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Abstract

Speech enhancement and error concealment have seen a considerable progress over the past decades. Although
both fields deal with distorted speech signals, there has rarely been an attempt to relate respective approaches to
each other. In this paper, for the first time, a clear synopsis of recursive minimummean square error (MMSE)
estimation in both fields is provided. Our work intentionally does not propose a certain algorithm furthering the state
of the art, nor does it provide simulation results of algorithms. Instead, our aim is threefold: First we revisit the basics of
Bayes estimation in a recursive manner, covering both kinds of distortion acoustic noise as well as transmission
channel noise. Second, we present recursive MMSE estimation applied to speech enhancement (in the frequency
domain, as typical) and applied to error concealment (in the time domain, as typical) in strictly coherent notations and
provide respective overview diagrams. Finally, we discuss commonalities and differences between both approaches,
identify a particular strength of error concealment in general, and provide possible research directions for speech
enhancement. A particularly interesting observation is that noise introduced by error concealment is far from being
Gaussian and that additive acoustic noise can be expressed in terms of bit errors in DFT coefficients providing a
potential interface to error concealment approaches.
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1 Introduction
Minimum mean square error (MMSE) estimation is
omnipresent in a wide range of research fields and appli-
cations. It belongs to the family of Bayesian estimators
which are based on the following model: The unobserv-
able quantity to be estimated is considered to be the
outcome of a random process such as a speech sam-
ple [1,2]. These outcomes can be measured through a
channel introducing distortions, resulting in so-called
observations. Besides the observations, Bayes estimators
use a priori knowledge about the aforementioned random
process and the channel, resulting in improved estimation
results [2].
Based on this model, MMSE estimators minimize the

estimation error variance conditioned on the observa-
tions. As an example, the widely used Wiener filter is
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optimal with respect to the MMSE error criterion [2].
In speech enhancement, it is widely assumed that the
observations are statistically independent of each other,
therefore, MMSE estimation of speech is carried out
sequentially by means of the current observation only [3].
Signal history, such as the last speech estimate, is merely
used for smoothing purposes in a practical system (cf. [3],
Section V). Assuming, however, a dynamic signal model
in the form of an autoregressive (AR) speech process,
e. g., in conjunction with the source-filter model [4,5],
the optimal MMSE estimator is able to exploit signal
redundancy by employing both the current and previous
observations [6]. In this case, under certain assumptions,
the estimation can be carried out recursively and can be
split into two steps typically decreasing computational
complexity and relaxing memory requirements [7]. The
first step exploits signal history in the form of previous
observations providing an a priori estimate which is sub-
sequently corrected in a second step taking into account
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also the current observation, resulting in an a posteriori
estimate.
In speech enhancement, the following model is widely

employed for MMSE estimation: The unobservable
speech is distorted by the unobservable acoustic noise,
resulting in the observations in the form of noisy speech.
The aim of speech enhancement is to estimate the speech
by means of some a priori knowledge and the obser-
vations. State-of-the-art speech enhancement is often
carried out in the short-time Fourier transform (STFT)
domain and it is assumed that the discrete Fourier
transform (DFT) coefficients of the speech and the
acoustic noise are statistically independent. Thus, the
a priori knowledge employed for MMSE estimation is
a specific distribution of the speech (Gaussian [3,8,9],
super-Gaussian [10-12]) and the acoustic noise (typi-
cally Gaussian). Classical MMSE estimators for speech
enhancement under a Gaussian speech assumption are,
e. g., the Wiener filter (e. g., [13]), the MMSE short-time
speech amplitude (STSA) estimator [3], or theMMSE log-
spectral amplitude (LSA) estimator [9]. These estimators
mainly differ with respect to the estimation domain, i. e.,
instead of the complex-valued DFT coefficients, an arbi-
trary function of it is estimated (typically its amplitude or
the logarithm of its amplitude).
In speech enhancement, the widely used Kalman fil-

ter [6] can be employed as a recursive MMSE estimator.
In Kalman filtering, a Gaussian assumption is made for
the acoustic noise and the error of the a priori speech
estimate. In [14], a Kalman filter was proposed for time-
domain speech enhancement. The proposed approach
models the speech as an AR process based on a predictor,
therefore, the estimation employs the current and the pre-
vious observations and, according to Kalman theory, the
estimation of the speech is carried out recursively in two
steps. A DFT-domain Kalman filter for speech enhance-
ment was introduced, e. g., in [15-17]. In [15], the Kalman
filter operates on complex-valued DFT coefficients and
the speech was modeled as an AR process, while the noise
process was assumed to be memoryless. In [16], differ-
ent approaches to calculate the prediction coefficients and
different estimators for calculating the a posteriori speech
were investigated. Additionally, the memoryless assump-
tion for the noise was replaced by an AR noise model
in [17].
In error concealment, the following model is widely

utilized: On the transmitter side, speech samples or
source-coded parameters are quantized and mapped to
corresponding bit combinations. These are transmitted
over digital error-prone transmission channels and are
received as bit-wise log-likelihood ratios (LLRs) compris-
ing channel reliability information by the decoder. The
aim of error concealment is the disguise of transmission
errors which would otherwise lead to an unacceptable

degradation of speech quality on the receiver side.
This is achieved by MMSE estimation of unobserv-
able speech samples or source-coded parameters, requir-
ing a posteriori probabilities. These are proportional
to both a likelihood term resulting from the received
LLRs and a prior term comprising the available inher-
ent signal redundancy as a priori knowledge at decod-
ing time. This approach has been employed for robust
source decoding of speech signals [18-23], source-coded
audio signals [24,25], and uncompressed audio [26] that
exploit signal redundancy in sample values or various
source codec parameters (e. g., scaling factors, line spec-
tral frequencies (LSFs) vectors, vector-quantized gains,
adaptive codebook indices). Thereby, the signal redun-
dancy is exploited by a time-variant modeling of the
prior either using Markov chains [18-24] or employ-
ing approaches based on linear prediction in [25,26].
Typical applications are speech and audio transmis-
sion systems such as mobile phones or digital wireless
microphones.
The aim of this paper is to reveal links between the fields

of speech enhancement and error concealment focusing
on recursive MMSE estimation approaches. We will show
that the main structure of recursive MMSE estimation
is the same in both disciplines which allows for draw-
ing interesting links between tackling acoustic noise and
transmission channel noise. In speech enhancement, the
well-known Kalman filter can be employed as optimal
recursive MMSE estimator which assumes that the acous-
tic noise is Gaussian distributed. Transmission channel
noise as found in distorted speech signals, however, is
far from a Gaussian distribution and — motivated by the
nature of digital transmission — is rather modeled on
bit level in error concealment which allows for exploit-
ing powerful bit reliability information. This extra a pri-
ori knowledge can be identified as a definite strength
of error concealment compared to speech enhancement.
Based on this finding, this paper sketches as outlook new
research directions for speech enhancement exploiting bit
likelihoods.
This paper is structured as follows: Section 2 gives an

introduction to recursive MMSE estimation. Section 3
shows how recursive MMSE estimation is commonly
used for speech enhancement in the STFT domain.
Section 4 gives an example for employing recursive
MMSE estimation in error concealment in the time
domain, presented in strong analogy to Section 3.
Section 5 discusses links between speech enhance-
ment and error concealment based on the recursive
MMSE approaches from the previous Sections 3 and 4.
In addition, some new research recommendations for
speech enhancement motivated by error concealment
are sketched. Finally, Section 6 closes the paper with
conclusions.
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2 On recursive MMSE estimation
As pointed out in Section 1, the aim of recursive MMSE
estimation is to estimate the unobservable speech sam-
ples s(n), with n being the discrete time index, which are
transmitted through either an acoustic or a transmission
channel. This channel distorts the speech signal by super-
imposing unobservable noise samples d(n) being mod-
eled as statistically independent, resulting in the observed
noisy speech signal (cf. Figure 1)a

y(n) = s(n) + d(n). (1)

The estimation of the clean speech s(n) is carried out
by means of all previous and the current observations
yn0 = [y(0), y(1), . . . , y(n−1), y(n)

]T , with (·)T denoting
the transpose operation, as well as by some a priori knowl-
edge about the speech signal and the channel, resulting in
the clean speech estimate ŝ(n) (cf. Figure 1).
The a priori knowledge about the speech includes

the following autoregressive model [14]: The current
speech sample s(n) is assumed to be a sum of the
predicted speech s+(n) and the prediction error e(n)

(cf. Figure 1), the latter being a zero-mean (random)
signal which is statistically independent of s+(n). The pre-
dicted speech is generated by a predictor of the order
Np as s+(n) = aT · sn−1

n−Np
with sn−1

n−Np
= [ s(n−Np),

s(n−Np+1), . . . , s(n−1)]T and a = [aNp , aNp−1, . . . , a1
]T

being the so-called prediction coefficients. Please note
that these coefficients are time-variant in practice, there-
fore, they need to be estimated. However, assuming a slow
time variability, a is treated as a constant for the moment.
According to the speech signal model, the current

speech sample s(n) is statistically dependent not only on
the current observation y(n) but also on the previous
ones yn−1

0 , thus, these are also included in the estimation
process [6]. This paper deals with recursive estimation,
therefore, the estimation process is typically split into two
parts, namely the propagation step and the update step.
The propagation step exploits the previous observations
to provide an a priori estimate of the current speech sam-
ple s(n). Since this estimate can yield a relatively high
error variance, the update step improves it incorporating
the current observation y(n), resulting in the a posteriori

Figure 1 Signal model, channel, and recursive MMSE estimation.

speech estimate ŝ(n). Hence, the information carried by
the previous observations becomes successively part of
the a priori knowledge during the estimation process.

2.1 The estimator
The recursive MMSE estimation with the underlying sig-
nal model as in Figure 1 yields

ŝ(n) = E
{
s
∣∣∣y(n), yn−1

0

}
=
∫
R

s · p
(
s
∣∣∣y(n), yn−1

0

)
ds (2)

with E{·} being the expectation operator, p(·)
being a probability density function (pdf), and
p(s(n)|y(n), yn−1

0 ) = p
(
s(n)|yn0

)
being the so-called pos-

terior. Usually, the posterior is computed by means of
Bayes’ rule, therefore, (2) can be rewritten as

ŝ(n) =

∫
R

s · p
(
y(n)

∣∣∣s, yn−1
0

)
· p
(
s
∣∣∣yn−1

0

)
ds

p
(
y(n)

∣∣∣yn−1
0

) (3)

with p
(
y(n)

∣∣∣s(n), yn−1
0

)
, p
(
s(n)

∣∣∣yn−1
0

)
, and p

(
y(n)

∣∣∣yn−1
0

)
= ∫

R

p
(
y(n)

∣∣∣s, yn−1
0

)
· p
(
s
∣∣∣yn−1

0

)
ds being the so-called

likelihood, the prior, and the evidence, respectively. Please
note that the evidence is typically calculated by marginal-
izing the pdf product of the numerator in (3).

2.2 The prior
As can be seen above, the prior is a function of the
previous observations yn−1

0 . However, the prior can also
be determined recursively by marginalization using the
signal model in Figure 1 as

p
(
s(n)

∣∣∣yn−1
0

)
=
∫
···
∫

R
Np

p
(
s(n)

∣∣∣sn−1
n−Np

)
·p
(
sn−1
n−Np

∣∣∣yn−1
0

)
dsn−1

n−Np
.

(4)

The first pdf in the integral is a predictor pdf, the second
one is the joint pdf of the lastNp posteriors. Therefore, the
current prior is obviously dependent on the (distribution
of the) last Np estimates. Moreover, the mean of the prior
using the signal model in Figure 1 turns out to be

E
{
s(n)

∣∣∣yn−1
0

}
= E
{
e(n)

∣∣∣yn−1
0

}
+ E
{
s+(n)

∣∣∣yn−1
0

}

= 0 + aT ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E
{
s(n − Np)

∣∣∣yn−Np
0

}
E
{
s(n − Np + 1)

∣∣∣yn−Np+1
0

}
...

E
{
s(n − 2)

∣∣∣yn−2
0

}
E
{
s(n − 1)

∣∣∣yn−1
0

}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= aT · ŝn−1

n−Np
= ŝ+(n) (5)

which is the result of the propagation step. Please note
that the prediction error e(n) = s(n) − s+(n) (also called
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innovation, e. g., [7]) is orthogonal to the previous speech
samples and, therefore, also to the previous observations
(e. g., [7,27]). Thus, we obtain E{e(n)|yn−1

0 } = E{e(n)} = 0.
Assuming that this a priori speech estimate ŝ+(n) =

f
(
yn−1
0

)
is a sufficient statistic for s(n), the prior turns out

to be

p(s(n)|yn−1
0 ) = p(s(n)|ŝ+(n)). (6)

This pdf describes the clean speech given the a priori
speech estimate, in other words, it is the pdf of the prop-
agation error ē(n) = s(n) − ŝ+(n) which can be written
as

p
(
s(n)
∣∣ŝ+(n)

) = pē
(
ē(n) = s(n) − ŝ+(n)

)
. (7)

Using the signal model in Figure 1, the variance of the
propagation error turns out to be [28]

E{(s(n) − ŝ+(n))2} = E{e2(n)} + E{(s+(n) − ŝ+(n))2}
= σ 2

e (n) + σ 2
e+(n) = σ 2

ē (n) (8)

with σ 2
e (n) = E

{
e2(n)
}
being the prediction error vari-

ance and σ 2
e+(n) = E

{(
s+(n) − ŝ+(n)

)2}. Please note that
(8) holds independently of the type of the propagation
error pdf.

2.3 The likelihood
The a priori knowledge about the (acoustic or transmis-
sion) channel is contained in the likelihood. This means
that the additive noise d(n), which distorts the clean
speech s(n) (cf. Figure 1), is modeled by the likelihood
p
(
y(n)

∣∣∣s, yn−1
0

)
. Assuming a memoryless (acoustic or

transmission) channel, meaning that the noise samples
d(n), d(n − 1), . . . are statistically independent of each
other, the likelihood is [29]

p(y(n)|s(n), yn−1
0 ) = p(y(n)|s(n)) (9)

being the pdf of y(n) given a specific speech sample s(n).
Therefore, this is the pdf of the additive noise d(n) =
y(n) − s(n) as [3]

p
(
y(n) |s(n)

) = pd
(
d(n) = y(n) − s(n)

)
. (10)

Since the variance of the noise σ 2
d (n) = E

{
d2(n)
}
cannot

be measured directly in practice, it is usually estimated by
a noise power estimator or a channel quality estimator.

3 Application to speech enhancement
Assuming that the speech and the noise processes are
at least quasi-stationary along the time frames � in
each frequency bin k and statistically independent of
each other, the signal model in Figure 1 is also valid
in the STFT domain. Accordingly, the aim of recursive

MMSE estimation in speech enhancement is to esti-
mate the clean speech DFT coefficients S�(k) which
are generated by an autoregressive process as sketched
in Section 2: The clean speech S�(k) is modeled by
the sum of the predicted speech S+

� (k) and a statisti-
cally independent, zero-mean prediction error E�(k), i. e.,
S�(k) = S+

� (k) + E�(k). S+
� (k) is calculated by a pre-

dictor of the order Lp as S+
� (k) = AH(k) · S�−1

�−Lp(k)

with A(k) = [ALp(k),ALp−1(k), . . . ,A1(k)
]T being the

complex-valued prediction coefficients and S�−1
�−Lp(k) =[

S�−Lp(k), S�−Lp+1(k), . . . , S�−1(k)
]T . It is assumed that

the prediction coefficients change very slowly along the
frames � and are, therefore, modeled as constants for
the moment. The acoustic channel distorts the speech
spectrum by superimposing some statistically indepen-
dent acoustic noise D�(k), so that Y�(k) = S�(k) + D�(k)
with Y�(k) being the noisy speech DFT coefficients. The
estimated speech DFT coefficients Ŝ�(k) are calculated by
the recursive MMSE estimator employing the underlying
observationsY�

0(k) = [Y0(k),Y1(k), . . . ,Y�(k)]T as (cf. (2))

Ŝ�(k) = E
{
S�(k)
∣∣∣Y�(k),Y�−1

0 (k)
}
. (11)

A block diagram of recursiveMMSE estimation for speech
enhancement assuming a memoryless acoustic channel is
given in Figure 2. Please note that the upper signal path
is related to the prior computation, the block in the cen-
ter is the MMSE estimator (11), and the lower signal path
refers to the likelihood computation. Starting in the lower
left-hand corner, windowed segments of the noisy speech
signal y(n) = s(n) + d(n) are transformed into the DFT
domain, followed by the likelihood computation.

3.1 The likelihood
Since a memoryless acoustic channel is assumed, the
likelihood turns out to be (cf. (9) and (10))

p
(
Y�(k)
∣∣∣S�(k),Y�−1

0 (k)
)

= p
(
Y�(k) |S�(k)

)
= pD
(
D�(k) = Y�(k) − S�(k)

)
.

(12)

As can be seen, the likelihood is a function of the noisy
speech (cf. Figure 2). Moreover, after computing the like-
lihood by means of the current observation Y�(k), the
likelihood remains a function g(S) of the unknown speech
DFT coefficient S (cf. output of ‘Likelihood Computation’
in Figure 2). Furthermore, as we will see later, S will be the
integration variable of the MMSE estimator (cf. (11)).
Assuming that the (complex-valued) additive noise

D�(k) is a zero-mean Gaussian process with indepen-
dent and identically distributed (i. i. d.) real and imaginary
parts, the likelihood turns out to be [3]
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Figure 2 STFT domain recursive MMSE estimation for speech enhancement assuming a memoryless acoustic channel.

p(Y�(k)|S�(k)) = 1
πσ 2

D,�(k)
· exp
(

−|Y�(k) − S�(k)|2
σ 2
D,�(k)

)
(13)

with σ 2
D,�(k) being the variance of the quasi-stationary

noise process D. Please note that also for non-Gaussian
noise pdfs, the likelihood is always a function of the
noise power σ 2

D,�(k) (cf. connection between ‘Noise Power
Estimator’ and ‘Likelihood Computation’ in Figure 2).
Therefore, in practice, its estimate σ̂ 2

D,�(k) is calculated
by a noise power estimator using the noisy speech DFT
coefficients [30-32].

3.2 The estimator
Using the likelihood (12), the clean speech DFT coeffi-
cients Ŝ�(k) are estimated as (cf. (2), (3), and (11))

Ŝ�(k) =

∫
C

S · p(S|Y�−1
0 (k)) · p(Y�(k)|S) dS

p(Y�(k)|Y�−1
0 (k))

(14)

with the evidence

p(Y�(k)|Y�−1
0 (k)) =

∫
C

p(S|Y�−1
0 (k)) · p(Y�(k)|S) dS

(15)

and the prior p
(
S
∣∣∣Y�−1

0 (k)
)
. Please note that both the

prior and the likelihood are a function of the integration
variable S, namely f (S) (cf. upper signal path in Figure 2)
and g(S) (cf. lower signal path in Figure 2), respectively.
The estimated clean speech signal ŝ(n) is obtained by
taking the inverse DFT (IDFT) of Ŝ�(k) from (14) and
performing, e. g., an overlap-add (OLA) step.

3.3 The prior
As discussed in Section 2, the a priori speech estimate is
calculated as (cf. (5))

Ŝ+
� (k) = AH(k) · Ŝ�−1

�−Lp(k). (16)

This step is denoted as ‘Predictor’ in the upper signal
path in Figure 2. Please note that the predictor employs
previous speech estimates which is reflected by the delay
unit denoted by ‘T’ in Figure 2. Assuming that the a pri-
ori speech estimate Ŝ+

� (k) is a sufficient statistic for the
speech S�(k), the prior turns out to be the pdf of the
propagation error Ē�(k) = S�(k) − Ŝ+

� (k) (cf. (6) and (7))

p(S�(k)|Y�−1
0 (k)) = pĒ(Ē�(k) = S�(k) − Ŝ+

� (k)). (17)

Employing a specific a priori speech estimate Ŝ+
� (k), the

prior remains a function of the speech f (S) and can be
fed into theMMSE estimator (14) (cf. connection between
‘Prior Computation’ and ‘MMSE Estimator’ in Figure 2).
Assuming that the (complex-valued) propagation error

is a zero-mean Gaussian process with i. i. d. real and imag-
inary parts, the prior is calculated [15,16]

pĒ
(
Ē�(k)
) = 1

πσ 2
Ē,�(k)

· exp
(

−|Ē�(k)|2
σ 2
Ē,�(k)

)
(18)

with σ 2
Ē,�(k) being the propagation error variance which

cannot be measured in practice, thus, it has to be esti-
mated [15,16].
Since the prediction coefficients A(k) in (16) are not

accessible in practice, they need to be estimated as well,
e. g., by the widely used normalized least-mean-squares
(NLMS) algorithm [7]. Introducing again time variabil-
ity, the prediction coefficients for the next frame are
calculated recursively as

Â�+1(k) = Â�(k)+μ· Ê∗
� (k)

||̂S�−1
�−Lp(k)||2 + �

·̂S�−1
�−Lp(k) (19)

with Ê�(k) = Ŝ�(k) − Ŝ+
� (k), as well as with μ, (·)∗, �,

and || · || denoting the step size constant, the complex
conjugate, the regularization parameter, and the Euclidean
norm, respectively.
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3.4 The Kalman filter
The estimator (14) requires calculating two integrals
over the whole complex plane for each time-frequency
unit (�, k). Fortunately, this estimator can be obtained
in closed form by solving these integrals, reducing the
computational complexity for practical implementations.
Assuming a Gaussian distribution for both the propaga-
tion error (18) and the acoustic noise (13), the MMSE
estimator (14) turns out to be a sum of the a priori esti-
mate and the update (the derivation can be found in the
Appendix) in the form of the Kalman filter equations
(cf. [15], Equation 12)

Ŝ�(k) = Ŝ+
� (k) + Ê�(k) (20)

with

Ê�(k) = K�(k) · R�(k), (21)

K�(k) = ζ�(k)
1 + ζ�(k)

, (22)

R�(k) = Y�(k) − Ŝ+
� (k) (23)

where K�(k) is the so-called Kalman gain and ζ�(k) =
σ 2
Ē,�(k)/σ

2
D,�(k) (cf. the a priori SNR in [3]). The latter can

be estimated by [16]

ζ̂�(k) = β
|̂E�−1(k)|2
σ̂ 2
D,�−1(k)

+ (1−β)max

⎧⎨⎩ |R�(k)|2
σ̂ 2
D,�−1(k)

−1, 0

⎫⎬⎭ (24)

with β being a smoothing factor, typically chosen close to
one.
Please note that the recursive nature of MMSE esti-

mation is well reflected by (20): The a priori estimate
Ŝ+
� (k) utilizing the previous observations is corrected by
the term Ê�(k) employing the current observation Y�(k),
resulting in the a posteriori speech estimate Ŝ�(k).

4 Application to error concealment
The aim of error concealment is to estimate transmitter-
sided (speech) samples, e. g., by a recursive MMSE esti-
mator, in order to conceal distortions due to residual
bit errors after demodulation or channel decoding. Bit
error concealment of PCM audio or speech could the-
oretically be carried out by the equations in Section 2
using the hard-decoded receiver-sided samples. However,
in order to exploit more information for improved esti-
mation results, it is often advantageous to employ error
concealment using reliability information on a bit level as
in [19,26]. A block diagram of such a soft-decision decod-
ing scheme based on recursive MMSE estimation is given
in Figure 3. Similar to Figure 2, the likelihood compu-
tation is related to the lower signal path, the estimator
can be found in the center, and the prior computation is
performed in the upper signal path.

4.1 The likelihood
In error concealment, it is assumed that each transmitter-
sided sample s(n), being processed as introduced in
Section 2, is quantized with M bit and, therefore, can
bijectively be mapped to a natural-binary bit combina-
tion x(n) = [x0(n), x1(n), . . . , xm(n), . . . , xM−1(n)] (see
‘Quantization and Bit Mapping’ in Figure 3). Assum-
ing further binary phase-shift keying (BPSK) modulation,
each transmitted bit (BPSK symbol) xm(n) ∈ {−1, 1}
is more or less distorted by the channel, modeled by
the real-valued channel noise dm(n) (cf. ‘Transmission
Channel’ in Figure 3). For the demodulation of the
received real-valued noisy symbols ym(n), the so-called
energy per bit to noise power spectral density ratio Eb/N0
is needed which is calculated by the channel estimator (cf.
connection between ‘Channel Estimator’ and ‘Demodula-
tor’ in Figure 3). The demodulator then calculates the LLR
which is defined as

L(x̂m(n)) = ln
P(x̂m(n)|xm(n) = +1)
P(x̂m(n)|xm(n) = −1)

(25)

with the hard-decided receiver-sided bit x̂m(n) =
sign(ym(n)) representing the receiver-sided observation.
In practice, the LLR is calculated by means of Eb/N0
and ym(n) (cf. the two inputs of the ‘Demodulator’ in
Figure 3)b which reflects the likelihood of a possibly trans-
mitted bit xm(n). The bit-error probabilities BERm(n)

describe the probability that a transmitted bit was dis-
torted through the channel and can be calculated by
means of the LLRs as [33]

BERm(n) = 1
1 + e|L(x̂m(n))| . (26)

Once each transmitter-sided sample s(n) is quantized, it
assumes a discrete value s(i) with i ∈ {0, 1, . . . , 2M − 1}.
Moreover, each s(i) can be mapped to one corresponding
bit combination x(i). The bit-wise transition probabilities
define the bit likelihood given bit x(i)

m of the ith quantiza-
tion table entry [19]

P
(
x̂m(n)

∣∣∣x(i)
m

)
=
{
BERm(n), if x̂m(n) �= x(i)

m ,
1 − BERm(n), else.

(27)

Assuming that the transmission channel is memoryless
and that the bit distortions dm(n) are statistically inde-
pendent of each other along the bit indices m, the sample
likelihood is computed as (cf. ‘Likelihood Computation’ in
Figure 3 and, e. g., [19])

P
(
x̂(n)

∣∣∣x(i)
)

=
M−1∏
m=0

P
(
x̂m(n)

∣∣∣x(i)
m

)
. (28)

Please note that until this step, the recursive MMSE esti-
mator operates on bit level. After computing the sample
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Figure 3 Time domain recursive MMSE estimation for error concealment assuming a memoryless transmission channel.

likelihood (28) and for any further processing, however,
the estimator deals with samples again.

4.2 The estimator
The recursive MMSE estimator (3) turns out to be a sum

ŝ(n) =

2M−1∑
i=0

s(i) · P(x(i)|x̂n−1
0 ) · P(x̂(n)|x(i))

P(x̂(n)|x̂n−1
0 )

(29)

with the evidence

P
(
x̂(n)

∣∣∣x̂n−1
0

)
=

2M−1∑
i=0

P
(
x(i)
∣∣∣x̂n−1

0

)
· P
(
x̂(n)

∣∣∣x(i)
)
, (30)

the sample likelihood (28), and the prior P
(
x(i)
∣∣∣x̂n−1

0

)
.

Please note that both the prior and the sample likelihood
are a function of the summation index i in (29), namely
f (i) (cf. upper signal path in Figure 3) and g(i) (cf. lower
signal path in Figure 3), respectively. The result of the
summation is the speech estimate ŝ(n) (cf. right-hand side
of the MMSE estimator in Figure 3).

4.3 The prior
As discussed in Section 2, the a priori speech estimate is
calculated as ŝ+(n) = aT · ŝn−1

n−Np
= f
(
x̂n−1
0

)
(cf. (5)).

This step is carried out in the block ‘Predictor’ in Figure 3.
Just as in Section 3, the predictor incorporates the pre-
viously estimated speech samples, reflected by the delay
unit ‘T’ in Figure 3. Assuming that the a priori speech esti-
mate ŝ+(n) is a sufficient statistic for s(i) and using that
each bit combination x(i) can bijectively be mapped to one
corresponding s(i), the prior turns out to be

P
(
x(i)
∣∣∣x̂n−1

0

)
= P
(
s(i)
∣∣ŝ+(n)

)
. (31)

However, since s(i) is a quantized quantity, the probabil-
ity of its ith value can be calculated as [34]

P(s(i)|ŝ+(n)) =
∫
Ii

pē(s − ŝ+(n)) ds (32)

with pē(·) being the propagation error pdf and with the
PCM sample quantization intervals Ii, i = 0, 1, . . . , 2M−1.
Employing a specific a priori speech estimate ŝ+(n), the
prior remains a function of summation index i as f (i) and
can be fed into the MMSE estimator (29) (cf. connection
between ‘Prior Computation’ and ‘MMSE Estimator’ in
Figure 3).
Please note that in [26], the quantity E

{ (
s+(n)−

ŝ+(n)
)2} in (8) was assumed to be zero. Furthermore,

assuming that the prediction error e(n) = s(n) − s+(n) is
stationary, the propagation error pdf can be determined
by a histogram measurement in a training process. More-
over, online integration of pē(·) is not necessary if the inte-
grations over Ii intervals are performed beforehand and
ŝ+(n) is quantized with M bits, leading to discrete prob-
abilities Pē(·) [26]. Thus, employing a lookup table con-
taining the precomputed Pē(·) values in the block ‘Prior
Computation’ in Figure 3, the table entries can be indexed
by the quantized a priori speech estimate ŝ+(i)(n). Hence,
the resulting prior P(s(i)

∣∣ŝ+(i)(n) ) being a function of the
summation index i can be obtained in a computationally
efficient way.
Introducing again time variability, the prediction coef-

ficients a in (5) have to be estimated which can be done
recursively, e. g., by means of the NLMS algorithm [7]
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â(n + 1) = â(n) + μ · ê(n)

||ŝn−1
n−Np

||2 + �
· ŝn−1

n−Np
(33)

with ê(n) = ŝ(n) − ŝ+(n) as well as with μ and � being
the step size constant and the regularization parameter,
respectively. Please note that the prediction coefficients
can alternatively be obtained by a slightly modified NLMS
algorithm [26,35].

5 Links between speech enhancement and error
concealment

So far, we have introduced an application example of
recursiveMMSE estimation for both speech enhancement
and error concealment. In this section, we aim at showing
links between the presented estimators.
As can be seen above, while the estimator (14) used

for speech enhancement (cf. Figure 2) utilizes continuous
distributions, the estimator (29) employed for error con-
cealment deals with discrete ones (cf. Figure 3). In error
concealment, the samples of the signal to be transmitted
are quantized typically by 16 bit or 24 bit and thus are
from a finite set of elements, whereas in speech enhance-
ment the digital signals are assumed to be quantized fine
enough (even though quantization with 64, 32, or 16 bit
may take place), therefore, the codomain of the samples is
assumed to be continuous.

5.1 The likelihood
This also influences the channel model. While in speech
enhancement, the noise is modeled on a sample (or coeffi-
cient) level (1), in digital transmission and error conceal-
ment the noise occurs on amodulation symbol level or, for
BPSK equivalently, on bit level (26), (27): The transmitted
binary source bits (BPSK: symbols) xm(n) are distorted by
the real-valued channel noise dm(n). Using the received
value (symbol) ym(n), the demodulator calculates a cor-
responding LLR L(x̂m(n)) by means of Eb/N0, which is a
normalized SNR measure being a function of the channel
noise power. Therefore, the likelihood (28) being com-
puted by means of the LLRs (cf. (26), (27), and (28)) is
a function of the channel noise power as it is the case
in speech enhancement (cf. (13)). Thus, in both speech
enhancement and error concealment, the current obser-
vation (Y�(k) or ym(n)) and the channel noise power (den-
sity) (σ 2

D,�(k) orN0) are needed for likelihood computation
(cf. Figures 2 and 3).
However, there remains a distinct difference between

speech enhancement and error concealment concern-
ing the estimation of the noise power. In speech
enhancement, the noise power is estimated by means
of the noisy speech often assuming that noise is more
stationary than speech. Typical noise power estima-
tors are, e. g., approaches based on minimum statistics

(MS) [30], (improved) minima-controlled recursive aver-
aging ((I)MCRA) [31,36], or approaches based on speech
presence probability [32]. In digital transmission or error
concealment, however, the amount of the noise is depen-
dent on the distance between the received symbol and all
possibly transmitted symbols in the constellation diagram,
the latter having fixed positions depending on the mod-
ulation scheme. Thus, implicitly, in error concealment
one has more information about possible channel inputs
which is a clear advantage over speech enhancement.
The likelihood in speech enhancement (13) is usually

modeled by a common pdf, typically by a Gaussian which
is more or less justified by the central limit theorem [3]. In
error concealment, however, the noise pdf does not follow
any typical distribution and depends on the employed bit
mapping. For the further discussion, we define the trans-
mission channel noise in error concealment similar to the
noise in speech enhancement: The noise d(n) in error
concealment will be the difference between the hard-
decided speech samples and the transmitted (quantized)
one. The histogram of the transmission channel noise
turns out to be spiky as can be seen on the right-hand side
of Figure 4 for 16 bit uniform PCM quantization, natural-
binary bit mapping, and BPSK transmission. The bottom
and top spikes in the histograms and the higher ampli-
tudes in the waveforms are evoked by bit errors at bit
positions close to the most significant bit (MSB).
In the case of acoustic noise, increasing the noise power

(decreasing the SNR) naturally results in higher noise sig-
nal levels and an increasing width of the time-domain
noise histogram (cf. car noise example on the left hand-
side of Figure 4). In the case of the transmission chan-
nel noise, with increasing noise power (decreasing SNR),
more bit errors occur, resulting in higher peaks belong-
ing to d �= 0 in the histogram on the right-hand side of
Figure 4. However, this increase of noise power scales the
height of all high spikes in the histogram (referring to sin-
gle bit errors) belonging to d �= 0 approximately equally
(cf. right-hand side of Figure 4). Thus, while in the case
of acoustic noise the noise power is typically associated
with the width of the noise pdf, in error concealment, the
noise power can be related to the height of spikes in the
noise histogram belonging to d �= 0 (here: for uniform
PCM quantization, natural-binary bit mapping, and BPSK
modulation).

5.2 The estimator
Although the structure of the estimators in Sections 3
and 4 is very similar (cf. Figures 2 and 3), their implemen-
tation may considerably differ. In speech enhancement,
the clean speech is estimated by an integral over the whole
complex plane (14). The online numerical computation of
this integral is typically hard to manage in practice due to
the two-dimensional pdfs, however, employing a common
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Figure 4 Normalized time domain histograms and waveforms of car noise and transmission channel noise. Left: normalized time domain
histograms and waveforms of car noise; right: normalized time domain histograms and waveforms of transmission channel noise applied to 16 bit
speech samples with underlying natural-binary bit mapping. The SNR values were calculated by means of a fixed speech signal level of −26 dBov
and respective noise signal levels, both measured according to ITU-T P.56 [37].

distribution for the prior and the likelihood allows for a
closed-form solution. Accordingly, a Gaussian assumption
for both the prior and the likelihood results in the Kalman
filter Eqs. (20), (21), (22), (23) (cf. Section 3).
In error concealment, the clean speech estimator (29) is

a sum due to quantization and the respective finite num-
ber of transmittable bit combinations. This estimator is
computationally complex but manageable in practice due
to the one-dimensional pdfs (cf. discrete terms (28), (31)).
Thus, the sum (29) can explicitly be computed at run-
time [26]. Interestingly, a closed-form solution of the sum
cannot be achieved due to the likelihood which cannot be
approximated by a common pdf, as outlined in Section 5.1.

5.3 The prior
As can be seen in Section 2, the prior is the pdf of the
propagation error (7). In Section 3, it was assumed that
the propagation error is Gaussian distributed, therefore,
the prior is modeled by a bivariate Gaussian (18) with a
complex-valued argument. In [15], the Gaussian assump-
tion is justified with the tradeoff between mathematical
manageability and pdf model mismatch. It was shown
in [16] that the histogram of the propagation error DFT
coefficients differ from a Gaussian (cf. left-hand side of
Figure 5). Therefore, in [16] the histogram of the prop-
agation error was measured and a parametric pdf was
trained and then employed as prior. Furthermore, since

the speech estimates strongly depend on the channel, the
propagation error also depends on the channel. Accord-
ingly, in [38] the SNR dependency of the propagation error
histogram was reported and an SNR-dependent estimator
was proposed.
Although in [26] the variance E

{(
s+ − ŝ+

)2} is assumed
to be zero, the non-Gaussianity of the propagation error
pdf pē

(
ē = s − ŝ+

)
was also observed in the context of

error concealment. As can be seen on the right-hand
side of Figure 5, pē in (32), being measured in a training
process, turns out to be rather super-Gaussian. Further-
more, in [26] the dependency of pē

(
ē = s − ŝ+

)
on ŝ+

was investigated revealing different shapes and variances
dependent on the amplitude of ŝ+, while ŝ+ = s+ was
assumed there.
The propagation error in error concealment is quasi-

continuous, while the prior is discrete. Thus, an inte-
gration step (32) is needed in order to discretize the
propagation error pdf to obtain the prior. Fortunately, this
discretization step can be done during a training pro-
cess, resulting in a lookup table which nicely reduces the
computational complexity [26].
Please note that usually the NLMS algorithm is

employed for calculating the prediction coefficients both
in speech enhancement and in error concealment due to
its robustness and low computational complexity. How-
ever, there are other algorithms which can also be utilized,
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Figure 5 Propagation error histogramsmeasured in a speech enhancement system and in an error concealment system. Left: normalized
frequency domain histogram of the propagation error Ē�(k) = S�(k) − Ŝ+� (k) measured in a speech enhancement system from Section 3; right:
normalized time domain histogram of the propagation error ē(n) = s(n) − ŝ+(n) measured in an error concealment system from Section 4
assuming that E{(s+ − ŝ+)2} is zero [26].

as reported in [16]. Please note that the propagation error
is also dependent on the algorithm for determining the
prediction coefficients, therefore, the change of the algo-
rithm involves a new propagation error pdf training in
both disciplines.

5.4 Outlook
In this section, we briefly sketch further possible research
directions for speech enhancement inspired by error con-
cealment. Since one of the key success factors in error
concealment is that bit reliability information is exploited,
the speech enhancement approach from Section 3 could
benefit from using bit likelihoods. This means that instead
of (13) the DFT coefficient likelihood (12) is calculated by
means of bit likelihoods as in error concealment (cf. (27)
and (28)).
In the following, we will estimate the real and imagi-

nary parts of the complex-valued speech DFT coefficients
separately, as in, e. g., [10]. Assuming that the result-
ing real-valued real and imaginary parts of STFT-domain
quantities are quantized, their natural-binary representa-
tion is possible. In the following, we will introduce the
processing steps for the real part only, denoted by super-
script ‘re’. Of course, the imaginary part can be treated in
the same way employing the same processing steps.
In order to be able to employ a bit-level model for

the acoustic channel, we assume that the real part of
the speech and the noisy speech DFT coefficients are
quantized byM bit. Therefore, those quantities can bijec-
tively be mapped into the bit combinations Sre� (k) =[
Sre0,�(k), S

re
1,�(k), . . . , S

re
m,�(k), . . . , S

re
M−1,�(k)

]
and Yre

� (k) =[
Y re
0,�(k),Y

re
1,�(k), . . . ,Y

re
m,�(k), . . . ,Y

re
M−1,�(k)

]
, respectively.

Due to the fact that speech is distorted by acoustic noise
while passing through the acoustic channel, the observed
bit combinations at the acoustic channel output Yre

� (k)
may differ from those at the channel input Sre� (k).

Accordingly, a bit error at bit positionm ∈ {0, 1, . . . ,M−1}
occurs if the received bit Y re

m,�(k) is not equal to the trans-
mitted one Srem,�(k). The bit error rate BERre

m(k) can be
measured within a training process by comparing Srem,�(k)
to Y re

m,�(k) for all bit positionsm, individually for each fre-
quency bin k. Please note that the bit errors also depend
on the local SNR in the current time-frequency unit (�, k),
therefore, the SNR has to be taken into account during
the training process. Accordingly, the training steps can
be summarized as follows: Using speech and car noise
data we generated noisy speech signals at different sig-
nal SNR levels. Then, we calculated the short-time spectra
of the clean speech, the noise, and the noisy speech sig-
nals resulting in S�(k), D�(k), and Y�(k) = S�(k) + D�(k),
respectively. Using the resulting DFT coefficients, we cal-
culated the true speech power σ 2

S,�(k) = E
{|S�(k)|2

}
and

the true noise power σ 2
D,�(k) = E

{|D�(k)|2
}
. Using those

two power spectra, we obtained the true a priori SNR as
ξ�(k) = σ 2

S,�(k)/σ
2
D,�(k). Then, we quantized the real part

of the clean speech and noisy speech DFT coefficients by
16 bit resulting in the bit combinations Sre� (k) and Yre

� (k),
respectively. By this means, the whole training data was
processed and Srem,�(k) ∈ Sre� (k) and Y re

m,�(k) ∈ Yre
� (k) were

compared to each other. Bit errors Srem,�(k) �= Y re
m,�(k) were

counted at bit position m, frequency bin k, and in depen-
dence of the a priori SNR. For the latter, the ideal a priori
SNR ξ�(k)was quantized resulting in discrete a priori SNR
values ξq.
The resulting bit error rates BERre

m(k, ξq) were stored
in a lookup table; examples can be seen in Figure 6: As
expected, at higher SNRs less bits are in error. Typical for
car noise, at higher frequencies less bits are in error as
compared to lower frequencies.
A speech enhancement approach as described in

Section 3 can be modified to include bit likelihoods which
can be calculated by the bit error rates from the pre-
vious training step. The resulting frequency-dependent
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Figure 6 Bit error probabilities BERre
m (k, ξq) for different a priori

SNRs ξq and frequencies k. Natural-binary bit representation with
M = 16 bit quantization and the MSB (bit positionM−1 = 15) being
the sign bit is used.

lookup tables are then addressed by a quantized a priori
SNR estimate ξ̂q,�(k), computed, e. g., by the well-known
decision-directed a priori SNR estimator [3] and the same
quantization intervals as for the training process, result-
ing in BERre

m(k, ξ̂q,�(k)) values. Since each transmitter-
sided DFT coefficient S�(k) is quantized, it assumes a
discrete value Sre,(i) with i ∈ {0, 1, . . . , 2M−1

}
. Further-

more, each Sre,(i) can be mapped to one corresponding
bit combination Sre,(i). Then, using the resulting bit error
rate BERre

m

(
k, ξ̂q,�(k)

)
, the bit likelihood with the given

bit Sre,(i)m ∈ Sre,(i) of the ith quantization table entry can be
obtained similar to (27) as

P
(
Y re
m,�(k)
∣∣∣Sre,(i)m

)
=
{
BERre

m,�

(
k, ξ̂q,�(k)

)
, if Y re

m,�(k) �=Sre,(i)m ,

1−BERre
m,�

(
k, ξ̂q,�(k)

)
, else.

(34)

The bit likelihood describes the probability of an observed
bit Y re

m,�(k) given a possible channel input Sre,(i)m . The coef-
ficient likelihood can be obtained using the bit likelihoods
similar to (28) as

P
(
Yre

� (k)
∣∣∣∣ Sre,(i)) =

M−1∏
m=0

P
(
Y re
m,�(k)

∣∣∣∣ Sre,(i)m

)
. (35)

By this means, the simple Gaussian assumption for the
noise DFT coefficients (13) can be replaced by such a
new approach which allows for an environment-specific
processing (cf. [39]). This is also illustrated in Figure 7
for an a priori SNR of 20 dB and the frequency bin k =
32 (corresponding to f = 1 kHz): As can be seen, the

Figure 7 Coefficient likelihood example. Coefficient
likelihood P

(
Yre

� (k)
∣∣Sre,(i)) for the specific channel input Sre,(i) = 0

calculated by (34) and (35) using trained bit error probabilities
BERre

m(k, ξq).

resulting likelihood is a sharp pdf unlike a Gaussian pdf.
The Gaussian assumption for noise is typically justified
with the central limit theorem assuming that the span
of correlation of the noise samples is sufficiently short
compared to the frame length [40]. Although this assump-
tion is better fulfilled by a wide range of noise types than
by speech signals, it can generally be said that it is not
fulfilled perfectly in practice by noise signals. Accord-
ingly, the likelihood turns out to be a sharper pdf than a
Gaussian such as in Figure 7. Please note that the non-
Gaussianity of noise DFT coefficients was also reported
in [41]. Furthermore, there are publications dealing with
speech estimators based on a non-Gaussian assumption
for the noise, e. g., [10,12].Moreover, it was shown in these
papers that a more realistic likelihood function (just as the
proposed one obtained by training) offers a more precise
(acoustic) channel model which can improve estimation
results.
The speech prior P

(
Sre,(i)
∣∣ S+,re

� (k)
)
(cf. (17)) can be

obtained by integrating (18) according to the PCMquanti-
zation intervals (i) (cf. (32)). Here, S+,re

� (k) is the real part
of the a priori speech estimate S+

� (k) calculated by, e. g.,
(16). Using the coefficient likelihood (35) and a speech
prior, the recursive MMSE estimation formula turns out
to be (cf. (14) and (29))

Ŝre� (k)=

2M−1∑
i=0

Sre,(i) ·P (Yre
� (k)
∣∣ Sre,(i))·P (Sre,(i) ∣∣ S+,re

� (k)
)

2M−1∑
i=0

P
(
Yre

� (k)
∣∣ Sre,(i))·P (Sre,(i) ∣∣ S+,re

� (k)
) .

(36)

The imaginary part of the speech estimate Ŝim� (k) can be
obtained in a similar way as Ŝre� (k) and the final (complex-
valued) speech estimate is calculated by Ŝ�(k) = Ŝre� (k) +
ĵSim� (k). The a priori speech estimate S+

� (k) is gained
by (16) which is then used for the update step.
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6 Conclusions
This paper provides new insights into links between
speech enhancement and error concealment based on
recursive MMSE estimation. It turns out that recent
approaches to bit error concealment based on a predic-
tor are well comparable to iterative approaches in speech
enhancement, such as the Kalman filter approach. The
main difference between both disciplines are the channel
model and the noise pdf. In error concealment, power-
ful bit reliability information can be exploited in order to
obtain robust estimation results, while in speech enhance-
ment the channel is modeled on a sample level without
reliable reference. On the other hand, the autoregressive
model of speech and the prior computation are well com-
parable in both disciplines. Finally, some new research
directions are identified for speech enhancement, inspired
by error concealment.

Endnotes
aPlease note that the presented signal model and the

equations are valid in analogy also in the STFT domain.
bPlease note that for binary phase-shift keying (BPSK)

modulation, the LLR is obtained by L(x̂m(n)) = 4 ·Eb/N0·
ym(n) [33].

Appendix
For ease of readability, we will omit the indices � and
k in this section. In this appendix, we aim at showing
that assuming a Gaussian distribution for the propagation
error and the acoustic noise, the recursive MMSE estima-
tor (14) turns out to be the Kalman filter as in (20), (21),
(22), and (23). Employing (17) and (12), (14) turns out to
be

Ŝ =

∫
C

S · pĒ(S − Ŝ+) · pD(Y − S) dS∫
C

pĒ(S − Ŝ+) · pD(Y − S) dS
. (37)

Introducing a new integration variable Ē = S − Ŝ+, (37)
can be rewritten as

Ŝ = Ŝ+ +

∫
C

Ē · pĒ
(
Ē
) · pD (Y−Ē−Ŝ+) dĒ∫

C

pĒ
(
Ē
) · pD (Y−Ē−Ŝ+) dĒ

= Ŝ+ + Ê.

(38)

As can be seen, the recursive MMSE estimator turns out
to be the sum of the a priori speech estimate Ŝ+ and a frac-
tion with each an integral in the numerator and denom-
inator Ê = f

(
Y − Ŝ+). Please note that this fraction is a

classical (non-recursive) MMSE estimator, however, with
an extra term ‘−Ŝ+’ in the pdf pD(·). Assuming a Gaussian
distribution for pĒ(·) and pD(·), this classical MMSE esti-
mator turns out to be the Wiener filter as we will see later.

Employing (13) for pD(·) and (18) for pĒ(·) as well as can-
celing the constant factors to the exponential functions,
the fraction in (38) turns out to be

Ê =

∫
C

Ē · e
− |Ē|2

σ2
Ē · e−

|Y−Ē−̂S+|2
σ2D dĒ

∫
C

e
− |Ē|2

σ2
Ē · e−

|Y−Ē−̂S+|2
σ2D dĒ

. (39)

Employing polar integration with Ē = |Ē|ejε and dĒ =
|Ē| d|Ē| dε, as well as employing R = Y− Ŝ+ = |R|ejρ , we
obtain

Ê =

∞∫
0

2π∫
0

|Ē|2ejε · e
− |Ē|2

σ2
Ē · e−

|Ē|2+|R|2−2|Ē||R| cos(ε−ρ)

σ2D dε d|Ē|

∞∫
0

2π∫
0

|Ē| · e
− |Ē|2

σ2
Ē · e−

|Ē|2+|R|2−2|Ē||R| cos(ε−ρ)

σ2D dε d|Ē|
.

(40)

Integrating with respect to ε using [42], (40) turns out to
be

Ê =
e jρ

∞∫
0

|Ē|2 · e
−|Ē|2
[

1
σ2
Ē

+ 1
σ2D

]
· I1
(
2|Ē||R|

σ 2
D

)
d|Ē|

∞∫
0

|Ē| · e
−|Ē|2
[

1
σ2
Ē

+ 1
σ2D

]
· I0
(
2|Ē||R|

σ 2
D

)
d|Ē|

(41)

with I0(·) and I1(·) being the modified Bessel function
of zeroth and first order, respectively. Integrating with
respect to |Ē| using [42], (41) turns out to be

Ê = σ 2
Ē

σ 2
Ē + σ 2

D
· |R|ejρ = σ 2

Ēσ 2
D

σ 2
Ēσ 2

D + 1
· (Y − Ŝ+) . (42)

Thus, substituting (42) for Ê in (38) and defining ζ =
σ 2
Ē/σ 2

D results in (cf. (20)-(23))

Ŝ = Ŝ+ + ζ

1 + ζ
· (Y − Ŝ+) . (43)
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