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PDR+WLAN positioning and its application to
assisting a particle filter
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Abstract

Indoor positioning based on wireless local area network (WLAN) signals is often enhanced using pedestrian dead
reckoning (PDR) based on an inertial measurement unit. The state evolution model in PDR is usually nonlinear. We
present a new linear state evolution model for PDR. In simulated-data and real-data tests of tightly coupled
WLAN-PDR positioning, the positioning accuracy with this linear model is better than with the traditional models
when the initial heading is not known, which is a common situation. The proposed method is computationally light
and is also suitable for smoothing. Furthermore, we present modifications to WLAN positioning based on Gaussian
coverage areas and show how a Kalman filter using the proposed model can be used for integrity monitoring and
(re)initialization of a particle filter.
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1 Introduction
Wireless local area network (WLAN) access points (APs)
are numerous and ubiquitous in most indoor environ-
ments. Although WLAN is meant for data transfer, the
WLAN signals can also be used for user localization.
Because the WLAN APs are not meant for positioning,
they do not usually send information on their own loca-
tion to clients. WLAN positioning therefore makes use of
a ‘radio map’ that describes certain features of the WLAN
signals at given locations. A radio map is created and
updated using data collected on-site called fingerprints
(FPs). A FP is a report that contains at least the receiver
location and the IDs and received signal strength (RSS)
values of APs within reception range. A radio map is
constructed off-line from the collected FPs. The accuracy
of positioning based on WLAN signals depends on the
model and environment. In small scale (a few buildings),
it is possible to achieve positioning results of the order
of a couple of meters [1]. For large-scale positioning (a
city or larger), when the size of the database is a limiting
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factor, the positioning accuracy can be of the order of
tens of meters [2].
Pedestrian dead reckoning (PDR) uses an inertial mea-

surement unit (IMU) to detect when a user takes footsteps
and how the direction changes between footsteps. The
IMU has three-axis accelerometers and gyroscopes. The
user heading change is computed by projecting the gyro-
scope measurements to the horizontal plane, which is
estimated from the accelerometer [3]. It is also possible to
use a compass for heading determination [4].
The footstep length may also be estimated from the

IMU data. If the sensor is mounted on the foot, it is
possible to detect when the foot is motionless and then
integrate the footstep length from the IMU data [5]. If the
IMU is handheld, this method cannot be used, but the
footstep length can be inferred from the IMU data also
by other methods, see for example [6,7]. A PDR system
can greatly improve the positioning locally as the position
estimate may be updated at every footstep, but because
the errors accumulate over time, PDR is often combined
with other sensors that can, at least occasionally, provide
absolute position information.
In this paper, we investigate models for fusing heading

change information from IMU with WLAN measure-
ments. We propose a linear state model for the state
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evolution, whereas in the literature, the state model used
with PDR system is usually nonlinear [7-10] or the head-
ing information is used as nonlinear measurements [4].
In general, there is no closed form optimal algorithm for
nonlinear estimation. In this paper, we use the Kalman
filter (KF), the extended Kalman filter (EKF), and the
unscented Kalman filter (UKF), which are computation-
ally light algorithms, for evaluation of the models.
Particle filters (PFs) are algorithms that can be used for

nonlinear estimation. We show how the proposed model
with a linear KF can be used for initialization and integrity
monitoring of a PF.
Section 2 contains the filtering and smoothing algo-

rithms that are used to estimate the user’s kinematic state.
In Section 3, we present theWLANmodel that is used for
positioning. The evaluated PDR models are presented in
Section 4. In Section 5, we discuss the possibilities of using
the proposed model in a particle filter, and in Section 6,
we evaluate the performance of different models with real
and simulated data. Section 7 concludes the paper.
This paper is an extended version of a paper [11] pre-

sented at the Conference on Design and Architectures for
Signal and Image Processing (DASIP 2013). In general, the
notations in this paper are changed to be more consistent.
We added UKF to Section 2. Section 3 has a new subsec-
tion containing modifications to theWLAN coverage area
positioning. The first model presented in Section 4 has
cross terms in the covariance matrix of the state transition
matrix to make it mathematically sound. Section 5 is new.
In Section 6, tests are new or done with more test tracks
and the UKF is also used.

2 Filtering algorithms
The KF is an algorithm for estimating the state of the
system given a time series of measurements in the case
of linear state evolution and measurement models. If the
measurement and state transition errors are independent,
white, and Gaussian processes, the KF computes the pos-
terior mean that is the optimal estimator in minimum
mean square error sense (i.e., the KF is the exact Bayesian
filter) [12].
The state model is as follows:

xt = Ftxt−1 + ε
Q
t , (1)

where xt is the state at the tth time instant, Ft is
the state transition matrix, and ε

Q
t is a zero mean

Gaussian noise term with covariance matrix Qt . The
KF prediction is computed from the previous posterior
N(x̄t−1|t−1,Pt−1|t−1) via the update formulas:

x̄t|t−1 = Ftx̄t−1|t−1 (2)

Pt|t−1 = FtPt−1|t−1FT
t + Qt , (3)

that give the new prior N(x̄t−1|t ,Pt−1|t).

The prior is updated using the linear measurement
model:

yt = Htxt + εRt , (4)

wherematrixHt defines the relationship between the state
and the measurement vector yt , and εRt is a zero mean
Gaussian noise term with covariance matrix Rt . In the
update part of the KF, the prior is updated via:

St = HtPt|t−1HT
t + Rt (5)

Kt = Pt|t−1HT
t S

−1
t (6)

xt|t = xt|t−1 + Kt
(
yt − Htxt|t−1

)
(7)

Pt|t = (I − KtHt)Pt|t−1, (8)

where ȳt is the realized measurement value, St is the
innovation covariance matrix, Kt is the Kalman gain, x̄t|t
is the posterior mean, and Pt|t the posterior covariance
matrix. If there are no measurements, the latest prior is
also the new posterior, and if there are several indepen-
dent measurements in one time instance, the updates can
be applied consecutively.
In more general situations, the state transition model is

nonlinear, of the form:

xt = ft
(
xt−1, εQt

)
, (9)

where ft is a nonlinear state transition function and ε
Q
t

does not necessarily have zero mean. In the EKF [13], the
mean propagation formula (Equation 2) has to be replaced
with:

xt|t−1 = ft
(
xt−1|t−1, εQt

)
, (10)

where ε
Q
t is the mean of the noise term. The covariance

propagation formula (Equation 3) changes to:

Pt|t−1 = F̂tPt−1|t−1F̂T
t + L̂tQtL̂Tt , (11)

where

F̂t = ∂ft
(
x, εQ

)
∂x

∣∣∣∣∣
xt−1|t−1,εQt

(12)

and

L̂t = ∂ft
(
x, εQ

)
∂εQ

∣∣∣∣∣
xt−1|t−1,εQt

. (13)

Similar approximations can also be done for the mea-
surement update equations, but in this paper, we use only
linear measurements.
The EKF requires analytical computation of the partial

derivatives and approximates the measurement function
in a point. One commonly used algorithm for computing
the update that does not need analytical differentiation
and approximates the state transition function in larger
area is the UKF [14]. In the UKF, a set of sigma points is
chosen so that they have the samemean and covariance as
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the original distribution. The sigma points are propagated
through nonlinear functions, and the estimate is updated
using the transformed sigma points. The transformation
is called unscented transformation. The UKF can be used
also for measurement update, but because we use only lin-
ear measurements, we present only the state propagation
of the UKF.
When computing the state propagation, the UKF uses

augmented state:

z =
[xt−1

ε
Q
t

]
∼ N(z̄,Pz) = N

([
x̄t−1|t−1

ε̄
Q
t

]
,
[
Pt−1|t−1

0
0

Qt

])
.

(14)

A popular choice of sigma points is as follows:

χ0 = z

χi = z + √
d + ξUKF

√
Pz[:,i], 1 ≤ i ≤ d

χi = z − √
d + ξUKF

√
Pz[:,i−d], d + 1 ≤ i ≤ 2d,

(15)

where d is the dimension of the augmented state, ξUKF is
an algorithm parameter, and

√
P is a matrix square root

for which:√
P
√
PT = P. (16)

This matrix square root can be computed, for example,
with Cholesky decomposition. Parameter ξUKF is defined
as:

ξUKF = α2
UKF(d + κUKF) − d, (17)

where parameters αUKF and κUKF define how much the
sigma points are spread.
The prior mean and covariance computed using sigma

points are as follows:

xt|t−1 =
2d∑
i=0

ws
i ft(χi) (18)

Pt|t−1 =
2d∑
i=0

wc
i
[
ft(χi) − xt|t−1

] [
ft(χi) − xt|t−1

]T ,

(19)

where the sigma points are computed from the poste-
rior of the previous time step using Equation 15 and the
weights are as follows:

ws
0 = ξUKF

d + ξUKF
(20)

	wc
0 = ξUKF

d + ξUKF
+ (1 − α2

UKF + βUKF) (21)

ws
i = wc

i = 1
2d + 2ξUKF

, i > 0. (22)

The parameter βUKF is related to the distribution of the
state. In the case of Gaussian distribution, βUKF = 2 is
optimal [15].
The Rauch-Tung-Striebel smoother [16] can be used

to enhance the state estimates when measurements of
‘future’ time instants are available, for example, when plot-
ting the track over a given time interval. The recursive
smoothing equations are as follows:

Ct = Pt|tFT
t P

−1
t+1|t (23)

xt|m = xt|t + Ct(xt+1|m − xt+1|t) (24)
Pt|m = Pt|t + Ct(Pt+1|m − Pt+1|t)CT

t (25)

for t = m−1,m−2, . . . , 1, wherem is the final time index.

3 WLAN positioning
3.1 Coverage area positioning
In its simplest form, probabilistic coverage area (CA) posi-
tioning is a method for radio map construction in which
the reception area of each AP is modeled as a bivari-
ate normal distribution. Because the radio map does not
contain any raw RSS data, computational, memory, and
communication complexity are much lower compared to
those of conventional FP positioning methods [17]. The
algorithm is explained in [18] and here we only briefly
outline it.
The coverage area estimate is as follows:

μi,ni =
∑ni

j=1 zi,j
ni

(26)

�i,ni =
∑ni

j=1 zi,jz
T
i,j + B − niμi,niμ

T
i,ni

ni + 1
, (27)

where μi,ni and �i,ni are the mean and covariance of the
CA estimate of ith AP based on ni FPs, zi,j is the location
of the jth FP where AP i was received and B is the prior
covariance. When a new measurement is received, these
parameters can be updated by:

μi,ni+1 = niμi,ni + zi,ni+1
ni + 1

(28)

�i,ni+1 =
(ni + 1)

(
�i,ni − μi,ni+1μ

T
ni+1

)
+ zi,ni+1zTi,ni+1 + niμi,niμ

T
i,ni

ni + 2
.

(29)

In positioning, the CA model from every received AP
could be applied in separate KF updates. To reduce com-
putational cost, it is equivalent to first compute the static
position estimate from these CA models using:

�̂ =
(∑
i∈FP

�−1
i

)−1

(30)

μ̂ = �̂
∑
i∈FP

�−1
i μi, (31)
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where i ∈ FP is used to indicate AP:s received in the cur-
rent FP and the second index ni is not shown because in
positioning, the latest CA estimate is always used.
When using CAmodels in KF update (Equations 5 to 8),

the linear and Gaussian measurement model is as follows:

μ̂ = Htxt + εRt = [
I 0

]
xt + εRt , (32)

where εRt ∼ N(0, �̂). Here, it is assumed that the position
variables are the first components of the state.
In [19], it was shown that using separate CA models

for strong RSS values improves the positioning accuracy.
That is, in addition to CA models generated using all FPs,
one generates CA models using only FPs with strong RSS
values. In the positioning stage, the models are chosen
according to signal strengths. In [17], the two-level CA
positioning was compared with other WLAN positioning
methods. Of the compared methods, there was no signif-
icantly faster or more accurate method than the two-level
CA positioning.

3.2 Modifications to CA positioning
In this section, we present three different heuristics to
mitigate some shortcomings of CA positioning. In order
to preserve the assumption of independent measure-
ments, the proposed methods do not use the prior infor-
mation provided by the Kalman filter. The heuristics are
applied to measurements in the order they are presented.

3.2.1 Minimum size
When there are many FPs, the effect of the prior B used in
Equation 27 diminishes. As a result, if many FPs are col-
lected in a small area, the covariance matrix becomes too
small. In our experience, this is a problem especially with
CAs that model weak RSS in multilevel CA models. In
[11], the prior B for weak CAs was set to a very high value
1, 0002m2I to compensate. Here, we propose to impose a
lower limit on the variance of the Gaussian CA model.
The variances along the main axes can be computed

using eigendecomposition:

V�VT = �i. (33)

Diagonal matrix� consists of the variances correspond-
ing to the main axes (columns of V ) on its diagonal. We
propose to impose a minimum variance σ 2

min for main
axes by thresholding:

�̃i = V max
(
�, σ 2

min I
)
VT . (34)

3.2.2 Outlier removal
BecauseWLANAPs are freely deployable, the APsmay be
moved. If the database is not updated continually, the CA
models of moved APs provide false information. For this
kind of situations, we use outlier removal that is based on
squared Mahalanobis distance to detect outliers.

In the outlier removal process, the mean estimate
(Equation 31) and each CA model are compared sepa-
rately. If the mean is outside the 95% ellipse, we discard
the CA model. This is done by checking if:

di = (μi − μ̂)T�−1
i (μi − μ̂) > χ−2

2 (0.95) = 5.9915,
(35)

where χ−2
2 is the inverse cumulative density function of

the chi-squared distribution with 2 degrees of freedom.
We propose that the CAs are removed one by one,

removing the CA with largest di until all are close
enough to the mean. After removing a CA, the estimate
(Equations 30 to 31) can be updated by:

�̂−1+ = �̂−1 − �−1
j (36)

μ̂+ = �̂+
(
�̂−1μ̂ − �−1

j μj
)
, (37)

where j is the ID of the least probable CA model and
variables with subscript + are the updated variables. If
the reduction leads to a case where there are only two
CAs left and they are distant to each other according to
Equation 35, theWLANmeasurements are not to be used
at all.
There are examples in the statistics literature where the

Mahalanobis distance does not work very well [20], but
we have found it satisfactory in the tests reported here.
For more advanced treatment, the effect of outliers can
be mitigated by doing the positioning using distributions
with heavier tails like Student’s t-distribution. This could
be done by adapting the algorithm presented in [21] to CA
positioning.

3.2.3 MIMO compensation
Multiple-input multiple-output (MIMO) WLAN devices
host several APs on one physical device. Such APs have
naturally very similar CAs. If these CAs are used as inde-
pendent measurements, the estimate covariance becomes
too optimistic and the estimate mean gets biased towards
the MIMO CA mean. The same problem arises also with
non-MIMO APs that have similar coverage areas. This
problem could be handled during the construction of the
radio map by taking the correlations of received APs into
account. This would however make the size of the radio
map grow because there would be a need to store the
cross correlation terms between every AP pair received
simultaneously.
We propose the following heuristic method for com-

pensating the overlapping MIMO CAs in estimation. The
method is inspired by [22], where dissimilarity of two
components of a Gaussian mixture is measured by:

B(i, j) = 1
2

(
(wi + wj) log det�i,j − wi log det�i − wj log det�j

)
,

(38)
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where �i,j = wi�i+wj�j
wi+wj

+ (μi − μj)(μi − μj)T and w is a
component weight.
We use a slightly modified exponential form of

Equation 38 given by:

Wi,j =
det

[
�i+�j

2 + (μi − μj)(μi − μj)T
]

√
det�i det�j

(39)

as the measure of dissimilarity between CAs. This mea-
sure is used to scale covariance of CAs such that if there
is any number of identical CAs that are not similar with
other CAs, they have the same effect as if there was only
one CA, and that if two identical APs are further than 1 ·σ
from each other, they are considered independent. These
properties are achieved by usingMIMO-compensated CA
variances�MIMO in the position estimation (Equations 30
and 31), given by:

�MIMO
i =

⎡
⎣ n∑

j=1
max(2 − Wi,j, 0)

⎤
⎦�i. (40)

Proofs that this has the properties stated above are given
in the Appendix.
In Figure 1, the outlier detection followed by MIMO

compensation is applied in a case of five APs received. One
CA is an outlier, and there is a cluster of three similar CAs.
The figure shows one-sigma ellipses of CAs and different
user location estimates.

4 Pedestrian dead reckoning
We consider positioning systems in which PDR measure-
ments are used in estimation in the state transitionmodels
and theWLANmeasurements are then used in the update
to fuse the measurements together in a Kalman filter. In

Figure 1 Effect of outlier removal and MIMO compensation on
position estimates. The initial estimate (red dash-dot) is heavily
influenced by the outlier. After outlier removal, the estimate (green
dash) is biased and shrunk by the trio of similar CAs. After MIMO
compensation, the estimate (black solid) has reasonable location and
scale.

most of the literature, the state model used in PDR is non-
linear [7-10]. For comparison purposes, we consider two
traditional models. In the first one, the state contains the
user location r and the direction of the movement θ :

xt =
⎡
⎣ r1,t
r2,t
θt

⎤
⎦ =

⎡
⎣ r1,t−1 + st cos θt−1

r2,t−1 + st sin θt−1
θt−1 + �θt

⎤
⎦ , (41)

where �θt is the change of heading obtained from gyro-
scopes and st is the footstep length estimated from
accelerometer data. These are modeled as Gaussian ran-
dom variables with means �θt and st , which are the
measured values, and variances σ 2

�θ and σ 2
s . In EKF, the

predicted mean is as follows:

xt|t−1 =
⎡
⎣ r1,t|t−1
r2,t|t−1
θ t|t−1

⎤
⎦ =

⎡
⎣ r1,t−1|t−1 + st cos θ t−1|t−1

r2,t−1|t−1 + st sin θ t−1|t−1
θ t−1|t−1 + �θ t

⎤
⎦ ,

(42)

the linearized state transition matrix is as follows:

F̂t =
⎡
⎣ 1 0 −st sin θ t−1|t−1
0 1 st cos θ t−1|t−1
0 0 1

⎤
⎦ , (43)

and the linearized state transition noise covariance is as
follows:

L̂QL̂T

=
⎡
⎣ σ 2

s cos2 θ t−1|t−1 σ 2
s sin θ t−1|t−1 cos θ t−1|t−1 0

σ 2
s sin θ t−1|t−1 cos θ t−1|t−1 σ 2

s sin2 θ t−1|t−1 0
0 0 σ 2

�θ

⎤
⎦,

(44)

where σ 2 is the variance of the variable in the subscript.
In the UKF prediction, the mean of the augmented state

is as follows:

z̄ =
⎡
⎣ xt−1|t−1

�θ t
st

⎤
⎦ (45)

and the covariance is as follows:

Qz
t =

⎡
⎣ Pt−1|t−1 0 0

0 σ 2
�θ 0

0 0 σ 2
s

⎤
⎦ . (46)

In our second traditional model, the footstep length is
also an estimated variable:

xt =

⎡
⎢⎢⎣
r1,t
r2,t
θt
st

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
r1,t−1 + st−1 cos θt−1
r2,t−1 + st−1 sin θt−1

θt−1 + �θt
st−1 + �s

⎤
⎥⎥⎦ , (47)

where �s is the estimated footstep length change, which
is modeled as a zero mean Gaussian noise term with
variance σ 2

�s.
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For this model, the EKF prior mean is as follows:

xt|t−1 =
⎡
⎢⎣
r1,t|t−1
r2,t|t−1
θ t|t−1
st|t−1

⎤
⎥⎦ =

⎡
⎢⎣

r1,t−1|t−1 + st|t−1 cos θ t−1|t−1
r2,t−1|t−1 + st−1|t−1 sin θ t−1|t−1

θ t−1|t−1 + �θ t
st−1|t−1

⎤
⎥⎦ ,

(48)

the linearized state model is as follows:

F̂t =

⎡
⎢⎢⎣
1 0 −st−1|t−1 sin θ t−1|t−1 cos θ t−1|t−1
0 1 st−1|t−1 cos θ t−1|t−1 sin θ t−1|t−1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (49)

and because the state transition noises are additive, we
have:

L̂tQtL̂Tt =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 σ 2

�θ 0
0 0 0 σ 2

�s

⎤
⎥⎥⎦ . (50)

In the UKF prediction, the mean of the augmented state
is as follows:

z̄ =
[
xt−1|t−1

�θ t

]
(51)

and the covariance is as follows:

Qz
t =

[
Pt−1|t−1 0

0 σ 2
�θ

]
. (52)

Figure 2 shows position estimates after taking one foot-
step from a known position using this model. The figure
shows how the EKF linearization does not take the ‘curva-
ture’ of the true model into account and how UKF takes it
into account by increasing the covariance.
We propose the linear state model:

xt =

⎡
⎢⎢⎣
r1,t
r2,t
v1,t
v2,t

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 1 0
0 1 0 1
0 0 cos�θ t − sin�θ t
0 0 sin�θ t cos�θ t

⎤
⎥⎥⎦

⎡
⎢⎢⎣
r1,t−1
r2,t−1
v1,t−1
v2,t−1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0

�v1,t
�v2,t

⎤
⎥⎥⎦

= Ftxt−1 + ε
Q
t ,

(53)

Figure 2 Footstep propagation with nonlinear model and the EKF
and UKF approximations.

where v is the footstep vector estimate and �v is the asso-
ciated state transition noise. For this model, the predicted
mean and covariance are computed using Equations 2 and
3. To make state transition function linear and noise addi-
tive and Gaussian, �v is modeled as a Gaussian that is
independent of state and measurement value �θ t . The
process noise covariance matrix is as follows:

Qt =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 σ 2

�v 0
0 0 0 σ 2

�v

⎤
⎥⎥⎦ . (54)

To compare the amount of state transition noise
in traditional model (Equation 47) and linear model
(Equation 53), we investigate the amount of noise prop-
agated from step variables to position variables in one
step. For simplicity, we use here independent step vari-
ables. In linear model, the covariance of the state variables
increases every step by:[

σ 2
v 0
0 σ 2

v

]
(55)

and in the EKF, the position covariance is increased by:
[
σ 2

θ s
2 sin2 θ t−1|t−1 + σ 2

s cos2 θ t−1|t−1 (σ 2
s − s2σ 2

θ ) sin θ t−1|t−1 cos θ t−1|t−1
(σ 2

s − s2σ 2
θ ) sin θ t−1|t−1 cos θ t−1|t−1 σ 2

θ s
2 cos2 θ t−1|t−1 + σ 2

s sin2 θ t−1|t−1

]
.

(56)

From this, we can see that when:

σ 2
θ s

2 = σ 2
s = σ 2

v (57)

the amount of propagated error is the same for both mod-
els. Because the noise of footstep variables is modeled
additive and independent of the state, the increase of posi-
tion variable variance caused by variance of one footstep
is same using the different models when:

σ 2
�θ s

2 = σ 2
�s = σ 2

�v. (58)

Compared to the traditional models, the proposed
model has the benefit that the Kalman filter can be used
to compute the optimal estimate for this model when the
measurements are linear and Gaussian. In this paper, we
use only linear WLAN location measurements presented
in the previous section and the information from PDR
is used only in the state transition models. A drawback
of this model is that it does not have different variances
for the heading and footstep length. Constructing a noise
model that has different variances for heading change and
footstep length is possible by computing θ and s from step
vector and adding noise similar to Equation 56 to the step
vector. This would, however, make the noise nonlinearly
dependent on the state estimate and linearizations would
be required. In Section 6.1, we test the performance of lin-
ear model in a situation, where σ 2

θ s2 �= σ 2
s and show that

the linear model can perform well also in that situation.



Raitoharju et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:33 Page 7 of 13

Another drawback is that the measured footstep length
cannot be used in the linear model. If it was used as a
measurement, the model would not be linear. The first
presented nonlinear state model uses all the information,
and the second presented nonlinear model uses the same
amount of information as the proposed linear model. We
will test also this in Section 6 and show that even though
the proposedmethod cannot use all the available informa-
tion, it can outperform the nonlinear model with footstep
length when the initial heading is unknown.

5 Integration with a particle filter
Besides footstep length, other information that cannot
be used with a linear KF includes the use of floorplan
information or nonlinear measurement models in esti-
mation. This information can be such that it cannot be
used well in EKF, e.g., floorplan. PFs can be used in these
situations [23-25]. Particle filters estimate the probability
distribution using a set of weighted point masses called
particles. The number of particles required for estima-
tion is case dependent. The larger the uncertainties in
the proposal distribution compared to measurement vari-
ance, the more particles are needed. Particle filters are
usually computationally significantly more expensive than
KFs, and so, running a KF alongside a PF does not signifi-
cantly increase the computational complexity. In [25], the
WLAN+PDR KF presented in [11] was compared with a
PF that used wall information and a nonlinear state model.
The PF with wall information reduced the mean error of
KF from 4.8 to 2.0 m, while PF without wall informa-
tion had slightly worse accuracy than KF. In the following,
we present algorithms in a general form so they can be
applied to many known PF variants [26].

5.1 Number of particles in initialization
In this section, we consider the situation where the prior
covariance is so large that the PF would need an exces-
sively large number of particles to adequately sample the
region.We propose to use the KF until the estimate uncer-
tainty is small enough for initialization of a PF that has a
given number of particles.
We assume that the PF used is initialized by sampling

from the prior distribution. Because the number of par-
ticles required for good estimation depends on many
factors, there cannot be a simple algorithm for determin-
ing the number of particles. We assume that it is known
how many particles n1 is enough with a prior covariance
P1 and then compute the number of particles n2 that is
required with covariance matrix P2.
In general, a four-dimensional vector x is inside an ellip-

soid that contains fraction p of the probability mass of
distribution N(x1,P1) when:

(x − x1)TP−1
1 (x − x1) ≤ χ−2

4 (p), (59)

where χ−2
4 is the inverse cumulative density function

of the chi-squared distribution with 4 degrees of free-
dom. The volume of this four-dimensional ellipsoid is as
follows:

V1 = π2

2

[
χ−2
4 (p)

]2 √
detP1 (60)

and the expected number of particles inside it is pn1, so
the expected particle density is pn1

V1
.

We propose to choose the number of particles n2 in a
such way that ellipsoid:

(x − x2)TP−1
2 (x − x2) ≤ χ−2

4 (p) (61)

has the same expected particle density as ellipsoid of
Equation 59. Thus, we get rule:

pn2
V2

= pn1
V1

⇔ (62)

n2 = n1
π2

2

[
χ−2
4 (p)

]2 √
detP2

π2
2

[
χ−2
4 (p)

]2 √
detP1

= n1
√
detP2√
detP1

. (63)

5.2 Integrity monitoring
There is a risk that the PF estimate diverges far from the
true location. Divergence may be caused by too few par-
ticles, error in the floorplan, etc. The linear estimate can
be used to detect whether the PF has diverged using the
algorithm proposed in [25], as follows.
We assume that the particle filter operates in a state

space that contains at least the same information as
the linear KF. If the particle filter state has different
parametrization, e.g., footstep length and heading instead
of step vector, the particle states are converted to the same
state space that the linear model uses. First, compute stan-
dardized deviances di of all positively weighted particles:

di = (ci − x)TP−1(ci − x), (64)
where ci is the location of ith particle and P and x are the
parameters of the KF estimate. Then, check if the smallest
deviance is below a set threshold. If it is not, then par-
ticles are reinitialized. Because also the KF estimate may
diverge, the resampling can be done so that some of the
original particles are retained and the rest are sampled
from the KF estimate.

6 Performance evaluation
6.1 Synthetic data
In simulations, we tested how the linear model performs
against the traditional models. If not otherwise specified,
the true track is generated by sampling the initial state
from prior and then sampling subsequent true states using
the model given in Equation 47. In tests with simulated
data, the WLAN measurements are independent and the
improvements proposed in Section 3.2 are not needed.



Raitoharju et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:33 Page 8 of 13

Each simulated test track consists of 50 footsteps, and at
every time step, there is a 10% probability of receiving a
location measurement with variance 102m2I.
First, we test the effect of the initial heading variance

on the positioning accuracy of the traditional models and
comparing it with estimate obtained with linear model
that does not use initial heading information. The tra-
ditional models require an initial mean for the heading
variable, while the proposed linear model can be ini-
tialized with a zero mean step vector. It would also be
possible to initialize the linear model with accurate head-
ing and footstep length information, but when the initial
heading variance is larger, it is not a straightforward task
to select initial covariance for the linear model that is
similar to the one used with nonlinear model, but that
avoids the problems with linearizations. In the first sim-
ulation, the effect of the heading error of the initial mean
is tested. The standard deviation of the initial heading is
varied from 0° to 180°. The standard deviation of footstep
length is set to σ�s = 0.01m, and the standard deviation
of heading change is σ�θ = 0.01

0.7 rad. The initial footstep
length is set to 0.7m for the true state and for the tradi-
tional model. The linear model is initialized to have a zero
footstep vector with initial standard deviation σv0 = 1m.
If the footstep length does not change much during the
track, the linear model, where σ�v = 0.01m, has the same
amount of propagated error in position as the linearized
traditional model. All models are initialized to have cor-
rect location mean and the initial variance for location
dimensions is 102m2. The standard deviation for initial
footstep length is set to σs0 = 0.2 m. For the nonlinear
model with given footstep length, we use accurate mea-
surements and σs = 0. The footstep length variable is not
random in this situation, and in the UKF implementation,
it is not used in the augmented state.
Figure 3 shows the mean of the final position error of

500 simulated tracks for different standard deviations of
the initial heading. The traditional models outperform the
linear model when the standard deviation is small. This is
expected because the traditional models use prior infor-
mation of the footstep length and initial heading, unlike
the linear model. Themodels with known footstep lengths
are more accurate when the standard deviation is small.
When the initial heading variance becomes larger, the
linear model outperforms the traditional models. This is
caused by the increase of the linearization errors in the
traditional models.
In the second simulated test, the standard deviation of

the initial heading is fixed to 90°, but the initial angle error
of the traditional models is varied. Otherwise, the simu-
lation parameters are the same as in the first test setup.
Figure 4 shows how the traditional model is advantageous
only if the heading variance is small; small realized error
is not enough. This means that to gain the benefit of the

Figure 3 Mean of errors at track end as the function of initial
standard deviation of heading.

known initial heading, the initial heading variance should
also be set correctly. Here, the models that use known
footstep length have worse accuracy than the models that
estimate the footstep length.
Compared to simulation results presented in Figure 2

of [11], the main differences in this test are as follows: in
this test, the footstep length variance is smaller, and thus,
the traditional model does not end up into situation with
negative footstep length that often. In [11], there was error
in simulation variance: for location variables, it was 10m2

instead of 102m2. When using smaller initial variance, the
accuracy of the linear model is on the same level as the
accuracy of the traditional models.

Figure 4 Mean of errors at track end as the function of initial heading
error.
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Next, we investigate how the different methods per-
form when the heading error (i.e., gyroscope accuracy) is
changed. The traditional models use the correct σ�θ and
σ�s = 0.01m, and the linear model is tested with σ�v = σs
and σ�v = 0.7σ�θ . In this test, we use initial state noise
parameters σr0 = 0.2 m, σθ = 0.2

0.7 rad, σs0 = 0.2 m, and
σv = 0.2m.
Figure 5 shows the results for this test. The linear model

and traditional models that do not use the footstep length
have similar accuracy when the heading change error is
small, while the models that use footstep length are more
accurate. When the noise level increases the linear model
that uses the footstep length’s variance as the σ�v becomes
less accurate than the other methods, but the linear model
that uses step vector variance computed from the head-
ing change variance with expected footstep length (0.7m)
according to Equation 58 is either on the same level or
better than traditional models without known footstep
length. Figure 3 of [11] shows a similar test’s results. In
[11], the initial variance is large compared to this article’s
test.
Figure 6 shows how the 1 · σ ellipse of footstep noise

is propagated to state noise in one footstep with different
models, when the standard deviation for heading change
noise is 20°. The linear model that uses variance of the
footstep length has a small covariance compared to oth-
ers, which causes high position errors. On other hand,
the linear model with noise level computed from heading
noise using Equation 58 has the largest noise covariance.
It seems that this does not cause as much problems as hav-
ing a too small error estimate. Similarly, when the footstep
length is known, the EKF linearization does not take the
curvature of the true distribution of the nonlinear model

Figure 5 Mean of errors at track end as the function of heading
change error.

Figure 6 Different estimates after one step when σ� = 2°.

into account and has bad accuracy, while the UKF has
a better variance approximation, which results in better
accuracy.

6.2 True data
In the true-data test, the algorithm is tested in two floors
of a building in the Tampere University of Technology.
The radio map of both floors contains approximately 300
WLAN APs and 5,500 FPs. The measurements were col-
lected using a XSENS MTi IMU and Acer Iconia tablet.
Both devices were carried in hand while doing mea-
surements. Because XSENS was handheld, the errors in
heading are caused, in addition to IMU noise, by the small
changes in hand orientation compared to the movement
direction. We used four test tracks. WLAN scans were
done on average every 3.2 s.
For the WLAN positioning, we use the two-level cov-

erage area method presented in Section 3 with all mod-
ifications from Section 3.2, if not otherwise stated. We
generate two coverage areas: a weak CA that is con-
structed using all FPs and a strong CA that is constructed
with only FPs that have signal strength ≥ −60 dBm. The
prior for weak CA is B = 1002 m2I and for strong CA
B = 202 m2I. Minimum variances for main axes were set
to 402 m2 for weak CAs and to 52 m2 for strong CAs. Most
of the weak CAs had smaller variances than this limit, and
they were extended using Equation 34. According to [19],
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Figure 7 Estimated routes computed with Kalman filter and linear
model and with UKF and traditional models.

Table 1 Mean errors [m] of different methods and
different initial heading errors

Filtered Smoothed

Linear 7.0 4.1

Static 9.7

Linear �t = 15 s 9.3 5.2

Static �t = 15 s 12.7

Traditional models θ0 EKF UKF EKF UKF

Estimated footstep length 0° 7.9 6.9 4.6 5.5

Sensor footstep length 0° 7.3 6.3 3.6 4.7

Estimated footstep length 45° 7.4 6.7 4.2 5.3

Sensor footstep length 45° 7.1 6.4 3.9 5.0

Estimated footstep length 90° 10.5 9.8 7.7 7.9

Sensor footstep length 90° 14.7 11.1 10.7 11.0

Estimated footstep length 135° 16.4 20.0 12.8 18.4

Sensor footstep length 135° 17.7 14.7 16.0 16.1

Estimated footstep length 180° 10.1 10.4 7.1 9.2

Sensor footstep length 180° 44.7 37.4 42.8 40.7

Figure 8 Footstep length estimates.

the two-level normal CA models have around 10% larger
errors than traditional location fingerprinting, but require
only storage of ten parameters for each AP.
Figure 7 shows filtered and smoothed routes for a test

track. The initial heading for traditional models is 90°
error with variance of (90°)2, and the initial footstep length
estimate is 0.7m with variance (0.2m)2. The traditional
method is tested also with footstep lengths estimated from
the sensor data with σs = 0.1m. For the linear model, the
initial footstep vector is 0 with variance 1m2I. The initial
position variance is large, i.e., the prior is almost uninfor-
mative, which causes all models to have the first estimate
at the location of the firstWLAN estimate, which happens
to be inside a wrong corridor.
In filtered routes, the traditional models start almost

equally, and in the end, the traditional model that esti-
mates the footstep length is close to the proposed linear
method. The smoothed routes have some difference near
the beginning of the route. The traditional models are
less accurate than the linear model. This is caused by the
wrong linearization of the F matrix in the beginning of
the track. The smoothing was done using these F matri-
ces in Equation 23; better results might be obtained with

Table 2 Effect of WLAN positioningmodifications on
filtering

Error [m] 50% 95%

All on 7.0 29% 79%

MIMO off 6.9 13% 42%

Outlier off 7.2 28% 76%

Minsize off 7.5 10% 32%

All off 7.9 6% 14%
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Figure 9 Likely and unlikely parts of a smoothed track.

more complex methods such as the unscented Rauch-
Tung-Striebel smoother [27].
Some error statistics are given in Table 1. In the table,

θ0 is the initial error on the heading. ‘Static’ denotes the
WLAN-only position estimates without filtering. When
there are only footstep measurements without WLAN
measurements, the ‘Static’ uses the last position computed
from WLAN measurements as the position estimate. In
the end of the table, there are results for linear model and
static estimates when theWLANmeasurement interval is
increased so that there is always at least 15 s between con-
secutive measurements. A long WLAN scan interval may
be used to conserve energy.
All the filtering methods result in similar accuracy with

0° and 45° initial heading errors. When the initial heading
is 90 or more degrees off, neither of the traditional meth-
ods improves “Static” when the route is filtered. The UKF
is more accurate than the EKF in filtering in almost every
test situation, but in smoothing, the results are opposite.
This indicates that the UKF linearizations of this model
with uncertain prior do not work well with the Rauch-
Tung-Striebel smoother. The longerWLAN scan intervals
make the static estimate 3.0m worse, filtered estimate
2.0m worse, and the smoothed estimate 1.1m worse.
Footstep length approximations given by different mod-

els are shown in Figure 8. The footstep lengths are com-

puted in the case shown in Figure 7 (θ0 = 90°). Here, we
see that the footstep length estimated with the traditional
model (s) and the proposed linear model (||v||) are rather
different in the beginning of the track, but become simi-
lar towards the end of the track. The estimated footstep
lengths are in general shorter than lengths computed from
the sensor data.
In Table 2, the effect of CA positioning improvements

presented in Subsection 3.2 is shown. The 50% column
shows the 50% consistency value of the estimate, i.e., how
often the position estimate mean and true position are
closer to each other than 50% of the probability mass.
The 95% column is defined analogously. Consistencies are
computed taking only position variables into account. The
closer the values are to 50% and 95%, the better. Good
consistency is important for the integration with the PF
because the initialization and integrity checks use the
uncertainty of the KF estimate.
The position estimate with and without MIMO com-

pensation are almost the same, but the 50% and 95%
columns are much worse without the MIMO compensa-
tion. The outlier detection improves all results slightly, but
not much. This is probably because the positioning data
had only a few CAs that were considered outliers. The use
of minimum sizes for coverage areas improved both the
positioning accuracy and consistency.

Figure 10 50% ellipses and relative numbers of particles required for particle filter initialization at different points of track.
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Even though the estimate with allWLAN improvements
has the best consistency values, the error estimates are still
too small. This is probably because the radio map is col-
lected inside the building and the CA positioning can be
interpreted as computation of a weighted mean. Because
there are no APs that have CA center outside the build-
ing, the estimates near the edges of the building get biased
towards the inside of the building.
Figure 9 contains a smoothed track showing this effect.

Position estimates that have the position error within 95%
error ellipse are shown with a narrow blue line, and the
estimates where error is outside 95% error ellipse are
shown with a thicker red line. From the figure, it is evi-
dent that most of the red lines are close to edges of the
building.
In Figure 10, 50% ellipses are plotted on different parts

of a track. The ellipse labels show the relative number of
particles required for PF initialization (Equation 63). In
the figure, most residuals (red lines) are slightly out from
the 50% ellipses as expected from the consistency data
in Table 2, but none of them is completely wrong. In the
beginning of the track, the required number of particles
is 3· 106 even though the 50% ellipse covers less than half
of the building. The next plotted ellipse on the track has
350 particles and has similar size to the remaining ellipses,
which all have fewer than 200 particles. This is because
the footstep vector part of state has still more uncertainty
than in the rest of the track.

7 Conclusions
We proposed in this paper a novel linear model for PDR
in indoor personal positioning and compared it to models
that are common in the literature. The evaluation shows
that although the model is simpler than the traditional
methods, it performs well and is especially suited for sit-
uations where the initial heading and position are not
known. The model assumes that uncertainty of state tran-
sition noise is equal in every direction, but our simulations
show that the model is not very sensitive to different foot-
step length and heading variances. Because the proposed
model is linear, it can be smoothed optimally with the
Rauch-Tung-Striebel smoother.
In this paper, we used linear Gaussian coverage area

models to do positioning with WLAN and proposed
improvements for the positioning method. The results
show that the proposed improvements reduced position-
ing errors from 7.9 to 7.0 m and significantly improved the
estimate’s consistency.
In addition to stand-alone position estimation, the pro-

posed model with a KF can be used to initialize and
monitor the integrity of PF. Because the linear KF is a
computationally light algorithm compared to a PF, run-
ning it together with a PF does not significantly increase
computational burden.

Appendix
Proofs concerning MIMO compensation
Proof that two identical CAs with 1 · σ distance are
considered independent
Let L be a matrix square root of covariance matrix, i.e.,
LLT = P. Let meansμi andμj be 1·σ from each other, i.e.,

(μi−μj)
TP−1(μi−μj) = (μi−μj)

TL−TL−1(μi−μj) = 1.
(65)

Let unitary matrix U have L−1(μi − μj) as its first col-
umn. Now, Ue1 = L−1(μi − μj), where e1 is the first
column of an identity matrix.
Using these the nominator of Equation 39 becomes:

det
(
P + (μi − μj)(μi − μj)

T
)

= det
(
LLT + LUe1eT1 U

TLT
)

(66)

= det
(
L

(
I + Ue1eT1 U

T
)
LT

)
= det

(
LU

(
I + e1eT1

)
UTLT

)
(67)

= det(L) det(U) det
(
I + e1eT1

)
det

(
UT

)
det

(
LT

)
= 2 det(P).

(68)

For such cases, Wi,j = 2 and the MIMO correction is
zero.

Proof that a set of identical CAs act as one
For identical CAs, the MIMO correction is 1. If there are
n identical CAs, each covariance � is multiplied by n. The
resulting compensated covariance matrix of n measure-
ments is as follows:

�̂ =
( n∑

i=1
(n�)−1

)−1

(69)

= (
(�)−1)−1 (70)

= �, (71)

which is the same as the covariance of one CA.
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