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Abstract

In this work, a novel family of state space adaptive algorithms is introduced. The proposed family of algorithms is
derived based on stochastic gradient approach with a generalized least mean cost function J[ k]= E

[‖ε[ k] ‖2L] for
any integer L. Since this generalized cost function is having power ‘2L’, it includes the whole family of the power of
two-based algorithms by having different values of L. The novelty of the work resides in the fact that such a cost
function has never been used in the framework of state space model. It is a well-known fact that the knowledge of
state space model improves the estimation of state parameters of that system. Hence, by employing the state space
model with a generalized cost function, we provide an efficient way to estimate the state parameters. The proposed
family of algorithms inherit simplicity in its structure due to the use of stochastic gradient approach in contrast to the
other model-based algorithms such as Kalman filter and its variants. This fact is supported by providing a comparison
of the computational complexities of these algorithms. More specifically, the proposed family of algorithms has
computational complexity far lesser than that of the Kalman filter. The stability of the proposed family of algorithms is
analysed by providing the convergence analysis. Extensive simulations are presented to provide concrete justification
and to compare the performances of the proposed family of algorithms with that of the Kalman filter.

Keywords: Adaptive filters; State space least mean algorithms; State space estimation algorithms; Convergence and
stability analysis

1 Introduction
Over the past few decades, adaptive filters have gained
huge recognition in innumerable applications extending
over a wide range of fields. Adaptive filtering is an impor-
tant part of statistical signal processing, and adaptive
filters have been successfully applied in diverse fields such
as equalization, noise cancellation, linear prediction, and
in system identification [1,2]. Adaptive filters are preferred
over conventional filters because of their accuracies due to
adaptive capability in the domain of the problem in which
it is being used. Adaptive filters automatically adjust their
weights according to some adaptive algorithm which is
usually based on minimization of a function of the differ-
ence between the desired signal and the observed signal
[1,2]. The most widely used algorithms for adaptive filters
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are the least mean squares (LMS) algorithm [1,2] and the
recursive least squares algorithm [1,2].
It is observed that the adaptive filters designed by

incorporating the knowledge of state space (SS) model
of the system performs better than the ones without it.
Amongst the plethora of literature found on adaptive
filtering, there are many algorithms that deal with the SS
model. For example, the very well-known Kalman filter
(KF) [3], which gives the linear optimal solution by cal-
culating the minimum mean square error (MMSE) while
utilizing the system model. It optimally estimates on the
basis of observations which are subjected to noise and
other disturbances. In the nonlinear filtering domain, we
have the extended Kalman filter (EKF) [3], unscented
Kalman filter (UKF) [4], cubature Kalman filter (CKF) [5],
quadrature Kalman filter (QKF) [6] and many other vari-
ants of KF [3]. These provide suboptimal solution to the
filtering problem. Although numerous techniques exist in
literature for estimation of state parameters utilizing state
space model but most of them are either highly computa-
tionally complex or have less accuracy in estimating the
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state parameters. Recently, the SS version of LMS and
RLS are developed in [7-10] with the aim to provide an
alternative to the highly-complex KF techniques. This is
the very reason for carrying out our investigation.

It is found in the literature that all of the state space-
based adaptive filtering estimation algorithms can be
formulated using the generalized form [3]:

x̂[ k]= x̄[ k]+K [ k] ε[ k] (1)

where:

ε[ k]= y[ k]−ȳ[ k] (2)

Equation 1 forms the basis of most of the state-space-
based estimation algorithms [3-6]. The usual practice to
derive the gain K[ k] is to employ least squares solution
[1]. Usually the square of the error is minimized; however,
non-mean square errors have also been studied [11]. In
this paper, we propose to minimize a more general cost
function given by J = E[ ‖ε‖2L], where the notation ‘‖.‖’
is used to represent the Euclidean norm and L is a positive
integer value where L = 1, 2, 3, ... for the basic state space
least mean square (SSLMS) algorithms. Our main con-
tribution in this work is to develop a family of adaptive
algorithms which has much lesser computational cost as
compared to the existing state space model-based adap-
tive algorithms [3-6].We provide a detailed comparison of
computational cost to support this argument in Section 6.

The paper is organized as such: Section 2 of the paper
introduces the state space model. Then in Section 3, the
proposed general SSLM algorithm is derived. Section 4
presents the convergence analysis followed by simula-
tion results and comparison of the different algorithms in
Section 5. Section 6 presents the computational complex-
ity of the algorithms, and finally, X we conclude the paper
in Section 7.

2 State spacemodel
We begin by defining the general state space model of a
linear time varying system.

x[ k + 1] = A[ k] x[ k]+B[ k]u[ k]+w[ k] , (3a)
y[ k] = C[ k] x[ k]+D[ k]u[ k]+v[ k] (3b)

where x ∈ �n are the process states, y ∈ �m are the mea-
sured outputs such thatm ≤ n.A[ k] is the state transition
matrix, B[ k] is the input matrix, u[ k] is the input vector
where u ∈ �p, w ∈ �n is the process noise vector and
v ∈ �m is the measurement noise vector. The matrix C[ k]
is the output matrix where dim[C[ k] ]= m × n, D[ k] is
the feed through matrix with dim[D[ k] ]= m × p. It is
assumed that the above system is observable. A special

case is the unforced (autonomous) linear time varying
system, represented as:

x[ k + 1] = A[ k] x[ k]+w[ k] , (4a)
y[ k] = C[ k] x[ k]+v[ k] (4b)

The state space representation for a nonlinear continu-
ous time system is:

ẋ = f (x,u,w), (5a)
y = h(x,u, v) (5b)

where f and h are nonlinear functions and the parameters
are as defined before.

3 Derivation of the proposed general SSLM
algorithm

Considering the system described by Equation 4 above, a
model-based adaptive estimation process can be divided
into the following two steps. Step 1 is the time update
which is given by:

x̄[ k]= A[ k − 1] x̂[ k − 1] (6)

Step 2 is the measurement update which is given by:

x̂[ k]= x̄[ k]+K [ k] ε[ k] (7)

where ε[ k] is the prediction error defined as:

ε[ k]= y[ k]−ȳ[ k] (8)

here, y[ k] is as mentioned in Equation 4, K[k] is the gain
matrix and:

ȳ[ k]= C[ k] x̄[ k] (9)

Equations 6 to 9 constitute the basic structure employed
in all KF techniques [3-6]. From Equations 6, 8, and 9,
Equation 7 can be written as:

x̂[ k]=[ I −K [ k]C[ k] ]A[ k − 1] x̂[ k − 1]+K [ k] y[ k]
(10)

The measurement update of the class of adaptive fil-
ter governed by Equation 7 can be set up in a more
generalized form as follows:

x̂[ k]= x̄[ k]−μ∇J[ k] (11)

where J[ k] is the cost function to be minimized, ∇J[ k] is
the gradient of the cost function with respect to the pre-
dicted states, and μ is the step size parameter. To derive
the proposed SSLM algorithms, we start by defining the
general cost function as:

J[ k]= E
[‖ε[ k] ‖2L] for L = 1, 2, 3, ... (12)

Minimizing the cost function J[ k] with respect to the
predicted states (x̄[ k]) result in:

∇J[ k]= −2L‖ε[ k] ‖2L−2CT [ k] ε[ k] (13)
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Substituting Equation 13 in Equation 11 and generaliz-
ing, the Equation 11 can hence be written as:

x̂[ k]= x̄[ k]+μ‖ε[ k] ‖2L−2GCT [ k] ε[ k] (14)

which is our general estimator algorithm. A matrix G was
imposed for the condition of controllability [7] which is
required due to the dynamics of the system where the
algorithm is being applied. Comparing Equations 7 and 14
yields:

K[ k]= μ‖ε[ k] ‖2L−2GCT [ k] (15)

It should be noted that for L = 1, the algorithm results
in the basic SSLMS [7].

4 Convergence in themean analysis
Before proceeding to the convergence analysis of the pro-
posed algorithm, we set up the stage by putting forth the
following assumptions.

1. The noise vectors w[ k] and v[ k] are zero-mean
white processes with covariance matricesQw = σ 2

wI
andQv = σ 2

v I, respectively. Moreover, they are
independent of the input and state variables of the
system.

2. The system matrices A[k] and C[k] are independent
of the state variables to be estimated. Hence, they can
be treated as deterministic variables.

3. The filter’s length is long enough to apply the law of
long adaptive filters [2].

The first assumption is a well-known assumption and is
also true in real practice. The second assumption is true
for linear seperable systems but not true for nonlinear
and inseparable systems. However, we can employ this
assumption to make the analysis tractable. Moreover, this
assumption is valid in most of the practical scenarios.
The third assumption is also well-known in literature and
often used in the analysis of adaptive filters [2].

Considering the general SSLMS algorithm given in
Equation 14 which is reproduced here for convenience:

x̂[ k]= x̄[ k]+μ‖ε[ k] ‖2L−2GCT [ k] ε[ k] (16)

After substituting the expression for predicted state
from Equation 6 in the above equation and using the
definition of vector norm, we can rewrite Equation 16 as:

x̂[ k]= A[ k−1] x̂[ k − 1]+μ(εT [ k] ε[ k] )L−1CT [ k] ε[ k] (17a)

= A[ k − 1] x̂[ k − 1]+μ((y[ k]−ȳ[ k] )T (y[ k]−ȳ[ k] ))L−1

× GCT [ k] (y[ k]−ȳ[ k] ) (17b)

To proceed further, we express the prediction error ε[ k]
in terms of the actual states and the estimated states. To
do so, we substitute the values of y[ k] from Equation 4 and
ȳ[ k] from Equation 9 in the expression of ε[ k] to obtain:

y[ k]−ȳ[ k] = C[ k] (x[ k]−x̄[ k] ) + v[ k] (18a)

= C[ k] (A[ k − 1] x[ k − 1]+w[ k − 1]

− A[ k − 1] x̂[ k − 1] ) + v[ k] (18b)

= C[ k]A[ k − 1] (x[ k − 1]−x̂[ k − 1] )

+ C[ k]w[ k − 1]+v[ k] (18c)

Defining the state estimation error vector x̃[ k] as:

x̃[ k]= x̂[ k]−x[ k] (19)

enables Equation 18 to be rewritten as:

y[ k]−ȳ[ k] = −C[ k]A[ k − 1] x̃[ k − 1]

+ C[ k]w[ k − 1]+v[ k] (20)

Now, the substitution of the above result in Equation 17
and subtraction of x[ k] from both sides results in:

x̂[ k]−x[ k] = A[ k − 1] x̂[ k − 1]−x[ k]

+ μ[ (−C[ k]A[ k − 1] x̃[ k − 1]

+ C[ k]w[ k − 1]+v[ k] )T (−C[ k]

× A[ k − 1] x̃[ k − 1]+C[ k]w[ k − 1]

+ v[k] )]L−1 GCT [k] (−C[k]A[ k−1] x̃[k−1]

+ C[ k]w[ k − 1]+v[ k] ) (21)

Next, by substituting x[ k]= A[ k−1] x[ k−1]+w[ k−1]
in Equation 21 on the right hand side and simplifying will
give:

x̃[ k] = A[ k − 1] x̃[ k − 1]−w[ k − 1]

+ μ[ (−C[ k]A[ k − 1] x̃[ k − 1]

+ C[ k]w[ k − 1]+v[ k] )T (−C[ k]A[ k − 1]

× x̃[ k − 1]+C[ k]w[ k − 1]+v[ k] )]L−1 GCT [ k]

× (−C[ k]A[ k−1] x̃[ k−1]+C[ k]w[ k−1]+v[ k] )
(22)
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The complete mean convergence analysis for the gen-
eralized case with arbitrary value of L is quite involved.
Therefore, we present here special scenarios of L = 1 and
L = 2. Thus, simplifying Equation 22 for the case when
L = 1 results in:

x̃[ k] = A[ k − 1] x̃[ k − 1]−w[ k − 1]

+ μGCT [ k] (−C[ k]A[ k − 1] x̃[ k − 1]

+ C[ k]w[ k − 1]+v[ k] ) (23a)

= A[ k − 1] x̃[ k − 1]

− w[ k − 1]−μGCT [ k]C[ k]A[ k − 1] x̃[k − 1]

+ μGCT [ k]C[ k]w[ k − 1] (23b)

+ μGCT [ k] v[ k] (23c)

= (I − μGCT [ k]C[ k] )A[ k − 1] x̃[ k − 1]

+ μGCT [ k]C[ k]w[ k − 1]

+ μGCT [ k] v[ k]−w[ k − 1] (23d)

Now, taking expectation on both sides of the above
equation and by employing Assumptions 1 and 2 will
result in:

E[ x̃[ k] ]= (I− μGCT [ k]C[ k] )A[ k − 1]E[ x̃[ k − 1] ]
(24)

Hence, it can be observed that the state estimation error
vector will converge in the mean sense provided that the
following conditions are fulfilled:

1. The matrices A[ k] ,A[ k − 1] , ... should have
bounded entries, i.e.:

|A[ k] {i, j}| < 1, ∀ k (25)

for i = 1, 2, 3, ..., n and j = 1, 2, 3, ..., n.
2. |I − μGCT [ k]C[ k] | < 1 which implies that the step

size μ of the algorithm is bounded by:

0 < μ <
2

λmax(GCT [ k]C[ k] )
, ∀ k (26)

where λmax(GCT [ k]C[ k] ) represents the largest
eigenvalue of GCT [ k]C[ k].

3. System or the states should be observable, i.e. matrix
C[ k] is full rank.

The above conditions correspond to the bounds for the
basic SSLMS algorithm (L = 1). Thus, our analysis pro-
vides themean convergence bounds of the existing SSLMS
algorithm which was not provided in the original work
[7]. Similarly, for L = 2, the mean convergence analysis
could be performed for the corresponding algorithm in

the family. On substitution of L = 2, simplification and
taking expectation of Equation 22 results in:

E[ x̃[ k] ]= {I − μ(γGCT [ k]C[ k]
+ GCT [ k]C[ k]QwCT [ k]C[ k]
+ GCT [ k]QvC[ k]+G (27a)
× CT [ k]C[ k]QwCT [ k]C[ k]
+ σ 2

wTr(CT [ k]C[ k] )GCT [ k]C[ k]
+ GCT [ k]QvC[ k] (27b)
+ σ 2

v GCT [ k]C[ k] )}A[ k−1]E[ x̃[ k−1] ]
(27c)

where γ = ‖x̃‖2ζ which is considered a constant due to
the employment of the Assumption 3. Here, the term ζ is
given by:

ζ = AT [ k − 1]CT [ k]C[ k]A[ k − 1] (28)

Let us assume a matrix Z[ k], such that:

Z[ k]= (γGCT [ k]C[ k]+GCT [ k]C[ k]QwCT [ k]C[ k]
+ GCT [ k]QvC[ k]+G (29a)
× CT [ k]C[ k]QwCT [ k]C[ k]
+ σ 2

wTr(CT [ k]C[ k] )GCT [ k]C[ k]
+ GCT [ k]QvC[ k] (29b)
+ σ 2

v GCT [ k]C[ k] ) (29c)

Therefore, Equation 27 can be written as:

E[ x̃[ k] ]= (I − μZ[ k] )A[ k − 1]E[ x̃[ k − 1] ] (30)

Consequently, the mean convergence of the state esti-
mation error vector for L = 2 is obtained by fulfilling the
Conditions 1 and 3 reported for L = 1 except the bound
for step size μ which is given by:

0 < μ <
2

λmax(Z[ k] )
, ∀k (31)

The analysis for the higher values of L can be similarly
carried out.

5 Simulation results and discussion
In this section, we present simulation results to validate
the performance of the proposed family and to compare
its performance with that of the standard KF. More specif-
ically, we aim to compare mean square error performance
and the convergence speed of the aforementioned estima-
tors. For this purpose, we investigate the following three
experiments:
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1. Estimation of the state parameters of a noisy sinusoid
tracking problem.

2. Estimation of the state parameters of a Van der pol
oscillator.

3. Estimation of the state parameters of a symmetrical
three-phase induction machine.

For all of the above experiments, we investigate three
different noise environments, namely Gaussian, Uniform,
and Laplacian. We also investigate the effect of expo-
nent L for the aforementioned noise environments. More

specifically, we set L = 1, 2, 3, and 4 which corresponds
to SSLMS, state space least mean fourth (SSLMF), state
space least mean sixth (SSLMSi), and state space least
mean eighth (SSLME) algorithm, respectively. The results
are reported after averaging of 100 independent simula-
tion experiments.

5.1 Example 1. Tracking sinusoids
In the first example, we consider the system reported
in [7]. More specifically, we investigate a second order
transversal filter with known frequency and unknown
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Figure 1 State x1[ k] (a), x2[ k] (b), x3[ k] (c), and x4[ k] (d).
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Figure 2 Mean square error state x1[ k] (a), x2[ k] (b), x3[ k] (c), and x4[ k] (d).
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Table 1 Root mean square error of example 1

Root mean square error (dB)

Example 1

KF SSLMS SSLMF SSLMSi SSLME

State x1 Gaussian −17.3726 −16.4997 −16.4695 −16.7676 −16.9518

Uniform −17.1419 −16.4963 −16.4671 −16.7656 −16.9406

Laplace −17.6115 −16.4901 −16.5112 −16.8499 −17.0366

State x2 Gaussian −17.0558 −16.4167 −16.3911 −16.6666 −16.8323

Uniform −16.8535 −16.4157 −16.3910 −16.6672 −16.8250

Laplace −17.2894 −16.4092 −16.4314 −16.7432 −16.9055

State x3 Gaussian −17.3597 −16.3199 −16.2747 −16.5047 −16.6701

Uniform −17.1301 −16.3164 −16.2717 −16.5023 −16.6601

Laplace −17.5963 −16.3101 −16.2960 −16.5595 −16.7142

State x4 Gaussian −14.0092 −15.5096 −15.4791 −15.6395 −15.7546

Uniform −13.8130 −15.5070 −15.4768 −15.6376 −15.7471

Laplace −14.2523 −15.5024 −15.4936 −15.6762 −15.7891

Observation y Gaussian −30.4409 −24.3831 −25.3871 −22.6547 −20.8293

Uniform −30.4612 −24.3844 −25.3869 −22.6497 −20.9188

Laplace −30.4614 −24.3817 −24.8789 −21.9582 −19.3682

phase and amplitude of sinusoids which produces a 4th
order system given by:

A[ k] = diag
{[

cos(ωiT) sin(ωiT)

− sin(ωiT) cos(ωiT)

]}
, i = 1, 2 (32a)

C[ k] = [
1 0 1 0

]
(32b)

where ωi’s represent frequencies of sinusoids which are
known and constant. For the purpose of our study, we set

the values of the frequenciesω1,ω2 to 0.5 and 0.25, respec-
tively. T represents the sampling time which is considered
to be 0.1 s for our study. The step size μ for the family of
algorithms is adjusted to achieve optimum performance.
Variance of the observation noise used is σ 2

v = 0.0012
while the process noise is considered with variance σ 2

w =
0.00012. The G matrix is taken as all zero entries except
for the first column with 1’s. The actual initial system
states are considered to be x[ 0]=[ 0.1 0.1 0.1 0.1]T , and
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Figure 4 State x1[ k] (a) and x2[ k] (b).
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Figure 5 Mean square error x1[ k] (a) and x2[ k] (b).

the initial estimate for tracking are chosen to be x̂[ 0]=
[ 0.15 0.2 0.05 0.16]T . In Figure 1, the true value of all the
four states are compared with the considered algorithms.
It can be depicted from Figure 1 that the performance
of KF is better than the proposed family of algorithms.
This fact is further elaborated in Figure 2 where the mean
square error for these estimators are compared. However,
this superiority of the KF is achieved at the expense of

high-computational cost. The KF performs approximately
six times as many operations as the proposed family of
algorithms (refer Section 6). The plot of the mean square
observation error in the presence of Gaussian noise are
presented in Figure 3. It is observed from Figure 1 that all
of the SSLM algorithms are performing well in terms of
estimation. A closer look at Figure 2 reveals that SSLME
converged faster. Moreover, Table 1 verifies that SSLME
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Figure 6 Mean square error (a) y1[ k] and (b) y2[ k] (Example 2).
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Table 2 Root mean square error of Example 2

Root mean square error (dB)

Example 2

KF SSLMS SSLMF SSLMSi SSLME

State x1 Gaussian −22.1985 −12.4088 −12.5740 −12.5760 −12.5760

Uniform −22.1974 −13.2778 −13.4407 −13.4426 −13.4427

Laplace −22.1995 −12.2850 −13.4015 −13.4027 −13.4053

State x2 Gaussian −24.0418 −12.5487 −12.7486 −12.7511 −12.7511

Uniform −24.0494 −13.4124 −13.6097 −13.6121 −13.6121

Laplace −24.0450 −12.2753 −13.5716 −13.5730 −13.5763

Observation y1 Gaussian −20.2142 −12.3685 −12.5290 −12.5309 −12.5310

Uniform −20.2185 −13.2086 −13.3642 −13.3660 −13.3660

Laplace −20.2284 −12.2460 −13.3274 −13.3285 −13.3311

Observation y2 Gaussian −20.2526 −12.4860 −12.6800 −12.6824 −12.6824

Uniform −20.2403 −13.3160 −13.5048 −13.5071 −13.5071

Laplace −20.2426 −12.2205 −13.4735 −13.4749 −13.4780

performs the best in comparison to other algorithms in
the family.

5.2 Example 2. Van der pol oscillator
In this example, we explore the commonly used Van der
pol oscillator which is a highly nonlinear system exhibiting
both stable and unstable limit cycles [12]. We consider the
case of unstable limit cycle therefore, as time proceeds the
system states approach to zero. The system is represented
by the following differential equations:

ẋ1 = −x2 (33a)
ẋ2 = x1 − α(1 − x12)x2 (33b)

where α is a constant which is set to 0.2. The state
space representation for the system shown above takes the
following form:

ẋ(t) =
[
0 −1
1 −α(1 − x12)

]
x(t) (34a)

y(t) =
[
1 0
0 1

]
x(t) (34b)

The system is discretized with a sampling time of 0.1 s.
The observation is subject to a noise of variance σ 2

v =
0.012. The process noise is considered to be of variance
σ 2
w = 0.0012. The true initial system states are consid-

ered to be x[ 0]=[ 0.2 0.2]T , and the initial estimate for the
algorithms are x̂[ 0]=[ 0.4 0.1]T . The G matrix is taken as
all zero entries except for the first column with 1’s. For
this experiment, the states, their mean square error, and
observation mean square error are plotted only for uni-
form noise scenario in Figures 4, 5, and 6, respectively.
However, the root mean square error (RMSE) results for
all the noise environments are reported in Table 2. It can

be depicted from Figures 4, 5, and 6 that the KF per-
forms better and has a faster convergence in comparison
to the SSLM algorithms. However, this comes at the cost
of high computational complexity as will be discussed in
Section 6. The SSLM algorithms have slower convergence
with SSLMSi, and SSLME having the best performance
among the others in the family.

5.3 Example 3. Symmetrical three phase induction
machine

Example 3 presents estimation of the states of a nonlinear
symmetrical three phase induction machine, more specif-
ically, the flux and angular velocity estimation ([13-15]).
The state space representation of the induction machine
is as follows:

ẋ(t) =[ x1(t) x2(t) x3(t) x4(t) x5(t)]T (35a)
u(t) =[ z1(t) z2(t) z3(t)]T (35b)
y(t) =[ y1(t) y2(t)]T (35c)

where:

ẋ1(t) = k1x1(t) + z1(t)x2(t) + k2x3(t) + z2(t) (36a)

ẋ2(t) = −z1(t)x1(t) + k1x2(t) + k2x4(t) (36b)

ẋ3(t) = k3x1(t) + k4x3(t) + (z1(t) − x5(t))x4(t) (36c)

ẋ4(t) = k3x2(t) − (z1(t) − x5(t))x3(t) + k4x4(t) (36d)

ẋ5(t) = k5(x4(t)x1(t) − x2(t)x3(t)) + k6z3(t) (36e)

y1(t) = k7x1(t) + k8x3(t) (36f)

y2(t) = k7x2(t) + k8x4(t) (36g)

The normalized state variables x1(t), x2(t), and x3(t),
x4(t) are the components of the stator and the rotor flux,
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Figure 7 Induction machine state x1 (a), x2 (b), x3 (c), x4 (d), and x5 (e).
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Figure 8 Observation y1 (a) and y2 (b).

respectively, and x5(t) is the angular velocity. The inputs
z1(t), z2(t), and z3(t) are the frequency, amplitude of the
stator voltage, and the load torque, respectively. k1 =
−0.186, k2 = 0.178, k3 = 0.225, k4 = −0.234, k5 =
−0.081, k6 = 4.643, and k7 = −4.448, k8 = 1. The values
of ks depend on the induction machine considered. Out-
puts y1(t) and y2(t) are the normalized stator currents.
For the simulation purpose, the system is discretized at a

sampling interval of 0.01 s and z1(t), z2(t), and z3(t) are
chosen as 1, 1, and 0, respectively. System was simulated
in the presence of all types of noises, and μs were well
tuned to get optimum performance. TheGmatrix is taken
as all zero entries except for the first column with tens.
The process noise variance is considered as σ 2

w = 0.00012,
and the observation noise variance is σ 2

v = 0.0012. The
initial true state is considered to be x[ 0]=[ 0.0147 −
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Figure 9 Mean square error state x1 (a), x2 (b), x3 (c), x4 (d), and x5 (e).
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Figure 10 Mean square error (a) y1[ k] and (b) y2[ k] (Example 3).

Table 3 Root mean square error of Example 3

Root mean square error (dB)

Example 3

KF SSLMS SSLMF SSLMSi SSLME

State x1 Gaussian −14.9484 −13.9622 −14.1395 −14.6637 −14.6965

Uniform −14.9438 −13.9619 −14.1506 −14.6729 −14.7018

Laplace −14.9330 −13.9600 −14.1397 −14.6654 −14.6985

State x2 Gaussian −14.2212 −13.1412 −13.7200 −14.3676 −14.3167

Uniform −14.2242 −13.1367 −13.7295 −14.3708 −14.4115

Laplace −14.2198 −13.1355 −13.7170 −14.3652 −14.3153

State x3 Gaussian −8.4244 −7.2323 −7.9750 −8.7182 −8.8679

Uniform −8.4201 −7.2197 −7.9772 −8.7156 −8.7881

Laplace −8.4095 −7.2197 −7.9665 −8.7122 −8.8612

State x4 Gaussian −7.8682 −6.8915 −7.1522 −7.8059 −8.1534

Uniform −7.8713 −6.8930 −7.1616 −7.8149 −7.9130

Laplace −7.8669 −6.8911 −7.1511 −7.8057 −8.1535

State x5 Gaussian −11.1405 −9.9399 −10.2366 −10.7061 −8.1534

Uniform −11.1391 −9.9325 −10.2373 −10.7057 −7.9130

Laplace −11.1303 −9.9349 −10.2329 −10.7033 −8.1535

Observation y1 Gaussian −26.9886 −4.7978 −5.0163 −5.4818 −5.6242

Uniform −26.9860 −4.7960 −5.0221 −5.4861 −5.5343

Laplace −26.9872 −4.7963 −5.0150 −5.4816 −5.6243

Observation y2 Gaussian −23.66444 −7.9033 −8.5351 −9.0782 −8.9918

Uniform −23.6616 −7.8941 −8.54861 −9.0833 −9.0834

Laplace −23.6558 −7.8925 −8.5351 −9.0773 −8.9919
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Table 4 Computational complexity of SSLM algorithm

Equation number Operation Multiplication Additions

6 x̄[ k]n×1 = A[ k − 1]n×n x̂[ k − 1]n×1 n2 n2 − n

8 ε[ k]m×1 = y[ k]m×1 ȳ[ k]m×1 0 m

9 ȳ[ k]m×1 = C[ k]m×n x̄[ k]n×1 mn nm − m

7 x̂[ k]n×1 = x̄[ k]n×1 +K[ k]n×m ε[ k]m×1 mn nm

15 K[ k]n×m = μ1×1||ε[ k]m×1 ||2L−2Gn×nCT [ k]n×m mn2 + mn + m + L − 1 mn2 − mn + m − 1

Total for the SSLM algorithm 3mn + n2 + mn2 + m + L − 1 m + mn2 + n2 + mn − n − 1
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Table 5 Computational complexity of KF algorithm

Step Operation Multiplication Additions

Predict x̄[ k]n×1 = A[ k − 1]n×n x̂[ k − 1]n×1 n2 n2 − n

P̄[ k]n×n = A[ k − 1]n×n P[ k − 1]n×n AT [ k − 1]n×n +Q[ k]n×n 2n3 2n3 − n2

Update ε[ k]m×1 = y[ k]m×1 −C[ k]m×n x̄[ k]n×1 mn nm

S[ k]m×m = C[ k]m×n P̄[ k]n×n CT [ k]n×m +R[ k]m×m mn2 + m2n m2n + mn2 − mn

K[ k]n×m = P̄[ k]n×n CT [ k]n×m S−1[ k]m×m m3 + m2n + mn2 m3 + m2n

x̂[ k]n×1 = x̄[ k]n×1 +K[ k]n×m ε[ k]m×1 mn nm

P[ k]n×n = (In×n − K[ k]n×m C[ k]m×n )P̄[ k]n×n mn2 + n3 mn2 + n3 − n2

Total for the KF algorithm m3 + 2m2n + 3mn2 + 2mn + 3n3 + n2 m3 + 2m2n + 3mn2 − mn + 3n3 + n2 − n
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Table 6 Computational complexity summary of Example 1

Example 1 (m = 1, n = 4)
Operation KF SSLMS SSLMF SSLMSi SSLME

Multiplications 273 45 46 47 48

Additions 257 32 32 32 32

Total operations 530 77 78 79 80

0.9 0.0136 − 0.9616 0.9]T and the initial estimate for the
SSLM algorithms as x̂[ 0]=[ 0.02 − 0.7 0.0136 − 0.8 0.7].
Figure 7 presents the five states of the induction machine
in presence of Laplacian noise while Figure 8 presents the
observations in presence of Laplacian noise. The mean
square estimation error and the mean square observa-
tion error in the presence of Laplacian noise are presented
in Figure 9 and Figure 10, respectively. Figure 9 shows
that the algorithms perform well in terms of estimating
the states and have comparable performance to the KF.
Figure 10 shows us that the estimated observation from
KF is near real; however, the corresponding state estimates
are not near the true values. The RMSE for this example is
presented in Table 3.
An overview of the RMSE of the states and observations

can be referred to in Tables 1, 2, and 3.
It is clear from our investigation that as the value of L

increases, better performance is observed from the SSLM
algorithms. Although the performance of the algorithms
is not better in comparison to the KF, nevertheless, the
algorithms are extremely low in terms of computational
power requirement as will be discussed in Section 6.

6 Computational complexity
When dealing with real-time applications, it is essential to
calculate the computational complexities of the algorithm.
For this purpose, we provide a comparison of computa-
tional complexities of the proposed family of SSLM algo-
rithms with that of the KF. To evaluate the computational
complexity of the proposed SSLM family, we compute the
total number of operations required by the Equations 6, 8,
9, 7, and 15 which define its implementation in order of
execution. The details of operations required by the SSLM
family of algorithms and the KF are presented in Tables 4
and 5, respectively. Note that in evaluating the computa-
tional cost of inversion of a matrix having dimension n×n,
we assume a total of n3 multiplications and n3 additions.

Table 7 Computational complexity summary of Example 2

Example 2 (m = 2, n = 2)
Operation KF SSLMS SSLMF SSLMSi SSLME

Multiplications 84 26 27 28 29

Additions 70 15 15 15 15

Total operations 154 41 42 43 44

Table 8 Computational complexity summary of Example 3

Example 3 (m = 2, n = 5)
Operation KF SSLMS SSLMF SSLMSi SSLME

Multiplications 618 107 108 109 110

Additions 583 81 81 81 81

Total operations 1201 188 189 190 191

To get more insight on the computational complexity,
we present a comparison of computational complexities
of the algorithms for all the three examples investigated in
simulation experiments in Tables 6, 7, and 8.
The results clearly suggest that the proposed algorithm

has very low complexity as compared to the standard KF
algorithm. According to our presented investigation, the
KF algorithm perform approximately 6 times as many
operations in example 1, 3.5 times as many in example 2,
and 6 times as many in example 3 when compared to our
algorithms.

7 Conclusions
In this work, the general family of SSLM algorithms is
proposed. The proposed family is based on minimizing
the general least mean cost function via stochastic gra-
dient optimization. In order to assess the performance
of the proposed family, simulation results are carried out
for three different examples with different types of noise
environments. In these simulations, effect of noise and
exponent L on state estimation are investigated. The sim-
ulation results show that the performance of the proposed
family is efficient and comparable to that of the Kalman
filter. However, the computational complexity of the pro-
posed family of algorithms is far lesser than that of the
Kalman filter. More specifically, the computational com-
plexity of the proposed family is 3.5 to 6 times lesser than
the Kalman filter as presented in the reported examples.
This gives a motivation to use our proposed family of
algorithm in real-time application where computational
complexity is of major concern. For future research, an
adaptive μ could be proposed and investigated keeping in
focus the effect of varying the sampling time and the noise.
Moreover, different variants of KF algorithms and other
linear estimation algorithms should be investigated along
with the proposed SSLM algorithms family and compared
to get more insightful outcome.
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