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Performance analysis of α-β-γ tracking filters
using position and velocity measurements
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Abstract

This paper examines the performance of two position-velocity-measured (PVM) α-β-γ tracking filters. The first
estimates the target acceleration using the measured velocity, and the second, which is proposed for the first time in
this paper, estimates acceleration using the measured position. To quantify the performance of these PVM α-β-γ
filters, we analytically derive steady-state errors that assume that the target is moving with constant acceleration or
jerk. With these performance indices, the optimal gains of the PVM α-β-γ filters are determined using a
minimum-variance filter criterion. The performance of each filter under these optimal gains is then analyzed and
compared. Numerical analyses clarify the performance of the PVM α-β-γ filters and verify that their accuracy is better
than that of the general position-only-measured α-β-γ filter, even when the variance in velocity measurement noise
is comparatively large. We identify the conditions under which the proposed PVM α-β-γ filter outperforms the
general α-β-γ filter for different ratios of noise variance in the velocity and position measurements. Finally, numerical
simulations verify the effectiveness of the PVM α-β-γ filters for a realistic maneuvering target.

Keywords: α-β-γ filter; Moving target tracking; Position and velocity measurements; Steady-state error;
Optimal gains; Minimum variance filter criterion

Introduction
Remote monitoring systems embedded in robots and
vehicles require the capability to accurately track moving
objects. Tracking filters, such as Kalman filters, extended
Kalman filters (EKFs), and particle filters, are commonly
used for this purpose [1-5]. These can accurately track
movement based on adaptive filtering, which minimizes
the error in the predicted position based on dynami-
cal and measurement models. However, these techniques
have a relatively heavy computational load, and in some
cases their use is impractical. Moreover, their design is
conducted empirically, because it is difficult to evaluate
the validity of the design parameters (i.e., the process
noise) [6,7].
One effective approach that does not suffer from these

problems is known as an α-β-γ filter. These are simple
tracking filters that assume constant acceleration during
the sampling interval [8]. Because of their small computa-
tional load, they have been employed in various tracking
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systems [9-12]. Moreover, there are only three design
parameters (the α, β , and γ gains), from which the per-
formance indices can be analytically calculated. Conse-
quently, it is simpler to design an appropriate α-β-γ filter
than to construct other tracking filters (e.g., the Kalman
filter). Many researchers have studied the analytical per-
formance and design methodology of optimal gains in
the α-β-γ filter by assuming simple and practical motion
models [8,13-17]. Based on these fundamental studies,
recent work has investigated effective gain-setting algo-
rithms for various maneuvering targets [18,19]. Simple
gain-setting algorithms have enabled the effectiveness of
α-β-γ filters to be verified in various real-world applica-
tions, such as motor position control [9] and human fall
detection [10].
Traditionally, tracking filter techniques have been

applied to radar, sonar, and global positioning systems that
measure position only [6]. However, various sensing sys-
tems that can accurately measure velocity have recently
been developed thanks to technical advances in various
sensors and sensor networks, such as the micro-Doppler
radar network [20,21]. Consequently, the application of
tracking filters to such sensing systems has become an
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important area of research [22-25]. We can expect mea-
sured velocities to improve the accuracy of tracking com-
pared with trackers that use positionmeasurements alone.
However, when the reliability of the velocity measure-
ments is low, the tracking accuracy may deteriorate. Thus,
the relationship between tracking accuracy and measure-
ment noise is very important for the implementation
of α-β-γ filters using both position and velocity mea-
surements. Although position-velocity-measured (PVM)
tracking filters have been investigated [23-28], the num-
ber of such studies is quite small compared with those on
general tracking filters that measure only position. Addi-
tionally, most studies on PVM tracking filters use Kalman
or particle filters. Several applications of PVM α-β-γ fil-
ters have been reported [29,30], but these studies do not
investigate the filters’ theoretical performance, meaning
the tracking system parameters are designed empirically.
Thus, their analytical properties have not been adequately
investigated.
This paper analyzes PVM α-β-γ filters and compares

their performance with that of a general α-β-γ filter. For
a fair comparison with the general α-β-γ filter, the num-
ber of filter gains is fixed to three. As a result, two PVM
α-β-γ filters are considered, one of which is being pro-
posed for the first time in this paper. We analytically
derive filter performance indices for PVM α-β-γ filters.
The derived performance indices are then calculated
using the gains determined by a minimum-variance
(MV) filter criterion [31], which is the optimal gain
design for the general α-β-γ filter. A performance
evaluation using numerical analyses and simulations
verifies the relationships between measurement noise,
filter gains, and filter performance. Moreover, we show
that the accuracy of the proposed PVM α-β-γ filter
is better than that of the general α-β-γ filter, even
when the error in velocity measurements is relatively
large.

General α-β-γ filter using position-only
measurements
In this section, we summarize the definition and perfor-
mance of the general α-β-γ filter, which uses position
measurements alone. We also review some design meth-
ods for filter gains.
The α-β-γ filter predicts the position, velocity, and

acceleration of a moving target based on a constant accel-
eration model using three filter gains [8,13]. This filter
iterates prediction and smoothing processes. The predic-
tion process is expressed by the following equations:

xpk = xsk−1 + Tvsk−1 + (
T2/2

)
ask−1, (1)

vpk = vsk−1 + Task−1, (2)

apk = ask−1, (3)

where xsk is the smoothed target position at time kT, T is
the sampling interval, xpk is the predicted target position,
vsk is the smoothed target velocity, vpk is the predicted tar-
get velocity, ask is the smoothed target acceleration, and
apk is the predicted target acceleration. The smoothing
process is expressed as follows:

xsk = xpk + α(xok − xpk), (4)

vsk = vpk + (β/T)(xok − xpk), (5)

ask = apk + (
γ /T2) (xok − xpk), (6)

where xok is the measured target position, and α, β , and γ

are filter gains. The definition of the α-β-γ filter does not
include process noise [8,31].

Filter performance indices
To evaluate the tracking performance of the α-β-γ fil-
ters, the two steady-state error performance indices can
be derived from (1) to (6) [6,8,13,14]. These indices are
more effective in evaluating the steady-state tracking
accuracy than the error covariance matrix in the Kalman
filter equation, which is the usual performance indica-
tor for tracking filters. This is because the error covari-
ance matrix overrates the variance in the errors that is
caused by measurement noise, as verified by Ekstrand (see
Section 9.8 of [6]). In addition, the relationship between
basic properties such as the filter bandwidth and the error
covariance matrix is not sufficiently clarified [6,7]. Thus,
the indices that are explained in the following subsections
are useful when designing α-β-γ filters.

Steady-state error for a target under constant acceleration
(smoothing performance index)
An important function of the tracking filter is the reduc-
tion of random errors caused by measurement noise. One
index of this performance is the steady-state error of a tar-
get under constant acceleration considering sensor noise.
We assume that xok contains noise with variance Bx, and
that the target moves with constant acceleration. The vari-
ance of the predicted target position in the steady-state is
calculated using Bx and filter gains as [8,13]:

σ 2
p = E

[(
xpk − xtk

)2]

= 8β2 + α(4 − 2α − β)(2αβ − γ (2 − α))

(2 − α)(4 − 2α − β)(2αβ − γ (2 − α))
Bx, (7)

where xtk is the true target position and E[ ] indicates
the mean. Note that the mean error E[ xpk − xtk] is zero,
because the assumed target motion is the same as the
motion model of the α-β-γ filter (constant acceleration
target). We call σ 2

p the smoothing performance index.
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Steady-state error for a target with constant jerk (tracking
performance index)
The tracking filter is required to track complicatedmotion
including jerks. In the α-β-γ filter, steady-state bias error
occurs when tracking a target moving with constant jerk,
because the filter is based on a constant acceleration
model. This error is an index of the tracking performance.
When xok = J(kT)3/6 (J is the constant jerk) and the
measurement errors are not considered, the steady-state
predicted error is expressed as [14]:

efin = lim
k→∞

(xok − xpk) = JT3/γ . (8)

We call efin the tracking performance index. The smaller
these tracking/smoothing performance indices, the better
the tracking filter. However, there is a trade-off between
efin and σ 2

p , and this is a very important consideration in
the design of tracking filters [6].
Here, we discuss the design of the α-β-γ filter and

compare it with the Kalman filter design. Table 1 sum-
marizes the design parameters, performance indices, and
gain calculation method for these filters [7,31,32]. (Note
that details of the gain design methods of the α-β-γ fil-
ter are explained in the next subsection.) As shown in (7)
and (8), the above indices can be directly calculated using
the filter gains that we have designed. In contrast, for the
Kalman filter, we must design the covariance matrix of
the process noise. However, the relationship between this
and the performance index (error covariance matrix) has
not been rigorously established [7,32]. Moreover, the error
covariance matrix gives a misleading evaluation of track-
ing filter performance, as mentioned earlier in this subsec-
tion. Therefore, the design of appropriate process noise is
conducted empirically and/or byMonte Carlo simulations
(see Section 6 of [6]). Consequently, it is simpler to design
an appropriate α-β-γ filter than to construct a Kalman
filter or EKF [7,23,26-28].

Gain design methods
Various approaches can be used to determine appropri-
ate gains for the α-β-γ filter. The main approach is to
derive gains from the Kalman filter equations, because the
α-β-γ filter can be considered as the steady-state Kalman
filter [15-17]. However, it is difficult to select appropriate
process noise for the motion model, for the same reason
as the difficulties in designing a Kalman filter mentioned

in the previous subsection. In addition, the performance
of an α-β-γ filter derived from the Kalman filter is not
optimal when evaluated using the performance indices
expressed in (7) and (8) [31].
To avoid these problems, the MV filter criterion has

been proposed [14,31]. This criterion determines the
gains by minimizing the smoothing performance index σ 2

p
under the condition that the tracking performance index
efin is constant [31]. As shown in (8), the tracking per-
formance index depends only on γ . Thus, for the general
α-β-γ filter, the optimal gains with the MV filter criterion
are determined by:

argmin
α,β

σ 2
p

sub. to γ = const. (9)

As shown in this equation, the MV filter criterion does
not require the process noise of the motion model,
unlike the Kalman filter-based approach [15-17]. In [14],
it was reported that the performance (evaluated using
the tracking/smoothing performance indices of (7) and
(8)) is better than that of other α-β-γ filters derived
from the Kalman filter equations. Thus, this paper
uses the MV filter criterion to determine the optimal
gains.

PVM α-β-γ filters
As described in the ‘Introduction’ section, the perfor-
mance of PVM tracking filters has not been fully inves-
tigated. Hence, we focus on PVM α-β-γ filters. In this
section, we derive the smoothing and tracking perfor-
mance indices (σ 2

p and efin) for PVM α-β-γ filters. As
mentioned above, we ensure a fair comparison with the
general α-β-γ filter by fixing the number of gains to three.
We can define two types of PVM α-β-γ filter. The first has
been used in several tracking systems that measure both
position and velocity [29,30]. However, its performance
indices have not been derived, and thus the gain determi-
nation has so far been conducted empirically. The second
type is a new PVM α-β-γ filter that is being proposed for
the first time in this paper. The aim of this new filter is
to achieve accurate tracking, even when the noise in the
velocity measurements is comparatively large. The perfor-
mance indices σ 2

p and efin are derived analytically for each
PVM α-β-γ filter.

Table 1 Summary of the design and gain calculation of the α-β-γ and Kalman filters

Design parameter Performance index Gain calculation

α-β-γ filter Gain γ (or �A-V of (29)) Tracking/smoothing performance indices Based on relationship between
gains derived using the Kalman
filter equation or MV filter criterion

Kalman filter Covariance matrix of process noise Covariance matrix of errors Adaptively calculated with Riccati
equation
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Acceleration smoothed by measured velocity (A-V)-type
PVM α-β-γ filter
Using the measured velocity vok , several researchers have
used a PVM α-β-γ filter with the smoothing process
[29,30]:

xsk = xpk + α(xok − xpk), (10)
vsk = vpk + β(vok − vpk), (11)
ask = apk + (γ /T)(vok − vpk), (12)

and a prediction process that is the same as that in the
general α-β-γ filter (expressed in (1) to (3)). Compared
with the general α-β-γ filter, the second terms of (5)
and (6) have been changed to use the measured veloc-
ity. Equation (11) shows that the smoothed velocity can
be estimated using the measured velocity. This is the
natural expansion of the general α-β-γ filter consider-
ing the velocity measurements. Additionally, as shown in
(12), the smoothed acceleration is also estimated using
the measured velocity. We call this PVM α-β-γ filter the
acceleration smoothed by measured velocity (A-V) filter.
The performance indices of the A-V filter are derived

from (1) to (3) and (10) to (12). For simplicity, we assume
that the noise in the position and velocity measurements
is uncorrelated. The smoothing performance index is then
derived as

σ 2
p, A-V = α

2 − α
Bx + f1(α,β , γ )

f2(α,β , γ )
T2Bv, (13)

where Bv is the variance of the noise in vok , and

f1(α,β , γ ) = α2(β − 1)
(
4β2 − 2βγ − γ 2 + 4γ

)
+ α

(
6β2γ − 4β3 + 8β2 + 3βγ 2 − 16βγ − 2γ 21 + 8γ

)
− 4β2γ + 2βγ (4 − γ ),

(14)

f2(α,β , γ ) = 2αβ(2 − α)(4 − 2β − γ )

× (
α2 + αβ + γ − α2β − αβ

)
.

(15)

The derivation of (13) is given in the Appendix. Then, the
tracking performance index can be derived as

efin, A-V = 12 − 6β − γ

12αγ
JT3. (16)

Again, details of the derivation are given in the Appendix.

Acceleration smoothed by measured position (A-P)-type
PVM α-β-γ filter
As it uses the measured velocity, we expect the A-V fil-
ter to realize better tracking accuracy than the general
α-β-γ filter. However, the performance of the A-V fil-
ter deteriorates when the variance Bv is large. To reduce

this deterioration, we consider another PVM α-β-γ filter
whose smoothing process is expressed as follows:

xsk = xpk + α(xok − xpk), (17)
vsk = vpk + β(vok − vpk), (18)
ask = apk + (

γ /T2) (xok − xpk), (19)

and whose prediction process is the same as in the gen-
eral α-β-γ filter (i.e., (1) to (3)). The difference from the
A-V filter is that the smoothed acceleration is estimated
using the measured position, i.e., (6) in the general α-β-γ
filter. We call this new PVM α-β-γ filter the acceleration
smoothed by measured position (A-P) filter. It appears
that the performance of the A-P filter is better than that
of the A-V filter when Bv is relatively large. In contrast,
the A-V filter appears to outperform the A-P filter when
Bv is relatively small. Moreover, when Bv is relatively large,
it is unclear whether the performance of the A-P filter
or the general α-β-γ filter is better. In the next section,
these cases are investigated and clarified with theoretical
analyses.
We can derive the smoothing performance index for the

A-P filter as:

σ 2
p, A-P = g1(α,β , γ )Bx + g2(α,β)T2Bv

g3(α,β , γ )
, (20)

where

g1(α,β , γ ) = 8α3β(2 − β)(β − 1)
+ 2α2 (

β3γ +4β3 − 3β2γ − 8β2 + 6βγ − 4γ
)

+ αγ
(
2β3 + β2γ + 4β2 − βγ − 24β + 16

)
− 4βγ (2 − β)2,

(21)

g2(α,β) = 8β2(α + β − αβ − 2), (22)

g3(α,β , γ ) = (16 − 8β − βγ − 8α + 4αβ)

· (
2α2β2 − 2α2β − 2αβ2 + αβγ − αγ

−2βγ + 2γ
)
,

(23)

and the tracking performance index is

efin, A-P = JT3/γ . (24)

Note that the tracking performance index is the same as
in the general α-β-γ filter, as shown in (8). The derivation
of these performance indices is given in the Appendix.

Performance analysis and comparison
In this section, we compare the performance of the A-
V filter, A-P filter, and general MV (GMV) α-β-γ filter
(whichmeasures position only). The optimal gains are cal-
culated with theMV filter criterion [31], and performance
is analyzed using the derived tracking/smoothing perfor-
mance indices and the calculated gains. The relationship
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between measurement noise (Bx and Bv) and filter perfor-
mance is clarified for various gain settings.

Optimal gain calculation with MV filter criterion
First, we calculate the optimal gains of the A-V filter.
Under the MV filter criterion, we assume that the track-
ing performance index is constant. With (16), the tracking
performance index depends on

CA-V = 12 − 6β − γ

12αγ
. (25)

Thus, CA-V is constant in the MV filter criterion. Solving
this for γ , we obtain

γ = 6(2 − β)

12αCA-V + 1
. (26)

Substituting (26) into (13) gives the smoothing perfor-
mance index σ 2

p, A-V(α,β ,CA-V), which is used to calculate
the optimal gains for constant CA-V. Then, we determine
the optimal α and β for each CA-V by:

argmin
α,β

σ 2
p, A-V(α,β ,CA-V)

sub. to CA-V = const. (27)

Next, we consider the optimal gain calculation of the
A-P filter. As shown in (24), the tracking performance
index of the A-P filter depends only on γ . Consequently, γ
is constant when efin, A-P is constant. Thus, we determine
the optimal α and β for each γ by:

argmin
α,β

σ 2
p, A-P

sub. to γ = const. (28)

We now give the gain calculation results using (27) and
(28) and compare these with the gains from the GMV
filter. First, to simplify the discussion, we define the fol-
lowing two parameters.

• The reciprocal of CA-V is defined as

�A-V = 1/CA-V. (29)

With (8), (16), and (24), �A-V corresponds to γ in the
A-P and GMV filters.

• The ratio of the two variances of measurement noise
is defined as

Rv = T2Bv/Bx. (30)

The smoothing performance of the PVM α-β-γ
filters depends on this ratio, as we can see from (13)
and (20). The relationship between Rv and the
performance indices is very important for the design
of tracking filters that use both the measured position
and velocity.

Figure 1 shows the gain calculations for the PVM and
GMV filters with Rv = 1/2 for each value of γ or �A-V.
Here, we have used the gradient descent technique tomin-
imize (27) and (28); the complexity (using big O notation)
of this operation is O(n2) [33]. The mean calculation time
to determine each (α,β , γ ) is 56.3 s using an Intel CORE
i7-4600U CPU@2.10 GHz 2.70 GHz. This time is accept-
able, because the gain calculation is conducted in the filter
design process before its application in a tracking system.
As shown in Figure 1, the value of β in the A-V filter is rel-
atively large compared with that in the GMV filter. This is
because β is the gain for velocity smoothing, and the mea-
surement accuracy of the velocity is better than that of the
position. For the same reason, the value of β (α) is larger
(smaller) in the A-P filter than in the other filters. These
examples indicate that the gains of the PVM filters depend
on the relationship between the accuracy of the position
and velocity measurements.
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Figure 1 Calculation results for the optimal gains when Rv = 1/2.
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Analysis results and discussion
Using the calculated optimal gains, we conduct perfor-
mance analyses of the A-V, A-P, and GMV filters. The
smoothing performance indices of these filters are calcu-
lated using (7), (13), and (20) under the assumption that
the tracking performance indices are constant (i.e., �A-V is
constant for the A-V filter and γ is constant for the other
filters). We assume that the sampling interval T and the
variance of the measured position error Bx are normalized
to 1.
Figure 2 shows the smoothing performance indices as

a function of γ or �A-V for Rv = 1/2 and 7. For rel-
atively small Rv, shown in Figure 2a, the PVM α-β-γ
filters outperform the GMV filter, especially for large val-
ues of γ or �A-V. In this case, the A-V filter realizes the
best performance. This is because accurately measured
velocities improve the performance of both the smooth-
ing and tracking. Moreover, for larger values of Rv, shown
in Figure 2b, the performance deterioration in the pro-
posed A-P filter is small compared with that in the A-V
filter. This is because the smoothed acceleration in the
A-P filter is calculated using the measured position. The
smoothing performance of the A-P filter is better than
that of the GMV filter when γ ≥ 0.6 for Rv = 7. This
result implies that the proposed A-P filter can realize bet-
ter performance than the GMV filter, even when the noise
in the velocity measurements is large. Figure 3 shows the
smoothing performance indices as a function of Rv for γ

and�A-V values of 0.9. As shown in this figure, for Rv = 10
(i.e., the noise variance in the velocity measurements is ten
times as large as that in the position measurements), the
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Figure 3 Relationship between smoothing performance indices and
the ratio Rv when �A−V = γ = 0.9.

A-P filter achieves better smoothing performance than the
GMV filter. In contrast, the performance of the A-V filter
deteriorates when Rv is comparatively large.
Table 2 summarizes the properties of the α-β-γ filters

considered in this paper. This table indicates that the A-
V filter realizes accurate tracking for small Rv, whereas
the proposed A-P filter realizes better accuracy than the
other filters for relatively large Rv. Additionally, when
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Table 2 Summary of the properties of the α-β-γ filters
considered in this paper

GMV filter A-V filter A-P filtera

Measurement parameter Position Position and velocity

Prediction process (1) to (3)

Smoothing process (4) to (6) (10) to (12) (17) to (19)a

Smoothing performance index (7) (13)a (20)a

Tracking performance index (8) (16)a (8)a

Suitable when Rv is very largea smalla largea

aIndicates novel results in this paper.

Rv becomes large, the GMV filter realizes the best per-
formance, which suggests that we should not use the
measured velocity in this case.

Cramér–Rao bound evaluation
This section calculates the fundamental performance lim-
itation of the PVM and conventional tracking problems
using a Cramér–Rao bound (CRB) evaluation. Moreover,
we evaluate the tracking accuracy of the PVM filters using
Monte Carlo simulations and compare this with the CRBs.
The CRBs in the position estimation are calculated by

the Riccati-like recursion used in [34]. The CRB is the
lower bound of the covariance of the state estimation,
which is expressed as

E
[(
x̂k − xtk

) (
x̂k − xtk

)T]
≥ J−1

k = Pk , (31)

where x̂k is the target state estimate based on all measure-
ments collected up to and including time kT, the target
state is composed of the position, velocity, and accelera-
tion in the form (xk , vk , ak)T , Jk is the filtering information

matrix defined in [35], and Pk is the CRB. When we do
not use the process noise, the recursive formula for Jk can
be expressed as [36]:

Jk+1 = (
F−1)T JkF−1 + HTR−1H, (32)

where F is the state transitionmatrix,H is the observation
matrix, and R is the covariance matrix of measurement
noise. In the PVM tracking problem, these are expressed
as [26]:

F =
⎛
⎝ 1 T T2/2

0 1 T
0 0 1

⎞
⎠ , (33)

H =
(
1 0 0
0 1 0

)
, (34)

R =
(
Bx 0
0 Bv

)
. (35)

A detailed explanation is provided in [34].
First, we calculate and compare the CRBs of the gen-

eral position-only-measured and PVM tracking problems.
In the position-only-measured tracking problem,H and R
are expressed as:

H = (
1 0 0

)
, (36)

R = (
Bx

)
, (37)

and F is same as (33). We set Bx = 1 and T = 1. Figure 4a
shows the calculated CRBs of the position estimation. As
shown in this figure, the performance limitation of the
PVM tracking problem is less than that of the position-
only-measured tracking problem. The limitation of the
PVM tracking problem with Rv = 0.1 is small even for rel-
atively large k. When Rv = 10, the CRB is almost the same
as that for the position-only-measured tracking problem
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at approximately k > 10. However, no deterioration in the
CRBs has occurred.
Next, we compare the CRBs with the performance of

the PVM α-β-γ filters calculated using Monte Carlo sim-
ulations. We set the number of Monte Carlo simulations
to 10,000, the initial state to (0, 0.5, 0.005)T , Bx = 1,
and T = 1. For reference, the simulation results for the
non-process-noise Kalman filter [32] are also presented.
Figure 4b shows the CRB and the Monte Carlo simula-
tion results for the A-V and A-P filters for γ (�A-V) = 0.1
and the non-process-noise Kalman filters where Rv = 10.
As shown in this figure, the accuracy of the PVM α-
β-γ filters is worse than that of the non-process-noise
Kalman filter whose performance is close to the CRB. This
is because the α-β-γ filter uses fixed gains, unlike the
Kalman filter. However, the proposed A-P filter produces
a smaller difference between the CRBs and error variances
than the A-V filter. Additionally, the computational load
of the proposed filter is smaller than that of the Kalman
filter, as we shall discuss later.

Simulation assuming radar tracking of a
maneuvering target
Finally, we use numerical simulations to investigate the
performance of each filter for a realistic maneuvering tar-
get. In this subsection, we simulate the Doppler radar
tracking [20,21,29] of a maneuvering target and compare
the tracking errors given by the three filters considered in
this paper and an EKF [1,2]. Figure 5 shows the simulation
scenario. Figure 5a,b shows the true target motion and the
radar position, respectively. Two-dimensional (2D) track-
ing of the point target is assumed, and the received radar
signals are calculated using ray-tracing, as in [29]. We

assume there are two Doppler radars located at (x, y) =
(0, 0) and (0.5 m, 0). The sampling interval T is 1 ms,
and the transmitting signal is an ultrawide-band pulse
with a center frequency of 26.4 GHz and bandwidth of
2 GHz. The radars measure the position using ranging
results and the velocity using the Doppler shift [29].White
Gaussian noise is added to the ranging and Doppler shift
estimations to control Rv. Figure 5c shows the true target
position at each time.
We now describe the composition of the tracking filters.

For 2D tracking, the α-β-γ filter is composed as follows
along each axis:

⎛
⎜⎜⎜⎜⎜⎜⎝

xsk
vxsk
axsk
ysk
vysk
aysk

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

xpk
vxpk
axpk
ypk
vypk
aypk

⎞
⎟⎟⎟⎟⎟⎟⎠

+ K

⎛
⎜⎜⎝

xok − xpk
vxok − vxpk
yok − ypk
vyok − vypk

⎞
⎟⎟⎠ , (38)

⎛
⎜⎜⎜⎜⎜⎜⎝

xpk
vxpk
axpk
ypk
vypk
aypk

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 T T2/2 0 0 0
0 1 T 0 0 0
0 0 1 0 0 0
0 0 0 1 T T2/2
0 0 0 0 1 T
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

xsk−1
vxsk−1
axsk−1
ysk−1
vysk−1
aysk−1

⎞
⎟⎟⎟⎟⎟⎟⎠
,

(39)

where K is the gain matrix, xk , vxk, and axk denote posi-
tion, velocity, and acceleration along the x-axis, yk , vyk,
and ayk denote position, velocity, and acceleration along
the y-axis, and subscripts ‘s’, ‘p’, and ‘o’ denote ‘smoothed’,
‘predicted’, and ‘observed (measured)’, respectively. In the
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A-V filter tracking, K is expressed as:

KA-V =

⎛
⎜⎜⎜⎜⎜⎜⎝

α 0 0 0
0 β 0 0
0 γ /T 0 0
0 0 α 0
0 0 0 β

0 0 0 γ /T

⎞
⎟⎟⎟⎟⎟⎟⎠
. (40)

In the A-P filter tracking, K is expressed as:

KA-P =

⎛
⎜⎜⎜⎜⎜⎜⎝

α 0 0 0
0 β 0 0

γ /T2 0 0 0
0 0 α 0
0 0 0 β

0 0 γ /T2 0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (41)

Additionally, in the EKF tracking, K is the Kalman gain
matrix calculated by the Kalman filter equations, and a

nonlinear measurement model is used [1]. The EKF con-
siders the correlation between the x − y axes, unlike the
α-β-γ filters. The process noise is taken to be the zero-
mean random-acceleration noise given in [2], and we
empirically set this to realize errors that are as small as
possible.
Figure 6 shows the results of the 2D radar track-

ing. Figure 6a,b shows the position prediction error√
(xpk − xtk)2 + (ypk − ytk)2 (where ytk is the true y) for γ

and �A-V values of 0.2 and 0.8 with the GMV and PVM
α-β-γ filters when the mean Rv is 0.426. The gains of the
GMV and PVM α-β-γ filters are calculated according to
this mean Rv. As for the previous analyses and simula-
tions, the accuracy of the PVM α-β-γ filters is somewhat
better than that of the GMV filters when the gains are
relatively large. In both cases, the EKF realizes the best
performance. This is because it considers the correlated
noise of the axes and has four times as many gains as
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the α-β-γ filters. Moreover, these gains change adaptively.
However, the PVM α-β-γ filters realize relatively good
accuracy with fixed gains and a small computational load.
Table 3 shows the required number of addition, multipli-
cation, and inversion operations of matrices for each time
step k for the EKF and PVM α-β-γ filter. As shown in this
table, the computational load of the PVM α-β-γ filter is
smaller than that of the EKF.
Next, we present results for when the velocity mea-

surement noise is large compared with the position mea-
surement noise. Figure 6c,d shows the position prediction
error for γ and �A-V values of 0.2 and 0.8 with the GMV
and PVM α-β-γ filters when the mean Rv is 6.67. The
EKF realizes the best performance in both cases, as for
the previous scenario. When γ = �A-V = 0.2, the differ-
ence between the three α-β-γ filters is slight, as suggested
by our theoretical analysis. When γ = �A-V = 0.8, the
proposed A-P filter realizes slightly better accuracy than
the other two α-β-γ filters. Table 4 lists the mean error of
the results shown in Figure 6. From this table, we can see
that the mean accuracy of the EKF is better than that of
the PVM α-β-γ filters in all cases. However, the accuracy
of the PVM α-β-γ filters is sufficiently high. As shown in
Figure 6, the positioning errors of the PVM α-β-γ filters
are almost smaller than the wavelength of the radar signal
(which is approximately 0.0114 m, corresponding to 26.4
GHz). For various remote sensing applications using radar,
sonar, and laser, an accuracy of better than the wavelength
is often expected. Thus, the above results indicate that the
accuracy of the PVM filters is sufficient for various remote
sensing applications. In contrast, the errors in the GMV
filter are often larger than the wavelength. The mean error
of the A-V filter is 0.418 times that of the GMV filter
when Rv = 0.426 and γ = �A-V = 0.8. Moreover, the
A-P filter even realizes better accuracy when Rv = 6.67.
These results indicate that the PVM filters enable accurate
tracking with simple calculations and few gains when the
velocity measurement noise is relatively small, even for 2D
radar tracking applications.

Conclusions
In this paper, we have examined the performance of two
PVM α-β-γ filters: the A-V filter and the newly proposed
A-P filter. The A-V filter estimates smoothed acceleration
using the measured velocity, whereas the proposed A-P
filter uses the measured position. We analytically derived
the tracking and smoothing performance indices of each

Table 3 Required number of matrix operations for the
tracking filtering in each time step

Addition Multiplication Inversion

PVM α-β-γ filter 1 2 0

EKF 5 11 1

Table 4 Mean of the predicted errors in 2D radar
simulations (units: mm)

Rv �A-V or γ A-P filter A-V filter GMV filter EKF

0.426 0.2 3.49 3.82 5.29 2.07

0.8 3.93 3.91 9.35 2.07

6.67 0.2 5.48 5.91 6.21 4.28

0.8 6.07 7.09 8.40 4.28

filter. Based on these performance indices, we calculated
the optimal gains of the PVM α-β-γ filters with the MV
filter criterion. The performance of the A-V and A-P fil-
ters was investigated in terms of the calculated gains,
and we compared the output with that from the GMV
filter. Numerical analyses verified that the A-V filter real-
izes better accuracy than the GMV filter when the ratio
Rv is relatively small. Moreover, the proposed A-P fil-
ter achieved better performance when both Rv and the
gain γ were comparatively large. The proposed A-P filter
achieved the best performance for Rv = 7 and γ ≥ 0.6. In
particular, even for Rv = 10, which means that the vari-
ance of noise in the velocity measurements is ten times
that in the positionmeasurements, the A-P filter wasmore
accurate than the GMV filter when γ = 0.9. Finally,
numerical simulations verified the effectiveness of the A-
V andA-P filters for a realistic 2D radar application.More-
over, the simulation results matched those from numerical
analyses using the derived performance indices. Thus, the
performance analyses presented in this paper will be use-
ful for the design of actual tracking systems using position
and velocity measurements. One limitation of the current
study is our assumption that there are three filter gains.
The relaxation of this assumption is an important area
of future work that will enable the realization of more
accurate tracking filters.

Appendix
Derivation of (13)
The true position of a target under constant acceleration
is expressed as

xtk = xtk−1 + Tvtk−1 + (
T2/2

)
atk−1, (42)

where vt and at are the true velocity and acceleration.
With (1) and (42), the variance of the predicted position
errors is

σ 2
p = E

[(
xpk − xtk

)2]

= E
[(
xsk−1 − xtk−1

)2] + T2E
[(
vsk−1 − vtk−1

)2]

+ (
T4/4

)
E

[(
ask−1 − atk−1

)2]

+ 2TE
[(
xsk−1 − xtk−1

) (
vsk−1 − vtk−1

)]
+ T2E

[(
xsk−1 − xtk−1

) (
ask−1 − atk−1

)]
+ T3E

[(
vsk−1 − vtk−1

) (
ask−1 − atk−1

)]
.

(43)
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Because we assume a steady state, the variances and
covariances in (43) do not depend on k. Consequently, we
can define these variances and covariances as:

σ 2
sx = E

[
(xsk − xtk)2

] = E
[(
xsk−1 − xtk−1

)2] , (44)

σ 2
sv = E

[
(vsk − vtk)2

] = E
[(
vsk−1 − vtk−1

)2] , (45)

σ 2
sa = E

[
(ask − atk)2

] = E
[(
ask−1 − atk−1

)2] , (46)

σ 2
sxv = E [(xsk − xtk) (vsk − vtk)]

= E
[(
xsk−1 − xtk−1

) (
vsk−1 − vtk−1

)]
,

(47)

σ 2
sxa = E [(xsk − xtk) (ask − atk)]

= E
[(
xsk−1 − xtk−1

) (
ask−1 − atk−1

)]
,

(48)

σ 2
sva = E [(vsk − vtk) (ask − atk)]

= E
[(
vsk−1 − vtk−1

) (
ask−1 − atk−1

)]
.

(49)

Substituting (44) to (49) into (43), we have

σ 2
p = σ 2

sx + T2σ 2
sv + (

T4/4
)
σ 2
sa + 2Tσ 2

sxv + T2σ 2
sxa + T3σ 2

sva.
(50)

The variances and covariances in this equation are derived
as functions of the filter gains and the variances of mea-
surement noise. With (1) and (10), we have

xsk = (1−α)
(
xsk−1 + Tvsk−1 + (

T2/2
)
ask−1

)+αxok .
(51)

We can rewrite (42) as

xtk = (1 − α)
(
xtk−1 + Tvtk−1 + (

T2/2
)
atk−1

) + αxtk .
(52)

Using (51) and (52), the smoothing error is expressed as
xsk − xtk = (1 − α)

{
(xsk−1 − xtk−1) + T(vsk−1 − vtk−1)

+ (
T2/2

)
(ask−1 − atk−1)

}
+α(xok − xtk). (53)

Thus, the variance of this error is calculated as

σ 2
sx = E

[
(xsk − xtk)2

]
= (1 − α)2

{
E

[(
xsk−1 − xtk−1

)2] + T2E
[(
vsk−1 − vtk−1

)2]

+ (
T4/4

)
E

[(
ask−1 − atk−1

)2]

+2TE
[(
xsk−1 − xtk−1

) (
vsk−1 − vtk−1

)]
+T2E

[(
xsk−1 − xtk−1

) (
ask−1 − atk−1

)]
+T3E

[(
vsk−1 − vtk−1

) (
ask−1 − atk−1

)] }

+ α2E
[
(xok − xtk)2

]
+ 2α(1 − α)

{
E

[(
xsk−1 − xtk−1

)
(xok − xtk)

]
+TE

[(
vsk−1 − vtk−1

)
(xok − xtk)

]
+ (

T2/2
)
E

[(
ask−1 − atk−1

)
(xok − xtk)

]}
.

(54)

Here,

E
[
(xok − xtk)2

] = Bx. (55)

The following relations are satisfied because of the steady-
state assumption and because the smoothed parameters
are a linear combination of the measured parameters:

E
[(
xsk−1 − xtk−1

)
(xok − xtk)

] = 0, (56)
E

[(
vsk−1 − vtk−1

)
(xok − xtk)

] = 0, (57)
E

[(
ask−1 − atk−1

)
(xok − xtk)

] = 0. (58)

Substituting (44) to (49) and (55) to (58) into (54), we
obtain

σ 2
sx = (1 − α)2

(
σ 2
sx + T2σ 2

sv + (
T4/4

)
σ 2
sa + 2Tσ 2

sxv

+T2σ 2
sxa + T3σ 2

sva
) + α2Bx. (59)

This can be simplified to

α(2 − α)σ 2
sx − (1 − α)2

(
T2σ 2

sv + (
T4/4

)
σ 2
sa + 2Tσ 2

sxv

+T2σ 2
sxa + T3σ 2

sva
) = α2Bx. (60)

In the same way, other variances and covariances are
calculated using (1) to (3) and (10) to (12) as follows:

σ 2
sv = E

[
(vsk − vtk)2

]
= (1 − β)2

(
σ 2
sv + T2σ 2

sa + 2Tσ 2
sva

) + β2Bv,
(61)

σ 2
sa = E

[
(ask − atk)2

]
= σ 2

sa + (γ 2/T2)Bv + (
γ 2/T2)(σ 2

sv + T2σ 2
sa + 2Tσ 2

sva
)

− (2γ /T)
(
σ 2
sva + σ 2

sa
)

(62)

σ 2
sxv = E [(xsk − xtk) (vsk − vtk)]

= (1 − α)(1 − β)
(
σ 2
sxv + Tσ 2

sxa + Tσ 2
sv + T2σ 2

sva

+(T2/2)σ 2
sva + (T3/2)σ 2

sa
)

(63)
σ 2
sxa = E [(xsk − xtk) (ask − atk)]

= (1 − α)
(
σ 2
sxa + Tσ 2

sva + (
T2/2

)
σ 2
sa

)
− (g(1 − a)/T)

(
σ 2
sxv + Tσ 2

sxa + Tσ 2
sv

+T2σ 2
sva + (

T2/2
)
σ 2
sva + (

T3/2
)
σ 2
sa

)
,

(64)

σ 2
sva = E [(vsk − vtk) (ask − atk)]

= (1 − β)(1 − γ )
(
σ 2
sva + Tσ 2

sa
) − (γ (1 − β)/T)

× (
σ 2
sv + Tσ 2

sva
) + (βγ /T)Bv,

(65)

where E
[
(vok − vtk)2

] = Bv, (66)

and the following is satisfied because we assume
that the measurement position and velocity noise are
uncorrelated:

E [(xok − xtk)(vok − vtk)] = 0. (67)
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Equations (61) to (65) can be simplified to:

β(2 − β)σ 2
sv − (1 − β)2

(
T2σ 2

sa + 2Tσ 2
sva

) = β2Bv, (68)

γ (2 − γ )σ 2
sa − (

γ 2/T2) σ 2
sv − (2γ (1 − γ )/T)

σ 2
sva = (

γ 2/T2)Bv,
(69)

(α + β − αβ) σ 2
sxv − (1 − α)(1 − β)(

Tσ 2
sv + (

T3/2
)
σ 2
sa + Tσ 2

sxa + (
3T2/2

)
σ 2
sva

) = 0,
(70)

(α + γ − αγ ) σ 2
sxa + (γ (1 − α)/T)

(
Tσ 2

sv + σ 2
sxv

)
− (

(α − 1) (γ − 1)T2/2
)
σ 2
sa

− ((α − 1) (3γ − 2)T/2) σ 2
sva = 0,

(71)

(β + 2γ − 2βγ ) σ 2
sva + γ (1 − β)σ 2

sv

− (1 − β)(1 − γ )Tσ 2
sa = (βγ /T)Bv.

(72)

Solving the linear system involving (59) and (68) to (72),
we obtain:

σ 2
sx = α

2 − α
Bx + f1(α,β , γ )(1 − α)2

f2(α,β , γ )
T2Bv, (73)

σ 2
sv = 2β2 + 2γ − 3βγ

β(4 − 2β − γ )
Bv, (74)

σ 2
sa = 2γ 2

β(4 − 2β − γ )

Bv
T2 , (75)

σ 2
sxv = (1 − α)(1 − β)

(
4αβ2 − αγ 2 − 4αβγ + 4αγ + 4βγ

)
f2(α,β , γ )/α

TBv,

(76)

σ 2
sxa = γ (α − 1)

(
4αβ2 − 4αβ − γ 2 + 4γ

)
f2(α,β , γ )/α

Bv, (77)

σ 2
sva = γ (2β − γ )

β(4 − 2β − γ )

Bv
T
, (78)

where f1(α,β , γ ) and f2(α,β , γ ) are expressed as (14) and
(15). Substituting (73) to (78) into (50), we arrive at (13).

Derivation of (16)
We first derive the relationship between the measured sig-
nals (xok and vok) and the predicted position xpk in the
z-domain and then obtain the tracking performance index
using the final value theorem. Applying a z-transform to
(1) to (3) and (10) to (12), we obtain:

Xp(z) = Xs(z)/z + TVs(z)/z + (
T2/2

)
As(z)/z, (79)

Vp(z) = Vs(z)/z + TAs(z)/z, (80)
Ap(z) = As(z)/z, (81)
Xs(z) = Xp(z) + α(Xo(z) − Xp(z)), (82)
Vs(z) = Vp(z) + β(Vo(z) − Vp(z)), (83)
As(z) = Ap(z) + (γ /T)(Vo(z) − Vp(z)). (84)

Substituting (84) into (81), we have

Ap(z) = γ

z − 1
· Vo(z) − Vp(z)

T
. (85)

Substituting (83) into (80) gives

(z + β − 1)Vp(z) = βVo(z) + zTAp(z). (86)

Substituting (85) into (86), the relationship between the
predicted and measured velocities is calculated as

Vp(z) = (β + γ )z − β

z2 + (β + γ − 2)z − β + 1
Vo(z). (87)

Substituting (87) into (85), the relationship between the
predicted acceleration and the measured velocities is cal-
culated as

Ap(z) = γ (z − 1)
z2 + (β + γ − 2)z − β + 1

Vo(z)
T

. (88)

Substituting (82) to (84), (87), and (88) into (79), the rela-
tionship between the predicted position and themeasured
position and velocity is written as

Xp(z) = α

z + α − 1
Xo(z)

+ z((2β + γ )z − 2β + γ )

2(z + α − 1)(z2 + (β + γ − 2)z − β + 1)
TVo(z).

(89)

Thus, the z-transform of the error xok−xpk is expressed as

Ep(z) = z − 1
z + α − 1

Xo(z)

− z((2β + γ )z − 2β + γ )

2(z + α − 1)(z2 + (β + γ − 2)z − β + 1)
TVo(z).

(90)

Here, the measured position and velocity of a target with
constant jerk J are:

xok = J(kT)3/6, (91)
vok = J(kT)2/2, (92)

and their z-transforms are:

Xo(z) = z
(
z2 + 4z + 1

)
6(z − 1)4

JT3, (93)

Vo(z) = z(z + 1)
2(z − 1)3

JT2. (94)

Substituting (93) and (94) into (90), we have

Ep(z) = z
(
2z2 + (8 − 4β − γ ) z + 2 − 2β

)
12(z − 1)(z + α − 1)

(
z2 + (β + γ − 2) z − β + 1

) JT3.

(95)

With the final value theorem limz→1(z− 1)Ep(z), we have
(16).
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Derivation of (20)
Using the same procedure as for the A-V filter, the linear
system with respect to the variances and covariances of
the smoothing parameters is calculated using (1) to (3) and
(17) to (19) as:

α(2 − α)σ 2
sx − (1 − α)2

(
T2σ 2

sv + (
T4/4

)
σ 2
sa + 2Tσ 2

sxv

+T2σ 2
sxa + T3σ 2

sva
) = α2Bx,

(96)

β(2 − β)σ 2
sv − (1 − β)2

(
T2σ 2

sa + 2Tσ 2
sva

) = β2Bv,
(97)

(γ (4 − γ )/4) σ 2
sa − (

γ − 2/T4) (
σ 2
sx + T2σ 2

sv + 2Tσ 2
sxv

)
+ γ (2 − γ )

(
σ 2
sxa/T

2 + σ 2
sva/T

) = (
γ 2/T4)Bx,

(98)

(α + β − αβ) σ 2
sxv − (1 − α)(1 − β)(

Tσ 2
sv + (

T3/2
)
σ 2
sa + Tσ 2

sxa + (3T2/2)σ 2
sva

)
σ 2
sxv = 0,

(99)

(α + γ − αγ ) σ 2
sxa − (α − 1)(γ − 1)Tσ 2

sva

− ((α − 1)(γ − 2)/4)T2σ 2
sa

+ γ (1 − α)(σ 2
sx/T

2 + σ 2
sv + 2σ 2

sxv/T) = (
αγ/T2)Bx,

(100)

(2β + 3γ − 3βγ ) σ 2
sva/2 + γ (1 − β)

× (
σ 2
sxv/T

2 + σ 2
sv/T + σ 2

sxa/T
2)

− (β − 1)(γ − 2)Tσ 2
sa/2 = 0.

(101)

Solving the linear system involving (96) to (101), we
obtain:

σ 2
sx = g1x(α,β , γ )Bx + (1 − α)2g2(α,β)T2Bv

g3(α,β , γ )
, (102)

σ 2
sv = g1v(α,β , γ )Bx/T2 + g2v(α,β , γ )Bv

(2 − β)g3(α,β , γ )
, (103)

σ 2
sa = g1a(α,β , γ )Bx/T4 + g2a(α,β , γ )Bv/T2

(2 − β)g3(α,β , γ )
, (104)

σ 2
sxv = g1xv(α,β , γ )Bx/T + g2xv(α,β , γ )TBv

g3(α,β , γ )
, (105)

σ 2
sxa = g1xa(α,β , γ )Bx/T2 + 2(1 − α)(2 − β)γ 2g2(α,β)Bv

γ (2 − β)g3(α,β , γ )
,

(106)

σ 2
sva = g1va(α,β , γ )Bx/T3 + g2va(α,β , γ )Bv/T

(2 − β)g3(α,β , γ )
,

(107)

where g2(α,β) and g3(α,β , γ ) are expressed as (22) and
(23), and

g1x(α,β , γ ) = 8α3β(2 − β)(β − 1) − 2α2 (
3β3γ − 4β3

−9β2γ + 8β2 + 2βγ + 4γ
)

+ αγ
(
10β3+β2γ −28β2 − βγ + 8β + 16

)
− 4βγ (2 − β)2,

(108)

g1v(α,β , γ ) = 8γ 2(1 − β)2(2 − β)(α + β − αβ − 2),
(109)

g2v(α,β , γ ) = 8α3β2(2 − β)(1 − β) + 2α2β2(β − 2)
× (3βγ − 12β − 3γ + 8)
− αβ2 (

22β2γ − 16β2 + βγ 2 − 64βγ

+32β − γ 2 + 40γ
)

+ 2β2γ (β − 1)(8β + γ − 16),
(110)

g1a(α,β , γ ) = 4βγ 2(β − 2)
(
2αβ2 − 6αβ − 2β2 − βγ

+4α + 4β + γ ) ,
(111)

g2a(α,β , γ ) = 4β2γ (α − 2)
(
2αβ2 − 6αβ − 2β2 − βγ

+4α + 4β + γ ) ,
(112)

g1xv(α,β , γ ) = 2βγ (α − 1)(β − 2)(β − 1)(4α + γ ),
(113)

g2xv(α,β , γ ) = 2β2(α − 1)(α − 2)(β − 1)(4α + γ ),
(114)

g1xa(α,β , γ ) = γ 2(2 − β)
(
8α2β3 − 24α2β2 + 16α2β

+2αβ3γ − 8αβ3 − 6αβ2γ + 16αβ2

−4αβγ + 8αγ − 2β3γ − β2γ 2 + βγ 2

+16βγ − 16γ
)
,

(115)

g1va(α,β , γ ) = 2βγ 2(2 − β)(β − 1)(4αβ − 8α − 4β − γ + 8),
(116)

g2va(α,β , γ ) = 2β2γ (2 − α)(β − 1)(4αβ − 8α − 4β − γ + 8).
(117)

Substituting (102) to (107) into (50), we arrive at (20).

Derivation of (24)
The derivation process is the same as for the A-V filter.
By applying a z-transform to (1) to (3) and (17) to (19)
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and their simplified forms, the predicted parameters in the
z-domain are derived as:

Ap(z) = γ z
z − 1

· Xo(z) − Xp(z)
T2 , (118)

Vp(z) = γ z2

(z − 1)(z + β − 1)
· Xo(z) − Xp(z)

T

+ β

z + β − 1
Vo(z),

(119)

Xp(z) = (2α + γ )Xo(z) + 2βTVo(z) + 2(1 − β)TVp(z) + T2Ap(z)
2z + 2α + γ − 2

.

(120)

Substituting (118) and (119) into (120), the relationship
between the predicted position and themeasured position
and velocity is expressed as

Xp(z) = h1(z)
h2(z)

Xo(z) + 2βz(z − 1)
h2(z)

TVo(z), (121)

where

h1(z) = γ z3 + (2α − βγ + 2γ )z2

+(2αβ − 4α + βγ − 2γ) z − 2αβ − βγ + 2α + γ,
(122)

h2(z) = (γ + 2)z3 + (2α + 2β + 2γ − βγ − 6)z2

+ (2αβ + βγ − 4α − 4β − 2γ + 6)z
− 2αβ − βγ + 2α + 2β + γ − 2.

(123)

From (121), the z-transform of the predicted error is

Ep(z) = Xo(z) − Xp(z)

= 2(z − 1)2(z + β − 1)
h2(z)

Xo(z) − 2βz(z − 1)
h2(z)

TVo(z).

(124)

Substituting (93) and (94) into (124), the error for a target
with constant jerk is given by

Ep(z) = z
(
z2 − 2βz + 4z − β + 1

)
3(z − 1)h2(z)

JT3. (125)

Applying the final value theorem to (125), we have (24).
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