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Abstract

Distribution system state estimation is a fundamental tool for the management and control functions envisaged for
future distribution grids. The design of accurate and efficient algorithms is essential to provide estimates compliant
with the needed accuracy requirements and to allow the real-time operation of the different applications. To achieve
such requirements, peculiarities of the distribution systems have to be duly taken into account. Branch current-based
estimators are an efficient solution for performing state estimation in radial or weakly meshed networks. In this paper,
a simple technique, which exploits the particular formulation of the branch current estimators, is proposed to deal
with zero injection and mesh constraints. Tests performed on an unbalanced IEEE 123-bus network show the
capability of the proposed method to further improve efficiency performance of branch current estimators.

Keywords: Distribution systems; State estimation; Branch current estimator; Weighted least squares; Equality
constraints

Introduction
In the smart grid (SG) scenario, where control and man-
agement activities of the electric distribution network are
expected to play a relevant and increasing role, distri-
bution system state estimation (DSSE) is conceived as a
fundamental monitoring tool. In fact, control systems,
such as distribution management systems (DMSs), must
rely on a possibly complete and accurate knowledge of the
state of the network given by DSSE [1].
In the current evolving scenario, the increasing pres-

ence of distributed generation (DG), storage devices and
flexible loads to be controlled leads to unforeseen dynam-
ics, which require suitable measurement responsiveness.
In this context, DSSE techniques able to work at high
reporting rates, while safeguarding the estimation accura-
cies required by specific applications, are needed. DSSE
has to be able to include all the different measurement
types, provided by traditional and modern measurement
devices, which can be available with different frequencies
and accuracies. In particular, the phasor measurement
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units (PMUs) [2,3], which give phasor measurements of
both voltages and currents synchronized with respect to
a common time reference (the so-called synchrophasors)
are becoming increasingly widespread in transmission
systems [4-6] and are expected to be widely used also in
distribution systems, along with new-generation power
meters.
For these reasons, innovative and dedicated solutions

able to estimate the operating point of the future distribu-
tion network are increasingly needed.
DSSE techniques are based on measurement models

that link measurements with the state variables to be esti-
mated. They are intended to elaborate the measurements
acquired from the field, by means of distributed measure-
ment systems, along with all the a priori information that
can be collected about load and generator activity.
In fact, it is impractical and economically infeasible

to have a fully monitored distribution network, where
each node is equipped with a measurement device con-
nected to the monitoring infrastructure. The DSSE thus
reaches observability by relying on the so-called pseudo-
measurements [7], which include historical or forecast
data on generator production and load consumption.
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DSSE approaches proposed in the literature are mainly
based on weighted least squares (WLS) algorithms [7-12]
and mainly differ between each other in the chosen state
variables and in the way the different measurement types
are included. In particular, twomain classes of DSSE exist,
based on two different choices of the underlying state vec-
tor: node voltage state estimators, NV-DSSEs (as in [7,13])
and branch current estimators, BC-DSSEs (as [8-12]). BC-
DSSE is suitably designed to better keep into account
the peculiar characteristics of distribution systems, as the
radial or weakly meshed topology and the high r/x ratios,
and it is usually faster with respect to those based on
voltage state (see [14]).
An important topic, which can influence both accuracy

and speed of DSSE based on WLS methods, concerns
the constraints given by a priori knowledge on network
operation and topology. For instance, a priori informa-
tion exploitable by DSSE includes also the identification of
the so-called ‘zero injections’, that is of the nodes that are
surely known to have no power consumption or genera-
tion. Zero injections are frequent in a distribution grid, in
particular, because in a three-phase unbalanced context,
some nodes may have no loads or generators connected
to some of the phases. Besides, the inactivity of a load
or generator, if it represents an absolutely sure informa-
tion, could be also translated in a zero injection constraint.
Additional constraints can be also present. As an example,
in a branch current formulation, possible meshes have to
be duly considered.
Such constraints can be treated in different ways. The

simplest method is to consider them as virtual pseudo-
measurements and to use a large weight to enforce them.
This choice can lead to numerical conditioning problems
[15], and thus other options have been advanced in the lit-
erature. In [16], for instance, it is proposed to include them
using constraints expressed through Lagrange multipliers,
while in [17], they are treated as normal measurements
with a low weight and the constraints are re-imposed
between the subsequent iterations of the WLS.
In this paper, a simple way to deal with the equality

constraints, well-suited to BC-DSSE (and in particular to
the efficient formulation presented in [12]) and based on
state vector reduction, is proposed. This approach is com-
pared with other traditional and commonly used tech-
niques to underline the advantages bymeans of simulation
results obtained on a IEEE 123-buses three-phase test
network.

Branch current state estimation
State estimation techniques are based on mathematical
relations between system state variables and measure-
ments collected from the distributed measurement sys-
tem. The measurements in a distribution grid can be the
traditional ones, as voltage and current magnitudes, real

and reactive power flows, and power injections at buses,
or the current and voltage synchrophasors provided by
PMUs. Usually, distribution networks are only partially
monitored. As a consequence, prior information on the
loads (the so-called pseudo-measurements) are necessary
to perform state estimation. Thus, the forecasts of power
injections usually constitute the majority of the measure-
ments available for DSSE.
As aforementioned, different state variables can be con-

sidered for the estimation algorithm and in particular
node voltages or branch currents. Such variables can be
represented either in polar or rectangular coordinates. In
this paper, the enhanced branch current-based estima-
tor proposed in [12] is adopted, as it was shown to be
as accurate as those traditionally based on node voltages
and more efficient in the practical application of distribu-
tion networks. This algorithm will be referred to in the
following as BC-DSSE.
The general measurement model adopted for state esti-

mation is:

z = h(x) + e (1)

where z = [z1 . . . zM]T is the vector of the measurements
obtained from real instrumentation in the network and of
the chosen pseudo-measurements, h = [h1 . . .hM]T is the
vector of measurement functions, x = [x1 . . . xN ]T is the
vector of the chosen state variables and e is the measure-
ment error vector, which is a zero-mean random vector
with covariance matrix �z. Measurement functions in h
can be nonlinear, depending on the type of considered
measurements, and are strictly influenced by the topology
and the parameters (impedances) of the network.
The state vector x, in the BC-DSSE, is given by the

branch currents of all the Nbr network branches, in rect-
angular coordinates, and the voltage vs at a reference
node, for instance the slack bus. In a three-phase frame-
work, x is

[xTA, xTB , xTC]T, with xφ (φ = A,B,C) equal to[
vrsφ , vxsφ , ir1φ . . . irNbrφ

, ix1φ . . . ixNbrφ

]T
, under the hypothesis

that synchronizedmeasurements are present. This formu-
lation exploits the absolute phase angles provided by PMU
measurements, which use the common time reference of
the coordinated universal time (UTC). Such time synchro-
nization can be obtained by means of Global Positioning
system (GPS) or other synchronization sources (see for
instance [18,19]).
Pseudo-measurements, in the model (1), are handled as

measurements that are assigned with a higher standard
deviation σ to highlight the lower accuracy due to the fact
they are not based on real measurements but rather on
historical and forecast data.
In BC-DSSE, the estimation of the state x is obtained by

an iterative algorithm. Each iteration consists of:
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• definition/update of measurements and residuals;
• branch current estimation applying a WLS method;
• network voltage state computation through a forward

sweep calculation.

For each iteration k, in the first step of BC-DSSE,
power measurements are translated into equivalent pha-
sor current measurements using the node voltages esti-
mated in the previous iteration. This approach allows
including power measurements (and above all pseudo-
measurements) easily in the estimator, since equivalent
current injections are linearly linked to the branch current
variables. Using the updated vector zk of the measure-
ments and the previously estimated state x̂k−1, the mea-
surement residuals rk = zk − h(x̂k−1) are computed. In
the first iteration, when estimates are not still available, an
initialization of the state variables is needed.
The WLS step is then used, at each iteration, to find

the state variable variation �xk = x̂k − x̂k−1 that mini-
mizes the weighted sum of the squares of the residuals, by
solving the following normal equations:

HT
kWHk�xk = HT

kWrk−1 (2)

where Hk = H(x̂k−1) is the Jacobian of the measurement
functions at iteration k and W is the weighting matrix,
equal to the inverse of �z.
Matrix G = HTWH (subscript k will be dropped in

the following, for the sake of simplicity) represents the so-
called gain matrix, which has to be inverted or factorized
to find the solution of (2). Such matrix and its character-
istics play thus a key role in the estimation process.
In the last step of the algorithm, network voltages for

each node are computed, by a simple evaluation of voltage
drops along the lines, starting from the estimated voltage
in the reference bus. With a matrix expression, the node
voltage phasors vk , at iteration k, are obtained as follows:

vk = Zpathsxk (3)

whereZpaths is the matrix that contains, for each row i, the
branch impedances zj that belong to the path that links vi
to the reference bus vs.
It is worth noting that, in the case of meshed net-

works, a radial tree of the network can be considered in
order to identify the paths linking the slack bus to each
node of the grid and to make the forward sweep step
possible. The chosen tree can be whatever, since the inclu-
sion of the mesh constraints in the preceding WLS step
ensures the final achievement of the same voltage results
independently from the particular choice of the path.
The procedure is repeated until a given threshold in

estimated state variation is reached.

Formulation of the equality constraints
Zero injections are the most common case of equality
constraints that can be found in a distribution system.
They can be generally represented by:

c(x) = 0 (4)

where c(·) is a Nc size vector that represents the con-
straints to be kept into account in state estimation. It
is worth noting that these constraints can be nonlinear,
depending on the chosen state variables of the system,
but they are linear in the case of rectangular BC-DSSE.
In a similar way, possible presence of meshes also leads
to equality constraints that, in the branch current formu-
lation, have to be suitably considered. The way to handle
such constraints in the DSSE can affect the performance
of the estimator, in terms of both accuracy and speed. Dif-
ferent methods have been used in the literature. In the
following, virtual measurements and Lagrange multipliers
are first described, in order to present the equality con-
straints issue in a self-contained discussion. Then, a new
method, based on state vector reduction, is proposed.

Virtual measurementmethod
Zero injections can be treated as virtual measurements
given by (4), that is as measurements to be included into
the measurement model (1) with a very low measurement
uncertainty (represented by the virtual standard deviation
σzi). Such approach leads to a WLS where a high weight
is attributed to the power measurement of zero injec-
tion nodes. It is important to remark that the resulting
weight is not representative of a real uncertainty (which
should be equal to zero), but it is adopted only to point
out the higher reliability of the information associated to
the virtual measurements with respect to the other avail-
able measurements. In the DSSE, the measurement vector
becomes z = [zTm, zTzi]T, where zm and zzi are the proper
measurement vector and the virtual measurement vector,
respectively. Indicating with C the Jacobian of the zero
injection constraints, and using the previous notation for
the weighting matrix and the residuals, they can also be
divided as follows:

H =
[Hm

C
]

(5)

W =
[Wm 0

0 Wzi

]
(6)

r =
[ rm
rzi

]
(7)

The zero injection weighting matrix is Wzi = σ−2
zi INc ,

where INc is an identity matrix, whose size is equal to the
number of virtual measurements. The residual vectors are
rm = zm − hm(x̂) and rzi = −c(x̂).
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In the BC-DSSE context, each zero injection leads to two
virtual measurements, for the real and imaginary parts of
the corresponding current injection. The Jacobian rows of
the ith zero injection appear as follows:

Ci =
[ · · · +1 · · · −1 · · · · · ·

· · · · · · +1 · · · −1 · · ·
]

(8)

where the only non-zero elements are those correspond-
ing to the real and imaginary parts of the branch currents
to and from the considered node (the sign depends on the
direction assumed for the currents).
The WLS estimation step of DSSE is thus performed by

means of the followingN-dimensional system (whereN is
the number of unknowns in �x) derived from (2):
(
HT

mWmHm + CTWziC
)

�x = HT
mWmrm − CTWzic

(9)

Possible meshes in the network can be expressed as
additional constraints among the branch current state
variables, using the Kirchoff voltage law, asm(x) = Mx =
0, where each couple of rows j and j + 1 refers to the
Kirchoff voltage law of a mesh, expressed in real and
imaginary parts, respectively. MatrixM thus contains, for
each mesh, the resistances or inductances of the branches
involved in the mesh itself.
Even in this case, the constraints can be included in the

estimator model as virtual measurements, leading to the
following:

(
HT

mWmHm + CTWziC + MTWzmM
)

�x =
HT

mWmrm − CTWzic − MTWzmm
(10)

where M and Wzm are the Jacobian and the weighting
sub-matrix (with large weights) of the mesh constraints,
respectively.

Lagrangianmethod
It is known that using large weights can lead to ill-
conditioning problems in the system of normal equations
to be solved. To avoid the use of very large weights, an
alternative is represented by the explicit formulation of
the constraints (4) in the problem. Such constrained min-
imization problem can be faced through the Lagrangian
method [16]. According to this approach, the normal
equation system (2) is extended associating at each equal-
ity constraint a Lagrange multiplier. In the case of zero
injections, for a generic iteration, (2) becomes:

[Gm CT

C 0

] [
�x
−λzi

]
=

[HTWr
−c(x̂)

]
(11)

where C is the Jacobian of the zero injection con-
straints, λzi is the Nc vector of the associated Lagrange

multipliers and, using the same notation as in (5), Gm =
HT

mWmHm represents the gain matrix referred only to
the set ofmeasurements and pseudo-measurements.With
this approach, the number of the unknowns increases
because of the multipliers, but the sparsity of system (11)
is higher with respect to the case of virtual measurements.
It is worth underlining that in [15], in order to signif-

icantly reduce the numerical conditioning of the system,
the use of a normalization coefficient γ = 1/max(Wii)
for the weighting matrix is suggested. Thus, the equation
system (11) has to be modified in the following form:

[
γGm CT

C 0

] [
�x
−λzi

]
=

[
γHTWr
−c(x̂)

]
(12)

Similarly to the zero injections, even the mesh con-
straints can be managed by using Lagrangian multipliers.
In this case, (12) has to be rewritten as:

⎡
⎣ γGm CT MT

C 0 0
M 0 0

⎤
⎦

⎡
⎣ �x

−λzi
−λzm

⎤
⎦ =

⎡
⎣ γHTWr

−c(x̂)
−m(x̂)

⎤
⎦ (13)

where λzm is the vector of Lagrange multipliers included
to deal with the mesh constraintsm(x).

Proposedmethod: state vector reduction
An efficient way to include equality constraints, well-
suited to BC-DSSE formulation, is proposed here. Each
zero injection corresponds, as aforementioned, to an
equivalent phasor current injection equal to zero. Since
the real and imaginary parts of the branch currents are
included in the state vector, it is straightforward to express
the constraint on a node i as:

∑
j∈�i

αjirj = 0,
∑
j∈�i

αjixj = 0 (14)

where �i is the set of branches incident to node i, while
αj is a coefficient equal to +1 or −1, depending on the
direction assumed for the currents in the state vector. It is
easy to understand how a simple variable elimination can
be performed from (14), writing one current as a function
of the other incident ones. In fact, for each zero injection,
a current can be expressed as a function of the other state
variables and eliminated from the state. The state x can be
thus written as a function of a new reduced state vector x̃
(of length Ñ = N −Nc), replacing Nc variables by a simple
combination of the remaining state variables, as follows:

x =
[ x̃
xzi

]
=

[ IÑ
	zi

]
x̃ (15)

where IÑ is a Ñ × Ñ identity matrix and �zi is a Nc ×
Ñ sparse matrix of ±1 elements linking the eliminated
variables xzi to the remaining ones.
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Referring to the reduced state vector x̃, the normal
equation system (2) can be rewritten as:

H̃T
mWmH̃m�x̃ = H̃T

mWmrm (16)

where the new Jacobian H̃m is:

H̃m = Hm

[ IÑ
�zi

]
(17)

and the residual vector is computed as rm = zm −
h

([x̃T, x̃T�T
zi
]T)

.
As for the mesh constraints, even in this case it is pos-

sible to express one of the currents involved in the mesh
in terms of the remaining ones. In general, the mesh
constraint is:

m(x) =
∑
j∈


Zjij = 0 (18)

where 
 identifies the set of branches in the mesh, and
Zj and ij are the impedance and the current of the jth
branch, respectively. It is worth noting that, in a three-
phase framework, Z is a 3 × 3 impedance matrix, which
includes also the mutual impedance terms, while i is the
vector of the phase currents.
From (18), it is easy to find:

ik = −Z−1
k

∑
j∈

j�=k

Zjij (19)

where k is the index of the branch whose currents will be
eliminated from the state variables.
Considering this additional reduction of the state vector,

it is possible to rewrite (15) in the following way:

x =
⎡
⎣ x̃

xzi
xzm

⎤
⎦ =

⎡
⎣ IÑ

�zi
�zm

⎤
⎦ x̃ (20)

where �zm is a Nm × Ñ matrix linking the Nm removed
current variables xzm to the remaining ones. Thus, in this
case, the resulting state vector has a reduced length equal
to Ñ = N−Nc−Nm. Once the transformationmatrix link-
ing the starting state vector to the reduced one is defined,
the same considerations involved in (16) and (17) hold for
the execution of the estimation algorithm.
The performed transformation leads to a lower spar-

sity of the system, reflecting the fact that each eliminated
variable is expressed in terms of more remaining vari-
ables. However, since distribution grids usually have a
large number of zero injections, the transformation also
allows a significant reduction of the dimensions of the
equation system to be solved. It is worth underlining that
�zi and �zm are constant matrices that can be built a pri-
ori knowing the operation and topology of the network;
thus, there is no need to compute them at each run of
the DSSE.

It is important highlighting that such approach can be
applied in an efficient way only because of the chosen state
variables: a similar logic does not apply, with the same
simplicity, to traditional estimators based on polar node
voltages.
The proposed approach allows an efficient implemen-

tation even for the bad data detection and identifica-
tion functions. In fact, the same techniques traditionally
adopted in WLS estimators, based on the computation
of the normalized residuals, can be conveniently imple-
mented here, thanks to the reduced sizes of the Jacobian
and gain matrices that are involved in the computation
of the residual covariance matrix (see [15] for further
details). Identified bad measurement data are removed,
and the BC-DSSE estimation steps previously described
are performed again on the reduced measurement set. It
is worth noting that, in order to avoid the computation
of the residual covariance matrix when bad data are not
present, the bad data detection can be also implemented
by using the well-known χ2 test [15].

Tests and results
Test assumptions and metrics
Several tests have been performed on the unbalanced
three-phase IEEE 123-bus system (Figure 1) to assess the
performance of the proposedmethod. Data of the network
can be found in [20]. Different measurement configura-
tions have been considered in order to analyze various
possible scenarios.
In order to achieve significant results from a statisti-

cal standpoint, tests have been carried out following a
Monte Carlo approach. For each test, at the beginning, the
true reference quantities of the network are computed by
means of a load flow calculation. Then, for each trial of
the Monte Carlo simulation, measurements are extracted
adding random noise to the reference values, according to
the uncertainty characteristics assumed for eachmeasure-
ment. At the end of each trial, estimation results are stored
to be available for the subsequent analysis. The following
assumptions are used in the tests:

• number of Monte Carlo trials: NMC = 25, 000;
• pseudo-measurements available for all the loads of

the network and characterized by normally
distributed uncertainty with maximum deviation
3σ = 50% of the nominal value;

• PMUmeasurements characterized by uncertainty
with uniform distribution and variance σ 2 equal to
one third of the squared accuracy value; in particular,
an accuracy equal to 0.7% and 0.7 crad (i.e.
0.7 × 10−2 rad) is used for magnitude and
phase-angle measurements, respectively, in order to
simulate the accuracy limits specified in the
synchrophasor standard [3].
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Figure 1 IEEE 123-bus test system.

Results of the tests have been analysed to assess the
performance of the proposed approach in comparison to
virtual measurements and Lagrange multiplier methods.
In particular, accuracy, computational properties and effi-
ciency of the different approaches have been analysed in
order to have an overall performance evaluation.

Estimation accuracy
To assess the estimation uncertainty of a given quantity,
the root mean square error (RMSE) has been used. Given
a generic electrical quantity y, the RMSE is defined as:

RMSEy =
√√√√ 1

NMC

NMC∑
i=1

(ŷi − ytrue)2 (21)

where ŷi is the estimation of y at the ith Monte Carlo
trial and ytrue is the true value of the quantity. In this
paper, as overall index for the whole network, the mean
RMSE, obtained averaging the RMSEs of all the nodes or
branches (depending on the considered electrical quan-
tity), has been used.
Since the focus of the paper is on the processing of

the equality constraints, a second parameter is also moni-
tored, that is the sum of the estimated power injections in
the zero injection nodes. This index allows to evaluate the
capability of the method to fully satisfy the zero injection
constraints. In [17], it is shown that a bad handling of the
constraints in the estimator could lead to the estimation

of significant power injections in the zero injection nodes,
consequently affecting the overall accuracy of the esti-
mated quantities. Equation 22 shows the definition of the
indexes for both active and reactive power (with B repre-
senting the set of the zero injection nodes of the network):

P0inj =
∑
i∈B

|Pi|, Q0inj =
∑
i∈B

|Qi| (22)

Numerical properties
An important issue for the estimator design is the numer-
ical conditioning of the equation system. In fact, as
described in [15], due to ill-conditioning, small errors
in the different entries of the equation system may be
translated in large errors for the solution vector. As a con-
sequence, the accuracy and the convergence properties of
the algorithm can be significantly affected and numerical
instabilities can appear.
In all the analysed approaches, the equation systems to

be solved at each iteration of the algorithm ((9), (12) and
(16)) can be written in the following compact form:

Gtot�xtot = u (23)

where Gtot is a coefficient matrix, �xtot is the total vec-
tor of the unknowns (note that for the Lagrangian method
also the Lagrange multipliers are included in this vec-
tor) and u is a vector resulting from the measurement
residuals.
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To evaluate the numerical properties of the system,
the condition number k of the coefficient matrix Gtot is
considered, that is:

k(Gtot) = ‖Gtot‖ · ‖G−1
tot‖ (24)

where ‖·‖ is the 2-norm of the matrix.
Other interesting properties from the computational

point of view are the density and the size of the coefficient
matrix. A low density (defined as the ratio between non-
zero terms and total number of elements in the matrix)
implies a large number of zero elements in the matrix and
thus the possibility to use sparse matrix techniques for the
calculations. The size, instead, is obviously associated to
the number of unknowns and represents the dimension
of the equation system to be solved. In the following, all
these parameters will be taken into account to discuss the
obtained results.

Computational efficiency
The efficiency of the estimator is a crucial factor for
the real-time management and control of future distri-
bution systems. For this reason, in the following discus-
sion, the average execution times of the different methods
(obtained averaging among the NMC Monte Carlo trials)
will be compared. Moreover, since the execution times
strictly depend on the number of iterations needed for the
algorithm convergence, also the average number of itera-
tions of the different approaches will be evaluated. Tests
have been performed under Matlab environment and run
on a 2.4-GHz quad-core processor with 8-GB RAM.

Test results
In this section, the performance of the approaches virtual
measurement method (VM), Lagrangian method (LM)
and state vector reduction (SVR) will be analysed and
discussed.
First, a test has been carried out considering a possi-

ble realistic measurement configuration for the network.
In particular, three measurement points have been sup-
posed to be available in nodes 150 (primary station), 18
and 67. Each measurement point is composed of a voltage
synchrophasor measurement on the node and of cur-
rent synchrophasor measurements on all the branches
converging to that node.
Results of the test show that all the analysed methods

provide really similar accuracy performance. The mean
RMSE of the branch active power is, as an example, 5.7
kW for all the approaches. A similar behaviour has been
found also for the mean RMSEs of voltage and current. As
for the estimated power injection in zero injection nodes,
simulations prove that a really low total power injection
can be found with a suitable setting of the algorithms,
despite the large number of zero injections (119 nodes

over 227 total nodes for all the three phases). In partic-
ular, both LM and SVR always give a null sum of the
considered power injections. As for VM, instead, results
strictly depend on the choice of the weights used for the
constraints. Table 1 shows the values of P0inj and Q0inj
achieved using different weights. It is possible to observe
that increases of an order of magnitude in the weights
cause corresponding decreases on the P0inj index. Similar
results have been found also for the reactive powers. In
any case, it is worth noting that, since the unbalances are
different in sign, the mean RMSEs basically do not change
in the different scenarios.
Table 2 shows the efficiency performance of the differ-

ent methods. In this case, significant differences can be
found depending on the approach used to deal with the
zero injection constraints. In particular, it is possible to
note that SVR provides the best results in terms of exe-
cution times, with an enhancement of the computational
efficiency with respect to VM and LM larger than 30%
and 40%, respectively. Furthermore, due to the correct
modeling of the zero injection constraints, a slightly bet-
ter performance can be observed for SVR even for the
convergence properties (in terms of average number of
iterations).
The reasons of such enhancement in the algorithm

speed can be found looking at the numerical features of
each approach. Table 3 reports the density properties and
the size of the coefficient matrix involved in theWLS step
of the estimation process. It is clear that SVR allows a large
reduction of the coefficient matrix due to the elimina-
tion of all the zero injection constraints. Such reduction,
despite the lower sparsity of the system, allows a faster fac-
torization of the coefficient matrix (in this case, no sparse
matrix techniques have been used for SVR) for the solu-
tion of (16). On the other hand, in LM, the introduction of
the Lagrange multipliers leads to a larger size of the coeffi-
cient matrix, and the solution of the equation system, even
if manageable with sparse matrix techniques, is slower.
An additional advantage guaranteed by the use of SVR

concerns the condition number of the coefficient matrix.
As it can be observed in Table 3, SVR gives the lowest
conditioning. It is worth recalling that, in general, VM suf-
fers possible ill-conditioning problems because of the use
of very large weights to enforce the constrained measure-
ments. As a confirmation of such an impact, the condition
number obtained changing the weights to 108 and 1012

Table 1 Variation of P0inj [kW] andQ0inj [kvar] in VM

Virtual measurement weight

109 1010 1011 1012

P0inj 1.9 · 10−1 1.9 · 10−2 1.9 · 10−3 1.9 · 10−4

Q0inj 3.0 · 10−1 3.0 · 10−2 3.0 · 10−3 3.0 · 10−4
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Table 2 Average iteration numbers and execution times

Method Iteration number Execution time [ms]

VM 3.75 18.2

LM 3.75 21.5

SVR 3.64 12.8

has been checked: in both the cases, a consequent vari-
ation of the condition number (3.74 · 104 and 3.02 · 108,
respectively) has been found.
Several tests have been performed also to verify the

proper operation of the aforementioned bad data detec-
tion and identification function when using the proposed
approach. For instance, tests have been performed by
adding intentional errors (of 5%, 10% and 20%) to the
voltage magnitude measurement at node 18 (on the first
phase). In such a scenario, all the analysed methods
allow the detection of the bad data, through the χ2 test,
and the proper identification of the erroneous voltage,
by means of the largest normalized residual technique.
It is important to note that, since the presence of the
bad data implies the computation of the residual covari-
ances and the need to repeat the estimation process,
the aforementioned improvements brought by the SVR
method on the execution times further increase. It is also
worth noting that, in some cases, depending on mea-
surement configuration, when considering the bad data
on other measurements (for example, on PMU currents),
the bad data identification function could be unable to
properly identify the erroneous measurement. However,
as known from the literature, this is a general issue that
can occur due to the low redundancy of the measure-
ments, and it does not depend on the particular method
used to handle the equality constraints. In fact, several
tests (not reported here for the sake of brevity) have
been performed changing the corrupted measurement,
and as expected, test results prove that all the approaches
exhibit exactly the same behaviour, with the same identi-
fication results, in all the different scenarios. Since pos-
sible identification problems are generally related to the
measurement system deployed in the distribution grid, a
deeper analysis on this issue is out of the scope of this
paper.

Table 3 Numerical properties of the coefficientmatrix

Method
Coefficient matrix Coefficient matrix Condition

density (%) size number

VMa 3.26 454× 454 3.02 · 106
LM 1.48 692× 692 4.63 · 104
SVR 21.17 216× 216 1.02 · 104
aWeight used for the virtual measurements = 1010 .

Impact of themeasurement configuration
Further tests have been performed to assess the perfor-
mance of the methods with different measurement types
and configurations.
First of all, the general validity of the previous con-

siderations has been tested using different measurement
devices. To this purpose, voltage and current phasor mea-
surements have been replaced by voltage magnitude and
active and reactive power measurements (with accuracy
equal to 1% and 3%, respectively). It is worth noting that in
this case, since synchronized measurements are not avail-
able, the estimator model has to be suitably adapted to
take into account the absence of an absolute phase angle
reference (see [12] for more details).
Tables 4 and 5 show the results about the efficiency per-

formance and the numerical properties of the different
methods in this case with traditional measurements. It is
possible to observe that all the previously made consider-
ations still hold, with SVR providing the best performance
in terms of execution time and numerical conditioning.
As for the accuracy performance, even in this case, all the
methods provide really similar results.
As for themeasurement configuration, the attention has

been mainly focused on the impact of additional voltage
measurements, since they can significantly affect numeri-
cal properties and efficiency of the branch current-based
formulation of DSSE. In fact, voltage measurements lead
to non-zero terms in the Jacobian Hm corresponding to
all the derivatives with respect to the branch currents
included in the path between the bus used as reference in
the state vector and the measured node (for details, see
[12]). This, in turn, causes a lower sparsity of the coef-
ficient matrix in (23), thus affecting the efficiency of the
equation system solution.
As an example, Tables 6 and 7 show the results about

the numerical properties and the computational efficiency
when two voltage measurements (in nodes 86 and 105)
are added with respect to the configuration used in the
previous tests.
As expected, the presence of additional voltage mea-

surements affects the coefficient matrix leading to higher
densities: this is the main reason for the increased execu-
tion times shown in Table 7 (with respect to the results
in Table 2). Moreover, it is worth highlighting that the
increased density brings different impacts on the different

Table 4 Average iteration numbers and execution times
with traditionalmeasurements

Method Iteration number Execution time [ms]

VM 5.30 23.3

LM 5.30 28.4

SVR 5.28 17.8
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Table 5 Numerical properties of the coefficientmatrix
with traditionalmeasurements

Method
Coefficient matrix Coefficient matrix Condition

density (%) size number

VMa 3.09 451 × 451 5.75 · 106
LM 1.40 689 × 689 2.26 · 104
SVR 20.56 213 × 213 5.41 · 103
aWeight used for the virtual measurements = 1010 .

methods. In fact, since the solution of the equation sys-
tem in SVR is managed without using sparse matrix
techniques, the impact on this approach is smaller with
respect to the other methods. This is confirmed by the
enhancements obtained on the execution times that, in
this scenario, rise up to almost 37% and 50% with respect
to VM and LM, respectively.
To emphasize and check such result, a further test has

been carried out adding four supplementary voltage mea-
surements (in nodes 25, 42, 48 and 91). Table 8 shows the
results concerning coefficient matrix density and execu-
tion times. It is possible to observe that further increases
in the density of the coefficient matrix, with consequent
further improvement of the computational efficiency of
SVR, are achieved. In this case, the time saved through
SVR is larger than 45% with respect to VM and 60% with
respect to LM.
As for the accuracy and the numerical conditioning

of the analysed methods, considerations similar to those
made for the first test can be derived also in these cases:
all the methods provide very similar accuracy results, and
SVR shows the best conditioning properties.

Impact of the size of the network
One of the main issues involved in the handling of dis-
tribution systems is the large size of these networks. This
aspect is particularly critical from the standpoint of the
execution times, since it implies a significant increase of
the size of the equation system to be solved. In such a sit-
uation, possible drawbacks can arise for the SVR method
due to the fill-ins resulting from the elimination of the
state variables.
To assess the impact of such issue, additional tests have

been performed with networks having a larger number of
nodes. In particular, in order to simulate different sizes

Table 6 Numerical properties of the coefficientmatrix
with two additional voltagemeasurements

Method
Coefficient matrix Coefficient matrix

density (%) size

VM 5.95 454× 454

LM 2.68 692× 692

SVR 24.52 216× 216

Table 7 Average iteration numbers and execution times
with two additional voltagemeasurements

Method Iteration number Execution time [ms]

VM 3.62 22.3

LM 3.62 27.7

SVR 3.54 14.0

of the grid, new networks with an increasing number
of feeders have been built, where each feeder replicates
the topology of the previously considered 123-bus net-
work. For all the tests, the measurement configuration
is supposed to be composed of a measurement point in
the substation and, for each feeder, of two measurement
points in the buses corresponding to the nodes 18 and 67
of the original 123-bus network (see Figure 1). In order to
obtain different loading conditions in the feeders, power
consumptions of the loads have been modified adding
random variations.
Performed tests show an obvious decrease for the den-

sity of the coefficient matrices in all the tested methods.
For instance, in the SVR approach, the coefficient matrix
density drops to 4.42% and to 2.22% when five and ten
feeders are considered, respectively. In such a situation,
even considering the huge size of the coefficient matrix,
the use of sparse matrix techniques is a forced choice also
for the SVR approach. Even in this case, the SVR method
maintains the already cited advantages in terms of exe-
cution times. As an example, Table 9 shows the obtained
results, for iteration numbers and execution times, when
ten feeders are considered in the network (the resulting
three-phase grid is, in this case, composed of more than
2,000 nodes). It is possible to observe that, because of
the large size of the equation system to be solved, the
execution times are now significantly higher than the pre-
vious cases. However, despite of the increased size of
the network, the SVR method still allows a significant
enhancement of the computational performance, leading
to an improvement of about 22% and 37% with respect to
the VM and the LM approaches, respectively.

Impact of themesh constraints
In this section, the performance of the proposed method
are tested for the case of weakly meshed networks,

Table 8 Coefficientmatrix density and execution times
with six additional voltagemeasurements

Method
Coefficient matrix Execution

density (%) time [ms]

VM 10.36 28.1

LM 4.64 39.0

SVR 31.49 15.2
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Table 9 Average iteration numbers and execution times
with ten-feeder network

Method Iteration number Execution time [ms]

VM 4.00 166.7

LM 4.00 206.0

SVR 4.00 129.2

referring to the original 123-bus grid. To this purpose,
the presence of a branch between nodes 151 and 300 and
between nodes 54 and 94 of the benchmark network has
been supposed in order to create two meshes. Simulations
have been carried out considering the base monitoring
configuration composed of the three measurement points
in nodes 150, 18 and 67.
Table 10 shows the numerical properties of the coeffi-

cient matrix for the different methods.
It is possible to observe that the density of the coeffi-

cient matrix in VM and SVR is significantly affected by
the presence of the meshes. In fact, as clear from (18),
the mesh constraint involves all the three-phase currents
of the branches belonging to the mesh. Thus, the matrix
multiplications needed to create the coefficient matrix
Gtot and involving the Jacobian matrix M for VM (see
Equation 10) and the transformation matrix �zm for SVR
(see Equations 20, 16 and 17) lead to a significant increase
of the non-zero elements. At the same time, the presence
of the additional branch currents (due to the meshes) lead
to an increase of the dimension of the equation system for
VM, while no change appears for SVR since such currents
are expressed in terms of the reduced state vector. In the
case of LM, instead, the explicit expression of the mesh
constraints, together with the growth of the dimensions
of the equation system (due to both the additional branch
currents and the additional constraints) allows to keep the
coefficient matrix very sparse.
All these aspects bring direct effects on the efficiency

of the different methods. Table 11 reports the obtained
results for average iteration number and execution times.
It is possible to observe that in this scenario, the VM
approach is negatively affected by the presence of the con-
straints and gives the worst results in terms of execution
time. Instead, the proposed method still shows significant

Table 10 Numerical properties of the coefficientmatrix
withweaklymeshed network

Method
Coefficient matrix Coefficient matrix

density (%) size

VM 11.42 466× 466

LM 1.78 716× 716

SVR 34.43 216× 216

Table 11 Average iteration numbers and execution times
withweaklymeshed network

Method
Iteration Execution
number time [ms]

VM 3.89 33.8

LM 3.89 32.8

SVR 3.82 18.2

benefits on the computational performance with improve-
ments on the execution times around 45%.
The same considerations already made for the tests with

the radial version of the network hold for the accuracy
performance and the conditioning properties.

Conclusions
In this paper, an efficient way to include the equality
constraints in a branch current-based state estimator is
presented. The method exploits the use of rectangular
branch currents as state variables of the system to per-
form a simple elimination of one of the currents involved
in a constraint, expressing it as a linear function of the
remaining ones. The method not only is particularly effi-
cient in the management of zero injections but also allows
the treatment of mesh constraints. Performed tests prove
the goodness of the proposed technique and in particular
its capability to significantly improve the computational
efficiency of the estimator (with respect to other tradi-
tionally used methods). Moreover, full fulfilment of the
constraints is guaranteed, and additional benefits can be
achieved for the numerical conditioning of the system.
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