructed foreground using RPCA. (d) Reconstructed foreground using GMM. (e) Reconstructed foreground using modified
RPCA (the manual postprocess result of RPCA). The sampling rate of our algorithm is 40% and four frames, i.e., 1st, 18th, 25th, and 35th frames
are randomly selected.
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reconstructed through solving problem (19). When min-
imizing the Lagrange function in (8), we can obtain:

Gkþ1
i ¼ minGi ℒ Gi;Rk ;Xk ; λki ; υ

k
� �

⇒0∈∂Giℒ Gkþ1
i ;Rk ;Xk ; λki ; υ

k
� �

⇒aki ∈∂Gi Gkþ1
i

�� ��
1 i ¼ 1; 2; 3ð Þ

∵ aki ∈∂Gi Gkþ1
i

�� ��
1
, hence, aki


 �
i ¼ 1; 2; 3ð Þ is bounded

[22].
(ii) Now we prove {bk} and {ck} are bounded.
When minimizing the Lagrange function in (20), we

can obtain that:
Bkþ1 ¼ minB ℒ B;Fk ;Yk
� �

⇒0∈∂Bℒ Bkþ1; Fk ;Yk
� �

⇒bk∈∂B Bkþ1
�� ��

�

∵ bk ∈ ∂B‖B
k+ 1‖*, so the sequence {bk} is bounded [22].

Fkþ1 ¼ minF ℒ Bkþ1;F;Yk
� �

⇒0∈∂Fℒ Bkþ1; Fkþ1;Yk
� �

⇒ck∈∂F Fkþ1
�� ��

1

∵ ck ∈ ∂F‖F
k+ 1‖1, hence the sequence {c

k} is bounded [22].



Figure 8 Object detection results of fountain video sequence. (a) Original video sequence. (b) Reconstructed foreground using the proposed
algorithm. (c) Reconstructed foreground using RPCA. (d) Reconstructed foreground using GMM. (e) Reconstructed foreground using modified RPCA (the
manual postprocess result of RPCA). The sampling rate of our algorithm is 40% and four frames, i.e., 1st, 12th, 14th, and 34th frames are randomly selected.
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Lemma 2: Let ℒ(B, F, Y) be the Lagrange function of
problem (19). Then we have ℒk + 1 =ℒ(Bk + 1, Fk + 1, Yk)
and ℒ kþ1−ℒ k≤ 1

μ e
k with ek = ‖Yk − Yk − 1‖F, k = 1, 2, …

Proof of Lemma 2
Let ℒk + 1 =ℒ(Bk + 1, Fk + 1, Yk), then:

ℒ kþ1≤L Bk ; Fk ;Yk
� � ¼ Bk

�� ��
� þ η1 Fk

�� ��
1 þ Xk−Bk−Fk ;Yk

� 


þ β5
2

Xk−Bk−Fk
�� ��2

F¼ ℒ kþ < Xkþ1−Bk−Fk ;Yk−Yk−1 >

ðA1Þ

Yk ¼ Yk−1 þ μ Xkþ1−Bk−Fk
� �

⇒
Yk−Yk−1

μ
¼ Xkþ1−Bk−Fk ðA2Þ
Substituting (A2) into (A1), we can obtain that ℒ kþ1−

ℒ k≤ 1
μ Yk−Yk−1
�� ��

F . End of proof of Lemma 2.

In Algorithm. 1, we need to solve two Lagrange func-
tions: ℒ(X, Gi, R, λi, υ) and ℒ(B, F, Yk) for the recon-
struction of X, B and F. If there exists a feasible point
(X*, B*, F*) for the solution of problem (6), we must
make sure that ℒ(X, Gi, R, λi, υ) and ℒ(B, F, Yk) are all
bounded.
In Theorem 1 of [16], it has been proved that ℒ(X,

Gi, R, λi, υ) is bounded, so we only need to prove that
ℒ(B, F, Yk) is bounded. We have proved that: {ck} is
bounded in Lemma 1.
Noting that Yk + 1 = ck, we have bounded {Yk}.
Since ℒ kþ1−ℒ k≤ 1

μ Yk−Yk−1
�� ��

F and {Yk} is bounded,

we conclude that ℒ(B, F, Yk) is bounded.



Figure 9 Object detection results of pedestrian video sequence. (a) Original video sequence. (b) Reconstructed foreground using the proposed
algorithm. (c) Reconstructed foreground using RPCA. (d) Reconstructed foreground using GMM. (e) Reconstructed foreground using modified RPCA (the
manual postprocess result of RPCA). The sampling rate of our algorithm is 40% and four frames, i.e., 1st, 8th, 12th, and 15th frame are randomly selected.

Table 5 Quality evaluation (F-measure) on Figures 7, 8, and 9

Experiments Proposed RPCA GMM Modified RPCA

Figure 6 0.36 0.07 0.13 0.38

Figure 7 0.49 0.18 0.47 0.55

Figure 8 0.61 0.43 0.42 0.62
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Next we prove that {Xk}, {Bk} and {Fk} are bounded.
As it has been proved that ℒ(X, Gi, R, λi, υ) is bounded,

we can obtain that the Lagrange multiplier λki

 �

is bounded.
From (10) in paper, we obtain:

λkþ1
i ¼ λki −τ Gkþ1

i −DiXkþ1
� � ðA3Þ
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From Lemma 1, we have:

λki ¼ aki þ τ Gkþ1
i −DiXk

� � ðA4Þ

Subtracting (A4) into (A3), we get:

λkþ1
i ¼ aki þ τDi Xkþ1−Xk

� �

λki

 �

and aki

 �

are bounded, so {Xk} is bounded.
Noting that:

Ykþ1
�� ��2

F¼ Yk þ μ Xkþ1−Bkþ1−Fkþ1
� ��� ��

F ¼ Yk
�� ��2

F

þ2μ Yk ;Xkþ1−Bkþ1−Fkþ1
� 


þμ2 Xkþ1−Bkþ1−Fkþ1
�� ��2

F

Therefore,

Ykþ1
�� ��2

F− Yk
�� ��2

F

2μ
¼ Yk ;Xkþ1−Bkþ1−Fkþ1

� 

þ μ

2
Xkþ1−Bkþ1−Fkþ1

�� ��2
F

Since Yk is bounded, we get Yk ;Xkþ1−Bkþ1−Fkþ1
� 
þ μ

2

Xkþ1−Bkþ1−Fkþ1
�� ��2

F
converges to 0.

Thus, we have:

Bkþ1
�� ��

� þ η1 Fkþ1
�� ��

1 ¼ ℒ kþ1− < Xkþ1−Bkþ1−Fkþ1;

Yk > −
β5
2

Xkþ1−Bkþ1−Fkþ1
�� ��2

F

As ℒk + 1 is bounded and Yk ;Xkþ1−Bkþ1−Fkþ1
� 
þ μ

2

Xkþ1−Bkþ1−Fkþ1
�� ��2

F
converge to 0, we can prove that

{Bk} and {Fk} are bounded.
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