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Abstract

function

Image contrast is an essential visual feature that determines whether an image is of good quality. In computed
tomography (CT), captured images tend to be low contrast, which is a prevalent artifact that reduces the image quality
and hampers the process of extracting its useful information. A common tactic to process such artifact is by using
histogram-based techniques. However, although these techniques may improve the contrast for different grayscale
imaging applications, the results are mostly unacceptable for CT images due to the presentation of various faults, noise
amplification, excess brightness, and imperfect contrast. Therefore, an ameliorated version of the contrast-limited adaptive
histogram equalization (CLAHE) is introduced in this article to provide a good brightness with decent contrast for CT
images. The novel modification to the aforesaid technique is done by adding an initial phase of a normalized gamma
correction function that helps in adjusting the gamma of the processed image to avoid the common errors of the basic
CLAHE of the excess brightness and imperfect contrast it produces. The newly developed technique is tested with
synthetic and real-degraded low-contrast CT images, in which it highly contributed in producing better quality results.
Moreover, a low intricacy technique for contrast enhancement is proposed, and its performance is also exhibited against
various versions of histogram-based enhancement technique using three advanced image quality assessment metrics

of Universal Image Quiality Index (UIQI), Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM). Finally, the
proposed technique provided acceptable results with no visible artifacts and outperformed all the comparable techniques.
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1 Introduction

In the field of digital image processing, contrast en-
hancement plays an essential role in rendering an image
clearly recognizable for different imaging applications
[1], including computed tomography (CT). Moreover,
contrast enhancement allows an easy distinction of the
image components through an appropriate upsurge in
its contrast [2]. As a result, it provides a better concep-
tion of murky images to enhance visual understanding
and to enable precise interpretation [3]. Typical viewers
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refer to the contrast-enhanced images, as if a curtain of
fog has been removed from the filtered image. In com-
puted tomography (CT), captured images tend to be
low contrast [4-7], which is a prevalent artifact that re-
duces the image quality and hampers the process of
extracting its useful information. Many reasons have
contributed to obtain low-contrast CT images, such as
using a low-radiation dose during the examination [8],
different acquisitions, transmission, storage, display de-
vices, and varied kinds of reconstruction and enhance-
ment algorithms [9]. Similarly, partial volume effects
may lead to reduce the contrast of the CT image [10].
Moreover, noise can result in low-contrast images [11]. In
addition, denoising filters degrade the contrast, while
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reducing the noise [12]. These factors cause the unnatural
appearance of the image by concealing certain important
details. Therefore, specially designed techniques should be
applied to obtain a better image resolution without any in-
formation about the origin of the source degradation. These
techniques are mainly classified as spatial and frequency do-
main techniques [13]. The most popular contrast enhance-
ment methods are the ones that improve the gray-levels of
the image in the spatial domain. These methods consist of
log and power-law transformations [14,15]; low-pass, high-
pass, homomorphic filtering [3]; histogram equalization
[16]; contrast stretching [17]; normalization [18]; and sig-
moid function [19]. Recently, histogram modification tech-
niques have received significant attention from researchers
because of their direct and instinctive application qualities
and their ability to be applied either globally or locally to an
image. However, such techniques frequently fail to pro-
vide acceptable results for a wide selection of low-
contrast images [20]. Histogram equalization (HE) is a
common contrast enhancement technique that is widely
used by different imaging applications due to its easi-
ness and rapidity [21]. Basically, equalizing the histo-
gram is achieved through the reallocation of pixel values
for a given image. However, it has performed poorly in
many circumstances because of its drawbacks, such as
loss of detail, over enhancement, noise amplification,
and the mean shift issue, which produces a remarkable
dissimilarity between the illumination of the input and
the output images [22]. To overcome the aforemen-
tioned drawbacks, various histogram modifications have
been proposed to provide more efficient histogram-
based contrast enhancement methods, wherein such
methods are fully explained in Section 2. Therefore, this
study proposes a modified contrast-limited adaptive histo-
gram equalization (CLAHE) technique which can be used
to process the low-contrast CT images efficiently. The pro-
posed technique depends on a normalized gamma correc-
tion function to improve the unbalanced contrast and
reduce the increased brightness of CLAHE. The results ob-
tained through conducting different experiments on various
images show a substantial contrast improvement in the fil-
tered images, in which they appear better than their original
versions. This article is structured as follows: In Section 2,
the related works are adequately explained. In Section 3, the
proposed technique is discussed in details. In Section 4, the
experimental results and comparisons are exhibited with
their related discussions. In Section 5, a summary of import-
ant closing remarks is provided.

2 Related works

In this section, many renowned histogram-based tech-
niques are elaborated briefly. After HE, an improved
technique was proposed, known as CLAHE [23] to
provide a better contrast for the processed images.
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However, this algorithm also has drawbacks in that it
failed to process some CT images properly and pro-
duced unsatisfactory results as the images suffered from
unbalanced contrast and increased brightness. Such
limitations reduced the reliability of CLAHE to be used
as a trustworthy enhancement technique for modern
clinical routines. In addition, a brightness-preserving bi-
histogram equalization (BBHE) technique was proposed
[24], which separates the processed image into two sub-
images depending on the average of the input image.
Then, the two sub-images are equalized individually
using the HE method. Related to BBHE, dualistic sub-
image histogram equalization (DSIHE) technique was of-
fered [25], which also splits the processed image into two
sub-images, but instead of using the average of the input
image, it uses its median to increase the entropy of the re-
sulted image. Afterwards, minimum mean brightness error
bi-histogram equalization (MMBEBHE) was suggested [26]
to reach a greater level of brightness preservation without
revealing the unwanted artifacts by using a minimum abso-
lute mean brightness error (AMBE) function. This function
achieves the absolute difference between the input and the
output mean values to calculate the threshold that discon-
nect the input histogram. Due to the time-consuming
feature of this algorithm, a specific estimation method was
used to calculate the values of AMBE recursively to facili-
tate its implementation. Simultaneously, a recursive mean-
separate histogram equalization (RMSHE) technique [27]
was proposed by the same authors of MMBEBHE. In this
method, the mean of every histogram is calculated iteratively
(r) times to produce (2") sub-histograms. As a result, the
resulting image brightness will increase as the iteration
number increases. Similarly, a recursive sub-image histo-
gram equalization (RSIHE) technique was offered [28],
which splits the histogram using a median split-up method
rather than the mean split-up one utilized by the RMSHE.
The RMSHE and RSIHE are considered to be improved ver-
sions of BBHE and DSIHE. However, they invoke two issues:
firstly, the amount of sub-histograms must be to the power
of two and, secondly, concerning the manner that the
optimum value of (r) is chosen. Likewise, a brightness-
preserving dynamic fuzzy histogram equalization (BPDFHE)
[29] was proposed. This employs the image fuzzy statistics
resulting in a better handling of the gray-level imprecise
values to produce an improved image contrast. After that, a
non-parametric modified histogram equalization (NMHE)
was introduced [13], which owns an independent parameter
setting for an image dynamic range. In addition, it employs
an amended histogram function to produce an improved
image quality. Lately, an exposure-based sub-image histo-
gram equalization (ESIHE) technique was presented [30],
which utilizes exposure thresholds to split a given image into
a group of sub-images. Next, their histogram is clipped by a
calculated threshold from the average number of the
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available gray-levels. Finally, every sub-image is equalized
individually and then, these sub-images are combined to-
gether to form the complete image. All the aforementioned
methods were developed to be used in many scientific appli-
cations except for CLAHE, which was developed to be used
for medical applications [31,32]. The early application of
CLAHE was on low-contrast CT medical images to improve
their poor contrast, in which [32] clarified that it is possible
to use this technique for clinical purposes. Therefore, ameli-
orating the performance of the standard CLAHE is highly
desirable since it has a great potential to be applied with
modern clinical routines including CT scans.

3 Proposed normalized gamma-corrected
contrast-limited adaptive histogram equalization
(NGCCLAHE)

Gamma is an essential yet rarely understood property of
almost every digital imaging system. It describes the re-
lationship between a pixel’s luminance and its numeric
value. The gamma correction process is essentially a
gray-level transformation function applied on images to
enhance their imperfect luminance. Hence, it can be
achieved through the use of a power-law transformation
function [33]. The power-law is a suitable multi-purpose
function for contrast manipulation in the spatial domain
[34]. Usually, this transformation is used to correct the
imperfect intensity levels of an image [35]. By changing
the gamma y value, the mapping nature of the input to
output intensities also changes [14]. The power-law
transformation is mathematically represented as:

R=cX’ (1)

where R is the gamma-corrected image; X is the original
image, in which the pixels values of X must be in the
range of 0 to 1; ¢ is a positive constant parameter which
controls the brightness; and y is a positive constant par-
ameter that represents the gamma value [15]. However,
the parameter c is removed because increasing its value
can cause loss of image details and undesirable bright-
ness, which is not recommended for CT images. There-
fore, the optimized power-law P is used in this article,
which is expressed as the following:

P=X (2)

The advantage of power-law transformation is that the
transformation function can be controlled by varying the
gamma y values. Its disadvantage is increasing the y value
would overcompensate the image gamma and thereby
darkening the processed image while enhancing its con-
trast [36]. Conversely, the low-contrast images are charac-
terized by a low-intensity dynamic range. Therefore, it is
required to expand this dynamic range to fit its full natural
interval. In image processing context, dynamic range
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expansion which is also named (normalization) is a pro-
cedure that alters the range of pixel intensity values,
wherein it is applied on images with poor gray-level dy-
namic range. It is named normalization because it brings
the image into a range that is more familiar to the senses
[37]. The following normalization equation is used to
linearly scale pixels to fit its full natural range:

_ [X- min(X)]
[ max(X)- min(X)]

(3)

where X represents the input image, N represents the
normalized image, and the min and max operators are
employed to get the maximum and minimum pixel values
in a given image, respectively. In this study, a newly devel-
oped function named normalized gamma correction (NGC)
is introduced to exploit the disadvantage of gamma correc-
tion as a key advantage that assists in reducing brightness
and enhancing the contrast while taking into consideration
the full dynamic range feature of normalization. The NGC
equation is written as the following:

[P- min(P)]

NGC = ax(P)- min(P)]

(4)

As a final point, adding the NGC function to CLAHE
can significantly improve its performance, wherein this
function helps to reduce the brightness and enhance the
contrast of the degraded image. Hence, when applying
the CLAHE technique, it can further improve the con-
trast and increase the brightness of the image. As a con-
sequence, the increased brightness and the unbalanced
contrast of CLAHE are adjusted and an adequate visual
quality for the processed images is attained. The proposed
NGCCLAHE improves the contrast of a given image in
seven separate steps as proposed in Algorithm 1, in which
steps 2—7 have been established based on [38,39].

Algorithm 1: NGCCLAHE

Step I: Use the NGC function in Equation 4 to adjust
the image contrast as an initial processing phase.

Step 2: Divide the adjusted image into a number of
equal-sized and non-overlapping regions called tiles,
with each having the size of M x N: This division results
in three different groups of regions. The first group is
called corner regions (CR), which contains the four cor-
ner regions. The second group is called border regions
(BR), which contains all the border regions, except for
the corner regions. The third group is called inner re-
gions (IR), which contains the rest of the image regions.
For example, if the size of a given image is 512 x 512, it
can be divided into 64 regions with each having the size
of 8 x 8 to attain a decent statistical estimation. An
illustration of such division is displayed in Figure 1. In
this study, the size of tiles is set to 8 x 8.
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Then, for each region, perform the following:

Step 3: Determine the local histogram of the region: In
this step, the number of grayscales that have the same
value is counted for every grayscale in the region. The
process of collecting these counts for all grayscales is
called histogram, which can be achieved using a cumula-
tive distribution function (CDF). For each region,
assume M and N are the number of pixels, /,;(n) for
n=0,1,2,.., N -1is the histogram of an (i, j) region.
Then, the corresponding CDF is calculated as:

(N1 &
Figm) = 2k (5)

where /;;(k) is the histogram of pixel k, and n = 0, 1,
2,... N-1.

Step 4: Calculate the clip limit value: The clip limit S
can be determined using the following equation:

a

M
B=" (14155 (smaD) (6)
where «a is the clip factor, in which its value can be be-
tween 0 and 100. s, is the maximum allowable slope,
in which its value can be between 1 and sy,

Step 5: Clip the histogram that exceeds its related
clip limit: This step modifies the histogram based on
the obtained clip limit by limiting the maximum
number of counts, for every pixel to B. This can be
archived by retaining the histograms that are less or
equal to f3, while clipping the ones that exceed f.

Step 6: Redistribute the values of the clipped histo-
grams to all the histogram bins: In this step, a recursive
uniform distribution of the extra counts that exceeded
the clip limit is carried out among pixels with counts

Figurel 1 The ‘organization olf region.s ina 5I12 X 51.2 imag'e.
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Figure 2 The clipping and redistribution processes. (a) Detecting
the exceeded counts; (b) distributing the extra counts uniformly.
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less than or equal to S. This once more shoves certain
counts over the clip limit as in Figure 2b. Therefore, the
resultant excess is redistributed again, and the process is
repeated until the clip limit is not exceeded by any
counts (histogram bins) any more. Hence, the redistribu-
tion of counts may require several iterations for each
histogram. The clipping and redistribution processes are
described in Algorithm 2 and shown in Figure 2.

Step 7. Calculate the new pixel values using map-
ping functions based on the new histogram redistri-
bution: In this step, three mapping functions are used
to calculate the new pixel values depending on their
locations for the contrast-limited regions. For inner
regions, the mappings of four nearest neighboring re-
gions are used to determine the mapping of every
quadrant in the region. For instance, with regard to
Figure 3a, a specified pixel in quadrant 1 of (i, j) re-
gion is mapped depending on its horizontal and verti-
cal distances from the centers of (i, j), (i, j - 1), (i -
1, j), and (i - 1, j - 1) regions, in which these dis-
tances are illustrated in Figure 3b. The new value of pixel
p in quadrant 1 of (i, ) region is calculated as:

d (Lf,.-l,,-looold) n Lfl-,,4_1<pom>)

Prew =777 x+y x+y (7)
r y x
+r e xTyfi—l,j(pold) +mfi,;(lﬂold)
N
: i ij-1
S RARAREl :
I || ™
t3:4] ¥
]
A 0 ) S
! ! ! 'y
-1 i i+1 i-1,j 1]
(a) (b)
Figure 3 The neighborhood structure of inner regions. (a) A
specific inner region with its bordering regions. (b) Pixel p from
quadrant 1 and its relation with the centers of its four
nearest regions.
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where 1, s, x, and y are specified distances which are de-
fined in Figure 3b. f;; () is a cumulative distribution
function. The new pixel values for quadrants 2, 3, and 4
of (i, j) region are computed in the same way. For border
regions, the neighborhood organization is divergent as
one such situation is shown in Figure 4a. Regarding this
situation, the pixel neighborhood organization which is
in quadrant 1 or 3 is similar to that of inner group re-
gions, while it is different for quadrant 2 or 4 as one
such situation of quadrant 2 is shown in Figure 4b. The
new value of pixel p in quadrant 2 of (i, j) region is cal-
culated as:

S r
Prew = r—_Hfi,j—l (Bola) + r—ﬂfi,j(pold) (8)

The new pixel values for quadrant 4 of (i, j) region are
computed in the same way. For corner regions, different
characteristics are observed for different quadrants as
shown in Figure 5. From the previous figure, it can be
seen that quadrant 4 has neighborhood organization like
those of inner regions, while quadrants 2 and 3 have
neighborhood organizations like those of border regions.
However, quadrant 1 is the only one of its kind and has
no contact with other regions. The new value of pixel p
in quadrant 1 of (i, j) region is calculated as:

Prew :fi,j(pold) (9)

where the other corner regions are mapped in a similar
way. Finally, the newly obtained pixel values are stored
in a new array that the size of which is similar to the ori-
ginal image to form the new enhanced image.

pofefe] |
NN
I3ta| T
|
Lt | s
—1 &

-1 n
(2) (b)

Figure 4 The neighborhood structure of border regions. (a) A
specific border region with its bordering regions. (b) Pixel p from
quadrant 2 and its relation with the centers of its four nearest regions.
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Figure 5 The neighborhood structure of a corner region.

Algorithm 2: The processes of pixel clipping and
redistribution.

Excess=0
Forn=0,1,2,---,N -1
If h(n) > B, Then
Excess < Excess+ h(n)- 3
h(n) < B
End If
End For
m = Excess/N
Forn=0,1,2,---,N -1
If h(n) < B—m, Then
h(n) < h(n)+m
Excess «— Excess—m
Else If h(n) < B, Then
Excess «— Excess— 3+ h(n)
h(n)«
End If
End For
While Excess >0
Forn=0,1,2,---,N -1
If Excess > 0, Then
If h(n) < B, Then
h(n) < h(n)+1
Excess < Excess—1
End If
End If
End For
End While
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(Cl) (C2) (C3)

Figure 6 Enhancing real-degraded brain CT images. (C1) naturally degraded low-contrast CT images; (C2) enhanced by NGCCLAHE; (C3)
enhanced by CLAHE.
A\

(C1) (C2)
Figure 7 Enhancing real-degraded CT images. (C1) naturally degraded low-contrast CT images; (C2) enhanced by NGCCLAHE; (C3) enhanced by CLAHE.
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Figure 8 The true CT images used in the comparison.

(il) Gl (k1) (11)

Figure 9 Enhancing a synthetic-degraded CT image by the proposed and the comparative techniques. (a1) A degraded CT image (low
contrast reduction); Images enhanced by (b1) HE, (c1) CLAHE, (d1) BBHE, (e1) DSIHE, (f1) RMSHE, (g1) MMBEBHE, (h1) RSIHE, (i1) BPDFHE, (j1)
NMHE, (k1) ESIHE, and (I1) proposed NGCCLAHE.
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4 Results and discussion

In this section, the experimental results are demon-
strated to validate the efficiency of the newly proposed
form of histogram modification in comparison with
different versions of renowned histogram-based tech-
niques. The proposed NGCCLAHE is examined on a
dataset of low-contrast CT images. The dataset used in
this study consists of real and synthetic degraded low-
contrast grayscale CT images obtained from different
medical databases, such as ctisus.com, radpod.org, and
MedPix. Evaluating the amount of enhancement applied
to an image is a challenging task. Although it is neces-
sary to use an impartial assessment method to compare
the different contrast enhancement procedures, regret-
tably, there is no adequate standard that provides mean-
ingful outcomes [40]. Although many methods exist to
measure the contrast enhancement for an image, most
provide faulty or unrealistic results. Human sight re-
mains the best assessment method for the amount of
contrast enhancement. However, it is preferred to use a

Page 8 of 12

certain assessable measure along with human vision.
Therefore, the author studied various accuracy assess-
ment techniques that are suitable to measure the im-
provement of contrast. Accordingly, the author decided
to use the Universal Image Quality Index (UIQI) [41],
Structural Similarity Index (SSIM) [42], and Feature
Similarity Index (FSIM) [43]. These metrics utilize dif-
ferent image characteristics to measure the accuracy,
wherein the UIQI uses the loss of correlation, lumi-
nance distortion, and contrast distortion, while the
SSIM employs the structural information and the FSIM
utilizes the low-level details. Regarding their output, it
equals to 1 when the two compared images are identical.
However, if the output is near 1, it indicates high-
quality results, while the contrary is considered when
the output is near 0. The proposed technique has been
verified on various images for which some of the results
are exhibited in this article. To demonstrate the effi-
ciency of the proposed technique, an experiment using
naturally degraded CT images with NGCCLAHE and

(i2) (i2)

Figure 10 Enhancing a synthetic-degraded CT image by the proposed and the comparative techniques. (a2) A degraded CT image (high
contrast reduction); Images enhanced by (b2) HE, (c2) CLAHE, (d2) BBHE, (e2) DSIHE, (f2) RMSHE, (g2) MMBEBHE, (h2) RSIHE, (i2) BPDFHE, (j2)

NMHE, (k2) ESIHE, and (I12) proposed NGCCLAHE.

(k2) (12)
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CLAHE was conducted, in which the enhanced images
using NGCCLAHE performed the best as the resulting
images had a natural look with no visible artifacts and
acceptable visual quality. Likewise, the images enhanced
by CLAHE had a relatively increased brightness and un-
balanced contrast. Figures 6 and 7 show the results of
enhancing real-degraded CT images by the proposed
NGCCLAHE and CLAHE techniques. Furthermore,
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another comparison was achieved using synthetically
contrast-reduced images. The reason being was to
measure the accuracy of the processed images using a
suitable metric. Since improving the low contrast of CT
images is done using nonlinear enhancement methods
[44-46], the contrast of the comparable images was
reduced nonlinearly by different rates. Then, it was
enhanced using HE, CLAHE, BBHE, DSIHE, MMB

Table 1 The recorded accuracy and time of the previous comparison

Number Methods Reduction viQl SSIM FSIM Time
1 Low-contrast images Low 0.8688 0.8897 0.9478 N/A
High 0.8227 0.8392 0.9041 N/A
Average 0.84575 0.86445 0.92595 N/A
2 HE Low 0.3944 04502 0.7951 0.037829
High 0.3821 04618 0.8091 0.044582
Average 0.38825 0456 0.8021 0.04121
3 CLAHE Low 0.5779 0.7221 0.9254 0.129379
High 05198 0.6880 0.8938 0.183378
Average 0.54885 0.70505 0.9096 0.15638
4 BBHE Low 0.5044 0.6023 0.9059 0.180873
High 04528 05123 0.8381 0304549
Average 04786 05573 0.872 024271
5 DSIHE Low 0.5606 0.7099 0.9488 0.196712
High 04673 0.5380 0.8494 0.254991
Average 051395 0.62395 0.8991 0.22585
6 RMSHE Low 04955 0.6202 0.9235 0.095256
High 04531 05239 0.8428 0.196540
Average 04743 0.57205 0.88315 0.1459
7 MMBEBHE Low 0.5708 0.7000 0.9287 0462935
High 0.5271 0.5584 0.8213 0.649516
Average 0.54895 0.6292 0.875 055623
8 RSIHE Low 0.5596 0.7125 0.9467 0.094337
High 04551 05260 0.8443 0.161408
Average 0.50735 0.61925 0.8955 0.12787
9 BPDFHE Low 0.8515 0.8609 0.9452 0.058763
High 0.7888 0.8310 0.9208 0.113260
Average 0.82015 0.84595 0933 0.08601
10 NMHE Low 0.8211 0.8686 0.9598 0.077375
High 0.7594 0.7984 0.9031 0.256062
Average 0.79025 0.8335 093145 0.16672
" ESIHE Low 0.8198 0.8575 0.9386 0.092206
High 0.7448 0.7734 0.9003 0.158471
Average 0.7823 0.81545 091945 0.12534
12 Proposed NGCCLAHE Low 0.9516 0.9720 0.9695 0271025
High 0.8597 0.9083 09116 0314088
Average 0.90565 0.94015 0.94055 0.29256

The italicized values indicate the best achieved results.



Al-Ameen et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:32

Page 10 of 12

\\\ .

-

“w0.8021

0.84575

Low Contrast HE CLAHE BBHE DSIHE

RMSHE

Accuracy Chart
—4—UIQ] —8=55IM —i—F5IM
0.93145 D0
i e 0.91945 - - 0.94015
A, 052595 s %0 — 0
, e i — e 0.90565
0.86445 A 09096 —0872_— e ——— 0.875 47 5955
- \ 0 —— 0.8991 e —— -
G 0.88315 0.84595 0.8335

MMBEBHE RSIHE

Figure 11 The analytical chart of the average accuracy achieved by UlQI, SSIM, and FSIM metrics.
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EBHE, RMSHE, RSIHE, BPDFHE, NMHE, ESIHE, and
NGCCLAHE. It is important to mention that the proposed
NGCCLAHE is considered as a nonlinear enhancement
technique because the gamma correction and CLAHE are
considered as nonlinear enhancement methods [31]. The
comparison results are shown in Figures 8, 9, and 10.
Table 1 presents the recorded accuracy by UIQI, SSIM, and
FSIM and the consumed time of the comparison.
Figures 11 and 12 demonstrate the analytical graphical
charts of the average records of UIQI, SSIM, and FSIM
metrics and the consumed time, respectively. Figures 6 and
7 contain three columns organized from left to right. The
first column represents naturally degraded low-contrast CT
images. The second column represents enhanced images by
the proposed NGCCLAHE. The third column represents
enhanced images by CLAHE.

Based on the obtained results, the proposed technique
performed the best in terms of UIQI, SSIM, FSIM, and
image visual quality as it scored the highest accuracy
values for all the used images. Likewise, the images en-
hanced by CLAHE had a relatively unbalanced contrast.
Additionally, HE gave the worst performance as the

resulting images were over-enhanced, had unrealistic
contrast, and were affected by visual flaws. Moreover,
the output of the BBHE method possesses a bad contrast
and is somehow different to the original images. In
addition, the MMBEBHE, DSIHE, RMSHE, and RSIHE
methods fail to process the input CT images as the re-
sults have a comparatively low unrealistic contrast with
visual errors appearing on the processed images. Besides,
the BPDFHE, NMHE, and ESIHE methods provided a
minor contrast improvement without generating any un-
wanted artifacts. However, they did not reach the desired
level of enhancement. As known, the histogram-based
techniques involve many calculations. Therefore, the
proposed technique is compared to the other techniques
in terms of consumed time, wherein all the methods
were executed using a 2.3 GHz Core i5 processor and an
8 GB of memory. As seen in Table 1 and Figure 12, the
proposed technique required a moderate operation time
compared to the other comparative techniques as its
results are obtained in an average of 0.3 second. More-
over, the performance of NGCCLAHE was extremely
satisfactory as the resulting images appeared more

NGCCLAHE
ESIHE
NMHE
BPDFHE
RSIHE
MMBEBHE
RMSHE
DSIHE
BBHE
CLAHE

HE

0.12534
0.16672

0.08601
0.12787

0.15638

Time (Seconds)

0.22585
0.24271

Figure 12 The analytical chart of the average time consumed by the comparable methods.

0.29256

0.55623
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natural and had a better contrast than the other com-
parative techniques.

5 Conclusions

An innovative technique for contrast enhancement is pro-
posed in this article, which is convenient for low-contrast
CT images. The novelty of the proposed technique lies in
the use of a neatly designed NGC function to improve the
enhancement ability of CLAHE. Therefore, the enhanced
images have a natural appearance without generating the
unwanted processing flaws that reduce their visual quality.
The experimental results exhibit the efficiency of the pro-
posed technique in comparison to ten well-known state-
of-the-art contrast enhancement techniques by using
three advanced image quality assessment metrics of UIQI,
SSIM, and FSIM. The HE, BBHE, DSIHE, RMSHE,
MMBEBHE, and RSIHE techniques produced visible flaws
with unrealistic contrast. Moreover, the CLAHE, BPD
FHE, NMHE, and ESIHE produced unbalanced contrast
with less visual errors than the six aforementioned
methods. Finally, the proposed technique performed the
best in terms of accuracy metrics and visual quality, as it
provided the highest accuracy values and adequate quality
with natural appearance results.
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