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Abstract

Two improvements of power system electromechanical oscillation estimation via subspace identification are
proposed in this paper. Singular value-based criteria are introduced not only to improve the computation efficiency
for determining the model order of the estimated system but also to improve the accuracy of the estimates. A
mode matching method based on the characteristics of accurate mode shape estimates is proposed to ensure the
correctness of the estimates. Numerical results from three different scale power systems illustrate the feasibility of
the proposed methods.
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1 Introduction
Electromechanical oscillations in power system are
becoming a serious factor to limit power transfer in inter-
connected power systems in China. The Southern Grid as
well as the North China Grid is often reported to be suf-
fering from inter-area oscillations [1,2]. Many blackouts
either directly or indirectly caused by low-frequency oscil-
lation or occurrences of low-frequency oscillation have
been reported worldwide [3]. Among them, blackouts that
occurred across Western Canada, the Western United
States, and Northwest Mexico on 10 August 1996 [4] and
in the eastern United States and parts of Canada on 14
August 2003 [5] are well known. These two outages show
the potential hazards that inter-area oscillation modes
might bring to the whole power grid.
Many efforts have been focusing on the electromech-

anical oscillation analysis so far. Since analysis based on
first-principle modeling is not accurate enough [4], iden-
tification methods are preferred to estimate the proper-
ties of the modes. Among them, subspace methods are
becoming attractive not only because the state space
form of the system is very convenient for estimation,
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prediction, and control [6] but also because they have
numerical simplicity and robustness and are suitable for
multiple-input and multiple-output (MIMO) system,
such as large power system. In [7], subspace methods
are applied to estimate the electromechanical modes
using ambient data. In [8], the Monte Carlo simulation
results show that compared with Prony method and
Yule-Walker method, canonical variate analysis (CVA)
as well as numerical algorithms for Subspace State Space
System Identification (N4SID), two subspace methods,
are more accurate in estimating frequencies and damp-
ing ratios of low-frequency oscillation modes. In [9],
N4SID is also more accurate using ring-down data. Sub-
space methods are also developed to estimate mode
shapes. It is concluded that the mode shapes obtained
by subspace methods are more accurate compared with
the ones obtained by other methods such as transfer
function (TF), spectral frequency domain decomposition
(FDD) [10]. Furthermore, no extra algorithm is required
to calculate the mode shapes if the subspace method is
applied.
However, there may still have some important consid-

erations neglected when subspace methods are applied
to estimate the electromechanical oscillations. The two
main problems will be investigated in this paper. One is
how to determine the proper order of the estimated
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system matrix both efficiently and accurately. Over-
parameterization or under-parameterization could result
in inaccurate estimates. As yet, two information criteria
have been widely used to determine the system order:
Akaike’s information criterion (AIC) [11] and Bayesian
information criterion (BIC) [12]. Both criteria can be used
to solve model order selection problem for autoregressive-
moving-average (ARMA) model or other identification
methods successfully [13]. In [8] and many other refer-
ences, AIC is also applied to determine the model order
for subspace identification method. However, the model
order should be determined after a sequence of tests for
each order if AIC or BIC is applied [14]. An efficient com-
putation way for model order selection for subspace
methods can be based on the singular values of the
Hankel matrix which are estimated in the algorithm of
subspace identification methods. In this paper, singular
value-based criteria are introduced to improve computa-
tion efficiency and the accuracy of the estimates.
The other is the mode matching problem. The fre-

quency range of an electromechanical oscillation mode
is about 0.2 ~ 2.5 Hz. It can be noted that often there are
several modes of interest whose frequencies are quite
close. For example, in [15] the author shows that the
oscillation modes existing in the WECC among the fre-
quencies of two modes are 0.78 and 0.8 Hz. Further-
more, the estimated mode will be interfered with other
frequency-neighboring modes. In this content, the cor-
rectness of the estimated mode should be ensured. In
this paper, a method of mode matching is proposed for
subspace identification methods. By extracting the char-
acteristic information from the estimated mode shape,
the estimated mode can be determined to which mode it
corresponds. It is also shown that the aggregation
method can help simplify the extraction.
The paper is organized as follows: A general procedure

of estimation based on subspace identification methods
are described systematically in Section 2. Model order
selection is discussed in Section 3. A method of mode
matching via mode shapes is shown in Section 4. The
simulation results are shown in Section 5. Conclusions
are drawn in Section 6.

2 Mode estimation via subspace identification
methods
Many identification methods as well as signal processing
techniques are used to estimate the electromechanical
oscillation modes based on the measurements [16]. Among
them, subspace identification methods are more popular
due to the following reasons:

1. State space form of the identified system is very
convenient for estimation, prediction, and control
[6]. Also, subspace identification methods have
numerical simplicity and robustness and are suitable
for MIMO system, such as large power system.
Several oscillation modes of interests can be
estimated accurately.

2. Subspace methods are able to obtain accurate
modal properties (frequency and damping ratio)
using ambient and ring-down data [9].
Ambient data correspond to stationary normal
operating condition with small variations due
to random load variations in the whole system,
while ring-down data are observed when
some radical changes occur in the system,
e.g., a transmission line tripping or a
generator tripping [17]. So subspace
identification methods have a better tracking
ability for a practical power grid monitoring
with both of the two types of data generated
by a real power system.

3. Subspace methods can also give accurate estimates
of mode shapes giving more information about the
oscillation modes like the dominant oscillation
paths and the source. This is due to the fact that
there is no approximation when mode shapes are
calculated [10].

According to the above advantages, subspace identifica-
tion methods are becoming more attractive in electro-
mechanical oscillation mode estimation. Usually, according
to [8] and [18], the procedure of electromechanical modes
estimation via subspace identification methods includes
phase data collection, signal pre-processing, modal proper-
ties via subspace identification methods, and accuracy
evaluation (shown in Figure 1). All these steps will be in-
troduced in the following sections. Two improvements are
also shown in red dashed line block in Figure 1. Singular
value criterion (SVC), instead of information criteria like
AIC and BIC, will efficiently give a more proper model
order to make the estimates more accurate. Mode match-
ing can help match the estimated modes with the ones of
interest. Both the improvements will be introduced
detailedly in Section 3 and Section 4.

2.1 Phase data collection
Measurements from wide area are collected for elec-
tromechanical modes estimation. Wide area measure-
ment systems (WAMS) are used to bring synchrophasor
measurement-based information into the control center
from different parts of inter-connected power systems
[19]. Ambient or ring-down measurements from phasor
measurement units (PMUs) are sent to phasor data con-
centrator (PDC) located in control center through digital
communication channels [17]. Thus, one can select
measurements from several channels where the modes
of interest can be easily observed.



Figure 1 Procedure of electromechanical oscillation mode estimation via subspace methods.
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2.2 Signal pre-processing
The aim of pre-processing PMU data is to extract the
features of electromechanical modes whose frequency
covers the range from 0.2 to 2.5 Hz. Thus, more accur-
ate estimates can be obtained. Several steps should be
taken into consideration [8]. First, several low-pass filters
can cut off high-frequency components. Second, high-
pass filters should be used to wash out components with
too low frequencies. Last but not the least, decimation
should be conducted to slow down the sampling rate
(20 ~ 30 samples/s) to the optimum. This is due to the
fact that high sampling rate will make the discrete poles
sensitive to noise and the poles closer to each other ac-
cording to [20]. Too low sampling rate will, however,
make the signal distorted according the Shannon
Sampling Theorem. An optimal sampling rate is usually
about 4 ~ 6 Hz for electromechanical modes estimation.

2.3 Modal properties estimation via subspace
identification
The aim of subspace identification is to identify a
reduced-order linear model for power system. Electro-
mechanical oscillation modes can thus be estimated
from this model. In this paper, since only ambient data
are used, i.e., the system is perturbed by small load varia-
tions, the identified linearized power system via sub-
space identification methods can be written as [10]
follows:

_̂x kþ 1ð Þ ¼ Âx̂ kð Þ þ Ke kð Þ
y kð Þ ¼ Ĉx̂ kð Þ þ e kð Þ

(
ð1Þ

where x̂ is the state vector. y is the output vector. e is
the input noise. bA , bC , and K are the estimated system
matrix, the output matrix, and the input noise gain
matrix, respectively.
If Ẑi is the estimate of the discrete eigenvalue, one can

obtain the corresponding continuous eigenvalue:

λ̂ i ¼ fsln ẑið Þ ð2Þ

where fs is the sampling rate. The corresponding esti-
mated frequency and damping ratio can be calculated by
the following:

f̂ i ¼
Im λ̂ i
� �
2π

ð3Þ
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ξ̂i ¼ −
Re λ̂i
� �
λ̂i
��� ��� ð4Þ

Once the corresponding right eigenvector ûi is found,
the relative mode shape of measured output can be de-
fined as [21] follows:

bMS ið Þ
y ¼ Ĉûi ð5Þ

2.4 Accuracy evaluation
Load variations can be seen following Gaussian distribu-
tion [22]. Based on this assumption, the accuracy of the
estimates has been evaluated. Bootstrap method has
been applied to determine the uncertainties in subspace
identification methods by resampling residuals [23].
For electromechanical oscillation estimation, since the
length of measured data is limited, some Monte Carlo
methods like bootstrap are preferred to evaluate the
estimates [24-26].
In this paper, the model order selection will be investi-

gated. An efficient method, SVC, instead of AIC and
BIC, gives more accurate estimates. A step of mode
matching is also added into the procedure to find out
the corresponding mode from all the estimated modes
(shown in Figure 1).

3 Model order selection for subspace identification
method
Model order has great influence on the accuracy of
estimated modal properties. Higher order or lower
order usually results in over-parameterization or
under-parameterization. Both situations will make the
estimates inaccurate. Usually, AIC [11,27] and BIC
[12] are used to determine the model order for ARMA or
ARMAX model. For subspace identification methods,
however, AIC or BIC might not work quite efficiently. An
efficient computation way to determine the model order is
based on the singular values of the weighted Hankel
matrix. Two singular value-based methods for model
order selection are thus adopted for subspace identifica-
tion methods to improve the computation efficiency in
this section. SVC is suggested for subspace identification
methods.

3.1 Information criteria
Information criteria (IC) are referred to as penalized log-
likelihood criteria where the penalty term depends on
the number of free parameters in the model and the
number of observations [13]. They can be written in a
general form:
IC nð Þ ¼ −2
XN
i¼1

log f xið jθ̂nÞ þ d nð ÞC Nð Þ ð6Þ

where f xið jθ̂ nÞ; i ¼ 1;…;N describes the conditional
probability density of the observations x 1; x 2;…; xN ;
C(N) is an increasing function of the observations num-
ber N, and θ̂n is the estimator for the unknown model
parameter based on the observations. d(n) is the number
of the parameters in θ̂n . The optimal order choice is
such that n̂IC ¼ argminIC nð Þ. The widely used informa-
tion criteria, AIC [27] and BIC [12], are defined as
follows:

AIC nð Þ ¼ −2
XN
i¼1

log f x ið jθ̂nÞ þ 2d nð Þ ð7Þ

BIC nð Þ ¼ −2
XN
i¼1

log f x ið jθ̂nÞ þ d nð Þ � logN ð8Þ

It is stated in [13] that BIC can be used in ARMA
model. In [8] and many other references, AIC is applied
to choose the order for the system model identified by
subspace methods. Noting that from (7) and (8), one can

see that before calculating AIC(n) and BIC(n), θ̂n should
be obtained.

3.2 Singular value-based criteria
Recall the state space model (1), for open loop system,
the observability matrix can be written as follows:

Γf ¼ CT ATCT ⋯ Af−1
� �T

CT

� �T
ð9Þ

Also, the controllability matrix can be written as follows:

Lρ ¼ B AB ⋯ Aρ−1B
� � ð10Þ

The Hankel matrix Hfp is the product of the observ-
ability matrix and controllability matrix:

Hfp≜ΓfLp ¼
CB CAB ⋯ CAp−1B
CAB CA2B ⋯ CApB
⋮ ⋮ ⋯ ⋮

CAf−1B CAfB ⋯ CAfþp−2B

2664
3775
ð11Þ

For subspace identification methods, the estimated

Hankel matrix bHfp can be obtained by the measurement
data. Usually, p is a large positive integer due to the
high-order ARX (HOARX) model used in the asymp-
totic methods [6]. Therefore, singular value decompos-
ition is performed on the weighted Hankel matrix and
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then a new matrix with lower rank bn can be approxi-
mately obtained:

Wf
bHfpWp ¼ bUbΣbVT

≃ bUn̂
bΣn̂
bVT

n̂ ð12Þ

where Wf and Wp are the weight matrices. They vary
with different subspace identification methods. One
can find Wf and Wp for CCA, MOESP, and N4SID
in [14].
Suppose there are m outputs and no input in the sys-

tem. There are min(fm,pm) singular values in bΣ, and bσ i is
the ith largest singular value in Σ̂ . The difference

between bUbΣbVT
and bUn̂bΣn̂

bVT
n̂ can be defined in both

Frobenius norm and Eulclidean norm:

ÛŜV̂T−ÛnŜnV̂
T
n‖F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXmin fs;psð Þ

j¼nþ1

σ̂2j

vuut ð13Þ

‖ÛŜV̂T−ÛnŜnV̂
T
n‖2 ¼ σ̂ nþ1 ð14Þ

Similar to AIC and BIC, combining the penalty term
which punishes the high model orders, novel informa-
tion criterion (NIC) and SVC can be defined as [28]
follows:

NIC nð Þ ¼
Xmin fs;psð Þ

j¼nþ1

bσ2 j þ d nð ÞC Nð Þ=N ð15Þ

SVC nð Þ ¼ bσ2nþ1 þ d nð ÞC Nð Þ=N ð16Þ

where d nð ÞC Nð Þ=N is the penalty term. Compared with
AIC and BIC, the computation efficiency of NIC and
SVC is highly improved due to the fact that the singular
values are estimated in the algorithm in subspace
methods. Note that NIC and SVC use Frobenius and
Eulclidean norm to measure the difference betweenbUbΣbVT

and bUn̂bΣn̂
bVT

n̂ . In comparison with NIC, SVC is
less influenced by the row and column indices of the
Hankel matrix f and p since SVC nð Þ takes the largest
neglected singular value σ̂ nþ1 into consideration
while NIC nð Þ takes all the neglected singular values
[28]. In this paper, SVC is preferred in the following
discussion.
Recall that f and p are the row and column indices

of the Hankel matrix respectively. The accuracy of
the estimation of the model order bn heavily depends
on the values of f and p. It is required that index p
tend to infinity for consistency of the estimates [14].
Fortunately, p can reduce to bpAIC , the estimated
order of autoregressive (AR) model according to
AIC, which is the well-known high-order AR model
in the asymptotic methods [29]. Usually, we have the
following:

f ¼ p ¼ bpAIC ð17Þ
Mathematically, the optimal model order can be

described as follows:

bnSVC ¼ arg min
0≤n≤min fm;pmð Þ

SVC nð Þ ð18Þ

It is proved in [14] that if limC Nð Þ=N→0 and
liminfC Nð Þ= fploglogNð Þ→∞, then bnSVC→n0, where n0
is the order of the reduced system. An obvious ad-
vantage of SVC over information criteria is that the
system order can be determined by calculating the

singular values of Wf
bHf pWp which is already con-

ducted in subspace identification methods. Many de-
tails about SVC can be found in [14].
So far, three information criteria are introduced in this

section. By SVC, the computation efficiency of model
order selection has been highly improved. The accur-
acies of the three criteria will be examined with simula-
tion examples and one may find that SVC also improves
the accuracy of the estimates.

4 Mode matching
There are many electromechanical oscillation modes
with similar frequency in inter-connected power sys-
tems. Practically, only several lightly damped modes
which can be found by first-principle modeling are of
interest. However, many estimated modes are quite
closer so that one cannot determine the mode corre-
sponding to the one of interest. The importance of mode
matching is to ensure the correctness of the estimates,
i.e., the estimated mode should correspond to the mode
of interest.
The mode matching method proposed for subspace

identification method in this paper is based on the esti-
mated mode shape, i.e., the relative magnitude and phas-
ing, of the oscillation throughout the system [30]. The
right eigenvector gives the ‘mode shape’, i.e., the relative
activity of the state variables when a particular mode is
excited [31]. The amplitude of the mode shape indicates
how much the generators participate in the mode. The
angle of the mode shape indicates the two swing-against
groups. In this paper, two sets containing mainly swing-
ing against generator groups can be determined by the
estimated mode shape. Furthermore, inertia aggregation
method is accurate enough to aggregate the coherent
generators in the system for calculation simplicity.

4.1 Modal analysis
Suppose there are m generators and nb buses in the sys-
tem. Voltage angles of m buses are measured as the



Figure 2 Schematic diagram of Four-Machine System.

Table 1 Estimated modes corresponding to different criteria

IC Mode Freq (Hz) DR (%) M+ M− Match result

AIC order: 13 EST 1 0.962 18.84 G1 G2 Local mode 1

EST 2 0.964 17.89 G4 G3 Local mode 2

EST 3 0.589 11.61 G1 G2 G3 G4 Inter-area

BIC order: 13 EST 1 0.964 17.89 G4 G3 Local mode 2

EST 2 0.962 18.84 G1 G2 Local mode 1

EST 3 0.589 11.61 G1 G2 G3 G4 Inter-area

SVC order: 12 EST 1 0.992 18.95 G1 G2 Local mode 1

EST 2 0.999 18.12 G4 G3 Local mode 2

EST 3 0.567 11.23 G3 G1 G2 Inter-area mode
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system outputs. The electromechanical model can be
linearized at the operating point and written as a state
space form [30]:

_x ¼ Ax
y ¼ Cx



ð19Þ

where x ¼ ΔδT ΔωT
� �T

; Δδ ¼ Δδ1 ⋯ Δδm½ �T is
the rotor angle deviation vector in electrical radians,
Δω ¼ Δω1 ⋯ Δωm½ �T is the per unit speed devi-
ation vector, and y is the bus voltage phase angle
vector.
The system matrix A is as follows:

A ¼ 0 ω0I
−M−1Ks −M−1KD

� �
ð20Þ

where M ¼ diag 2H1;⋯; 2Hmð Þ is the matrix of aggre-
gated generators’ inertias. KS and KD are called syn-
chronizing and damping torque coefficient matrices,
respectively. In Appendix 1, it is shown how to find the
entry of KS.
For simplicity, damping terms are neglected KD ≈ 0ð Þ .

Rewrite the system matrix:

~A ¼ 0 ω0I
−M−1Ks 0

� �
ð21Þ

By definition:

~Aui ¼ λiui ⇒
0 ω0I

−M−1Ks 0

� �
ui1
ui2

� �
¼ λi

ui1
ui2

� �
ð22Þ

where λi is the ith eigenvalue of A; ui is the corresponding
eigenvector. Rearranging (4–4), one can obtain:

ω0M
−1Ksui2 ¼ −λ2i ui2

ui1 ¼
ω0I

λi
ui2

8<:
ð23Þ

Thus, −λi
2 and ui2 are eigenvalue and eigenvector of

ω0M
−1Ks , respectively. From (23), ui1 , mode shapes of

low-frequency oscillation corresponding to generators’
power angles can thus be found. Note that the main os-
cillatory characteristics for the mode shapes from (21)
are maintained for the mode shapes of (20) [21]. All the
elements in ui1 are real, while the elements would be
complex if damping terms are not neglected. To this ex-
tent, (21) will give an easy way to find the oscillatory
characteristics.
In most cases, voltage phase angles of the buses are

taken as output signals for electromechanical oscillation
estimation. Suppose the outputs of the system are volt-
age phase angles, one will have the following:

C ¼ Cθδ 0½ � ð24Þ
where

Cθδ ¼

∂θ1
∂δ1

⋯
∂θ1
∂δm

⋮ ⋱ ⋮
∂θm
∂δ1

⋯
∂θm
∂δm

26664
37775 ð25Þ

In Appendix 2, it is shown how to find entry of Cθδ in
detail.

4.2 Mode matching method
Obviously, the estimated mode shape bui1 can be deter-
mined as follows:

bui1 ¼ bMS
ið Þ
δ ¼ C−1

θδ
bMS

ið Þ
y ð26Þ

bui1 can be scaled by dividing the largest amplitude of
its entries. Note the normalized vector as busi and the jth

entry in busi as busij ; j ¼ 1;…;m . The amplitude of busij



Figure 3 Estimated and reference mode shapes of oscillation modes. (a) Estimated local model 1 via AIC or BIC. (b) Estimated local mode 2
via AIC or BIC. (c) Estimated inter-area mode via AIC or BIC. (d) Estimated local mode 1 via SVC. (e) Estimated local mode 2 via SVC. (f) Estimated inter-area
mode via SVC. (g) Local mode 1. (h) Local mode 2. (i) Inter-area mode.
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provides the information on the magnitude of the ith
mode in the state Δδ j [16] i.e., the amplitude of busij indi-
cates how much the jth generator participating the ith
mode. The angle of busij provides the information on the
phase of the ith mode in the state Δδ j [16] i.e., the angle
of busij indicates the pattern of generator swings for
the ith mode. In this paper, the sign of the real part
of busij can help divide generators into one of the two
Table 2 Accuracy of estimates corresponding to three criteria

Mode Reference value A

U

Local mode 1 Freq (Hz) 1.056 0

DR (%) 19.87 1

Local mode 2 Freq (Hz) 1.071 0

DR (%) 19.57 1

Inter-area Freq (Hz) 0.565 0

DR (%) 10.28 1
swinging-against groups. Thus, two sets Miþ and Mi−

containing mainly swinging against generators can be
determined by busij

Miþ ¼ Gjjsgn busij þ bu�sij� �busijbu�sij > ε
n o

ð27Þ

Mi− ¼ Gj sgn busij þ bu�sij� �busijbu�sij��� �
< −ε

n o
ð28Þ
IC BIC SVC

ncertainty RMSE Uncertainty RMSE

.962 ± 0.021 0.094 0.992 ± 0.020 0.065

8.86 ± 3.88 2.18 18.87 ± 3.68 2.13

.964 ± 0.021 0.108 0.999 ± 0.020 0.073

8.13 ± 4.16 2.41 18.39 ± 4.12 2.26

.589 ± 0.018 0.025 0.567 ± 0.018 0.009

1.51 ± 3.04 2.16 11.07 ± 3.02 1.94



Table 3 Estimates of mode shapes with uncertainty

Generator Local mode 1 Local mode 2 Inter-area

Mag (p.u.) Angle (rad) Mag (p.u.) Angle (rad) Mag (p.u.) Angle (rad)

G1 1.00 ± 0.06 −0.27 ± 0.03 0.161 ± 0.09 2.60 ± 0.18 1.00 ± 0.07 2.88 ± 0.11

G2 0.982 ± 0.06 2.87 ± 0.04 0.154 ± 0.07 0.39 ± 0.18 0.694 ± 0.10 −2.84 ± 0.10

G3 0.159 ± 0.07 0.50 ± 0.06 1.00 ± 0.08 2.90 ± 0.06 0.794 ± 0.07 0.31 ± 0.10

G4 0.137 ± 0.09 2.76 ± 0.12 0.984 ± 0.13 −0.23 ± 0.14 0.85 ± 0.08 −0.26 ± 0.19
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where sgn :ð Þ is the sign function and bu�sij is the conju-
gate complex of bu�sij . Gj refers to the jth generator. The
positive number Ɛ is the threshold. In this paper, Ɛ is set
to be 0.3. Thus, the conclusion can be drawn that the ith
estimated mode is mainly caused by the generators in
Μiþ swinging against generators in Μi− . Comparing the
conclusion with the results of modal analysis on first-
principle modeling, one can determine which mode the
estimated mode corresponds to.
Note that the mode matching method proposed in this

paper can be simplified via aggregation model since an
inter-area oscillation mode involves many generators.
These generators can be divided into several coherent
groups. Actually, coherence and aggregation, as a
method of model reduction, is commonly used to
analyze large power system dynamics. This kind of
method is based on the relationship between the coher-
ent areas and the slow inter-area modes [32]. It is not
necessary to model the entire inter-connected power
systems in detail to each generator when only several
modes are of interest. One who has interest in the de-
tails may refer to [32] and [15].

5 Simulation
In this section, three test systems are used to illustrate
the two improvements. Numerical algorithm for N4SID,
one of the subspace identification methods, is applied in
the simulation. In a steady state, a power system oper-
ates at an equilibrium point. The system is perturbed by
load variations. These load variations can be regarded to
follow Gaussian distribution. In [33], the loads of Nordic
system are investigated statistically and it can be con-
cluded that the loads are Gaussian distributed. In [34],
Figure 4 Schematic diagram of Four-Machine System after aggregatio
power system disturbance behavior is also suggested to
be modeled via Gaussian approach. In simulation tests,
loads are modeled to follow the Gaussian distribution.
Thus, the dynamic system with ambient noises is simu-
lated. Measurement noises with 20-dB signal-to-noise
ratio (SNR) are also taken into consideration.

5.1 Four-Machine System
The Four-Machine Test System shown in Figure 2 is
used to demonstrate the accuracy of the improvements.
There are 4 generators with governors and power system
stabilizers (PSS) and 13 buses in this system. There are
three low-frequency oscillation modes in the system.
One is the inter-area mode with generators G1 and G2

swinging against generators G3 and G4. The other two
are local mode 1, the oscillation between generators G1

and G2 and local mode 2, the oscillation between gener-
ators G3 and G1.
Voltage angles of buses 1, 2, 10, and 20 are measured

as system outputs. The sampling frequency is 0.2 Hz
and data length N equals 3,000. Model order is first de-
termined by AIC, BIC, and SVC, respectively. From
Table 1, one can see that AIC and BIC determine the
same system order so that the estimating results are the
same while SVC suggests a small model order. One may
find that the two local modes have very similar frequen-
cies. Thus, the estimated modes cannot be decided to
which modes of interest they correspond respectively.
To this content, the proposed mode matching method
can help tell the frequency neighboring modes apart.
Mode shapes of each estimated mode are shown and
compared with the reference ones in Figure 3. The
match results are also shown in Table 1. From Figure 3
n.



Figure 5 Inter-are mode shapes of aggregation model. (a) Reference from aggregation model. (b) Estimated via aggregation model.

Figure 6 Schematic diagram of New England System.
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Table 4 Results of modal analysis for New England System

Mode Freq (Hz) Eigenvectors of electromechanical oscillation modes

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Local 1 1.021 +† − − − − − − + + +

Local 2 1.139 + + + +† +† −† −† + + −

Local 3 1.071 + +† −† + + + + + − −

Local 4 1.170 −† − − − − − − + +† −

Local 5 1.134 + +† +† − − − − + + −

Local 6 1.311 − − − + − − − +† − −

Local 7 1.236 + − − + − − +† − − −

Local 8 1.390 + − − +† −† + − − − +

Inter-area 0.636 +† +† +† +† +† +† +† +† +† −†
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and Table 1, it can be found that the modes can be cor-
rectly matched by proposed method.
Bootstrap method is applied to evaluate the accuracy of

the estimates [8]. One thousand trials are generated for
evaluation of model order selection. Table 2 shows the
error bounds with 95 % uncertainty of the estimates (mean
Figure 7 Pre-processed signals. (a) Voltage angle of bus 1. (b) Voltage a
± 2*standard deviation). Root mean square error (RMSE) is
also calculated. From Table 2, it can be concluded that the
uncertainties of the frequency and damping ratio estimates
corresponding to AIC, BIC, and SVC are similar. But esti-
mates corresponding to SVC have smaller RMSE which
means SVC can give more accurate estimates.
ngle of bus 3. (c) Voltage angle of bus 5. (d) Voltage angle of bus 15.
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Also, the accuracy of mode matching is also evaluated.
Table 3 shows the uncertainty of the estimated mode
shapes in polar coordinates. One can see that the uncer-
tainty of the estimates have no influence on the elements
in Μiþ and Μi−. Thus, the correctness of mode matching
can be validated.
Practically, only several critical oscillation modes are

of interest in some complicated systems. These modes
are usually lightly damped inter-area mode in which
many generators are involved. It would be very compli-
cated to calculate the mode shapes on all the generators
in the system. In this situation, the inertia aggregation
method of coherent generators [32] can be applied to
simplify the mode matching. The accuracy of mode
matching for inter-area mode via aggregation method is
also evaluated. The inertia aggregation method is applied
to aggregate coherent generators G1 and G2 as generator
G1 and coherent generators G3 and G4 as generator G2,
respectively. The aggregated system is shown in Figure 4.
The estimated and reference mode shapes of inter-area
mode of aggregation system are shown in Figure 5.

From Figure 5a, one can obtain Μþ ¼ G
0
2

n o
and Μ− ¼

G
0
1

n o
. This means that the estimated mode is caused by
Figure 8 Reference and estimated mode shapes. (a) Estimated mode 1
(e) Estimated mode 5. (f) Inter-area mode. (g) Local mode 1. (h) Local mod
G1 swinging against G2. Comparing the two figures, one
can find that the estimated mode holds the same oscilla-
tion information as the inter-area mode, i.e., generators G1

and G2 (generator G1) swings against generators G3 and
G4 (generator G2). This means that the estimated mode is
the inter-area mode. This sheds light on the fact that even
by aggregation model, the mode matching method is still
effective.
In Four-Machine System, the simulation results show

that SVC can give more proper model order on which
the accurate estimates of frequency and damping ratio
are based. The estimated mode shapes are also accurate
enough for mode matching. Furthermore, by aggregation
methods, the proposed mode matching method can be
both correct and simple.

5.2 New England System
For security analysis, there are only several modes of
interest among many electromechanical oscillation
modes in real power systems. The modes of interest will
be interfered with some similar frequency modes out of
interest. In order to show the flexibility of the improve-
ments proposed in this paper, several modes of interest
are shown to be estimated in the New England System
. (b) Estimated mode 2. (c) Estimated mode 3. (d) Estimated mode 4.
e 5.



Table 5 Results of mode matching

Mode Information from mode shapes Matching result

Μ+ Μ−

EST 1 G
0
1 G

0
3 G

0
2 G

0
4 N/A

EST 2 G
0
3 G

0
4 G

0
1 G

0
2 Local mode 5

EST 3 G
0
3 G

0
1 G

0
2 G

0
4 N/A

EST 4 G
0
1 G

0
4 G

0
2 G

0
3 Local mode 1

EST 5 G
0
1 G

0
2 G

0
3 G

0
4 Inter-area mode
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interfered with other frequency neighboring modes. The
New England 39-bus system, shown in Figure 6, is com-
posed of 39 buses and 10 generators. Generator G10 is
the equivalent external grid generator. The results of
modal analysis are presented in Table 4. The ‘+’ and ‘−’
symbols indicate that the generators swing against each
other. The symbol ‘†’ indicates that the generator mainly
participates in the oscillation. For example, the first row
indicates that local mode 1 is caused by generators G1,
G8, G9, and G10 swinging against generators G2 to G7

and G1 is mainly participated.
Local mode 1, local mode 5, and the inter-area mode

are of interest. Note that local mode 1 and local mode 3
have similar frequencies and so are local mode 5 and
local mode 4 (see Table 4). This means that the esti-
mated frequencies can be of local mode 3 and local
mode 4 or of local mode 1 and local mode 5. How to
correctly find out the modes corresponding to the ones
of interest is shown. Take voltage angles of buses 1, 3, 5,
and 15 as system outputs at a data length of N(=1,500).
Four pre-processed signals are illustrated in Figure 7.
Table 4 indicates that G10 swings against the others in

the inter-area mode, while G1, G9 and G10 swing against
the others in local mode 1; G1, G2, G3, G8, and G9 swing
against G4, G5, G6, G7 and G10 in local mode 5. Thus,
one can aggregate generators in this way: (G1, G8, G9),
(G2, G3), (G4, G5, G6, G7) and G10 can be aggregated to
groups G1, G2, G3, and G4, respectively.
The model order is chosen to be 30 by SVC. Fre-

quency, damping ratio, and corresponding mode shapes
are estimated. There are five estimated modes whose fre-
quencies are in between 0.4 and 1.5 Hz. The proposed
mode matching method is used to find out the modes
corresponding to the ones of interest. Figure 8 illustrates
the mode shapes of the five estimated modes as well as
Table 6 Estimates of local mode 1, local mode 5, and inter-area

Mode Frequency (Hz)

Estimated Reference

Local mode 1 1.042 1.021

Local mode 5 1.181 1.134

Inter-area mode 0.631 0.636
three reference ones. Mode matching results are shown
in Table 5. From Table 5 and Figure 8, one can correctly
match estimated mode 2, estimated mode 4, and esti-
mated mode 5 with local mode 5, local mode 1, and
inter-area mode, respectively. Thus, the estimate results
can be determined in Table 5.
Table 6 shows the estimates of local mode 1, local

mode 5, and inter-area mode. The RMSE of the estimates
are also calculated by bootstrap method and the results
are listed in Table 6. From Tables 5 and 6, it can be con-
cluded that the estimates are both correct and accurate.

5.3 NPCC 48-machine system
The proposed method can also be applied into a much lar-
ger power system, NPCC, containing many inter-area os-
cillation modes. The accuracy and flexibility will be shown
in the system. The NPCC 48-machine system is composed
of 140 buses and 48 machines in the system. The results of
modal analysis show that there are eight inter-area modes
and the whole system can be partitioned into nine areas.
More details about the system description and coherent
analysis can be found in [35]. The results of modal analysis
are presented in Table 7 in which ‘IM’ stands for inter-area
mode while ‘Ai’ stands for the generators in the ith Area.
The ‘+’ and ‘−’ symbols are also used to indicate that the
generators swing against each other.
IM 6, IM 7, and IM 8 are the modes of interest due to

their less damping ratios (see Table 7). Note that IM 7 and
IM 8 have similar frequencies and one cannot tell the esti-
mates apart only by the frequencies. Take voltage angles of
buses 13, 22, 25, 92, 97, 120, 122, 133, and 139 as system
outputs at a length of N(=3,000). The model order is
chosen to be 26 by SVC. There are three estimated modes
with frequencies between 0.65 and 0.90 Hz. The proposed
mode matching method is used to match the modes with
the ones of interest, and the results of mode matching are
shown in Table 8. From Table 8, one can find that the esti-
mated modes 1, 2, and 3 are the estimated IM 6, IM 7, and
IM 8, respectively. The estimate results can thus be deter-
mined in Table 8. It can be concluded that the estimates
are correct and accurate.

6 Conclusions
Two improvements, model order selection and mode
matching for estimating the frequencies, damping ratios
and mode shapes of electromechanical oscillations via
mode

Damping ratio (%)

RMSE Estimated Reference RMSE

0.023 4.74 5.31 1.70

0.048 7.82 7.92 1.48

0.009 3.82 3.98 1.45



Table 7 Results of modal analysis for NPCC 48-machine system

Mode Freq (Hz) DR (%) Eigenvectors of inter-area modes

A1 A2 A3 A4 A5 A6 A7 A8 A9

IM 1 0.256 16.67 +† −† + + − − + +† +

IM 2 0.381 11.69 −† + − +† −† − +† + +†

IM 3 0.472 8.39 −† − + − + − + + −

IM 4 0.530 7.90 −† + − −† − + −† +† −†

IM 5 0.596 7.30 +† − + −† + + −† − −†

IM 6 0.703 5.86 + + + +† − − −† − +†

IM 7 0.704 6.45 − +† − + + −† + + +

IM 8 0.790 5.84 − + + −† + − − − +†
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subspace identification methods have been presented in
this paper. Based on theoretical analysis, both the two
improvements are applied to simulation systems with
ambient data. The results demonstrate that SVC works
better than traditional information criteria in finding a
proper system model order on which the accurate esti-
mates of modal properties are based. The accuracy of
the estimates has been investigated via bootstrap
method. Also, with the help of aggregation model, the
proposed mode matching method can easily help ensure
the correctness of the estimates, even for larger power
system. The emphasis of future work is placed upon in-
vestigating the influence of data length on the improved
subspace identification methods and electromechanical
mode tracking via subspace methods.

7 Appendices
7.1 Appendix 1: Evaluation of entry of KS
The complex power ~Si for the ith generator in multi-
machine power system is as follows:

~Si ¼ _Ui � _I� i

¼ −
X
j ¼ 1
j≠i

N
E 0

ij j E 0
j

�� �� Yred ij

�� �� cos δ ij−αij
� �þ j sin δ ij−αij

� �� �

þ
X
j ¼ 1
j≠i

N
E 0

ij j2 Yred ij

�� �� cosαij−j sinαij
� �

ð29Þ
Table 8 Results of mode matching

Mode Information from mode shapes Matching re

M+ M−

EST 1 A4 A9 A7 IM 6

EST 2 A6 A2 IM 7

EST 3 A4 A9 IM 8
where E
0
i is the voltage behind the transient reactance

which is assumed to be constant. δij is the difference be-
tween δi and δj. δi is the rotor angle of the ith generator.
Yredij is the admittance between the generators. αij is the
phase angle of the Yredij. Yred can be calculated as
follows:

Yred ¼ Ymm−YmnbY
−1
nbnbYnbm ð30Þ

Therefore, the electromagnetic power for the ith gen-
erator is as follows:

Pei ¼ Re ~S i

n o
¼ −

X
j ¼ 1
j≠i

N
E 0

ij j E 0
j

�� �� Yred ij

�� �� cos δ ij−αij
� �

þ
X
j ¼ 1
j≠i

N
E 0

ij j2 Yred ij

�� �� cosαij
ð31Þ

After simplification

Pei ¼ −
X
j ¼ 1
j≠i

N
E 0

ij j E 0
j

�� �� Yred ij

�� �� cos δ ij−αij
� �þ E 0

ij j2Gii

ð32Þ
sult Frequency (Hz) Damping ratio (%)

Estimated RMSE Estimated RMSE

0.702 0.013 6.74 2.18

0.705 0.012 7.51 2.28

0.788 0.014 4.82 1.82
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Consequently, Ksij , the value in the ith row and jth col-
umn of Ksij , can be found as follows:

Ksij ¼ −
∂Pei

∂δ j
¼

−
X
j ¼ 1
j≠i

N
E 0

ij j E 0
j

�� �� Yred ij

�� ��sin δ ij−αij
� �

; i ¼ j

E 0
ij j E 0

j

�� �� Yred ij

�� ��sin δ ij−αij
� �

; i≠j

8>>>>><>>>>>:
ð33Þ

7.2 Appendix 2: Computation of entry of Cθδ

Referring to m generators as internal voltage nodes, one
can get:

0
~Im

� �
¼ ~Ynbnb

~Ynbm
~Ymnb

~Ymm

� �
~Vnb
~E

0
m

� �
ð34Þ

where ~Im is the generator injection current matrix; ~E
0
m

is the generator internal voltage matrix; ~Vnb
is the node

voltage matrix. Hence:

~Vnb ¼ −~Ynbnb
−
1~Ynbm

~E
0
m ð35Þ

Defining

~κ≜−~Ynbnb
−1~Ynbm≜κ∠γ ð36Þ

results in

~Vi ¼
Xm
j¼1

~κ ij
~E

0
j ¼
Xm
j¼1

κij
~E

0
j

��� ���∠ γij þ δ j
� � ð37Þ

Expanding (37)

~Vi ¼
Xm
j¼1

κij
~E

0
j

��� ��� cos δ j þ γij

� �þ j
Xm
j¼1

κij
~E

0
j

��� ��� sin δ j þ γij

� �
ð38Þ

results in

θi ¼ arctan

Xm

j¼1
κij

~E
0
j

��� ��� sin δ j þ γij

� �
Xm

j¼1
κij

~E
0
j

��� ��� cos δ j þ γij

� � ð39Þ

Defining
~Vi

��� ���≜ Xm
j¼1

κij
~E

0
j

��� ��� cos δ j þ γij

� � !2

þ
Xm
j¼1

κij
~E

0
j

��� ��� sin δ j þ γij

� � !2!1
2

ð40Þ

Results in

∂θi
∂δ j

¼ 1

1þ
Xm

q¼1
κiq

~E
0
q

��� ��� sin δq þ γiq

� �
Xm

j¼1
κiq

~E
0
q

��� ��� cos δq þ γiq

� �
0B@

1CA
2 �

ð Xm

q¼1
κiq

~E
0
q

��� ��� sin δq þ γiq

� �� �
κij ~E

0
j

��� ��� sin δ j þ γij

� �
Xm

q¼1
κiq

~E
0
q

��� ��� cos δq þ γiq

� �� �2
þ

κij
~E

0
j

��� ��� cos δ j þ γij

� �
Xm

q¼1
κiq

~E
0
q

��� ��� cos δq þ γiq

� �Þ
ð41Þ

i.e.,

∂θi
∂δ j

¼ 1

~Vi

��� ���2
 Xm

q¼1

κiq
~E

0
q

��� ��� sin δq þ γiq

� �
κij

~E
0
j

��� ��� sin δ j þ γij

� �

þ
Xm
q¼1

κiq
~E

0
q

��� ��� cos δq þ γiq

� �
κij

~E
0
j

��� ��� cos δ j þ γij

� �!
ð42Þ

Finally, one can conclude the following:

∂θi
∂δ j

¼ 1

~V i

��� ���2
Xm
q¼1

κiqκij
~E

0
q

��� ��� ~E 0
j

��� ��� cos δq þ γiq−δ j−γij

� � !

ð43Þ
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