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Abstract

approach is effective and feasible.

Traditional remote sensing images classification methods focused on using a large amount of labeled target data to
train an efficient classification model. However, these approaches were generally based on the target data without
considering a host of auxiliary data or the additional information of auxiliary data. If the valuable information from
auxiliary data could be successfully transferred to the target data, the performance of the classification model would
be improved. In addition, from the perspective of practical application, these valuable information from auxiliary data
should be fully used. Therefore, in this paper, based on the transfer learning idea, we proposed a novel information
transferring approach to improve the remote sensing images classification performance. The main rationale of this
approach is that first, the information of the same areas associated with each pixel is modeled as the intra-class set,
and the information of different areas associated with each pixel is modeled as the inter-class set, and then the
obtained texture feature information of each area from auxiliary is transferred to the target data set such that the
inter-class set is separated and intra-class set is gathered as far as possible. Experiments show that the proposed
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1 Introduction

Remote sensing images classification is a complex process
that may be affected by many factors, such as the availabil-
ity of high-quality images, proper classification method,
and the analytical ability of scientists. For a particular
problem, it is often difficult to identify the best classi-
fier due to the lack of a guideline for selection and the
availability of suitable classification approaches to band.
Therefore, many researchers proposed all kinds of algo-
rithms to address the remote sensing images classification
problems. In [1], the authors built textural information
model that use spatial information, and then proposed
a wavelet-based multi-scale strategy to characterize local
texture, taking the physical nature of the data into account,
then the extracted textural information was used as new
feature to build a texture kernel and the final kernel was
the weighted sum of a kernel made with the spectral
information and the texture kernel. In [2], the authors pro-
posed applying kernels on a segmentation graph method.
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Fauvel et al. [3] proposed a spatial-spectral kernel-based
approach with the spatial and spectral information were
jointly used for the classification. A kernel-based block
matrix decomposition approach for the classification of
remotely sensed images was proposed by Gao et al. [4].
Tuia et al. [5] used active learning to adapt remote sensing
image classifiers. Their goal is to select these pixels in an
intelligent fashion that minimizes their number and max-
imizes their information content. Two strategies based on
uncertainty and clustering of the data space are consid-
ered to perform active selection. In [6], Dos Santos J.A.
et al. proposed a method for interactive classification of
remote sensing images considering multiscale segmenta-
tion. Their aim is to improve the selection of training sam-
ples using the features from the most appropriate scales of
representation. They use a boosting-based active learning
strategy to select regions at various scales for user’s rele-
vance feed back. However, these approaches may ignore
the auxiliary data of the remote sensing images. In other
words, they do not take the auxiliary data into account in
the classification model. In this paper, we aim to transfer
the texture feature information from the auxiliary data to
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the target data to improve the classification performance
of remote sensing images.

In the traditional classification learning framework, a
classification task is to first train a classification model
on a labeled training data. And then, the learned model
is used to classify a test data set. Hence, under such a
framework, the learning method relies on the availability
of a large amount of labeled data. In practice, high-quality
labeled data are often hard to come by, especially for learn-
ing tasks in a new region. Labeling data in a new region
involves much human labor and is time-consuming, such
as [5,6]. But, fortunately, some auxiliary data such as the
texture information are easy to obtain. Therefore, it is
reasonable to consider that how to make full use of the
valuable texture information of some auxiliary data to
improve the classification performance.

Recently, transfer learning [7] has become a popular
machine learning method which utilizes auxiliary data
for learning. Transfer learning is concerned with adapt-
ing knowledge acquired from one source domain to
solving problems in another different but related tar-
get domain [8]. Generally speaking, traditional machine
learning models assume that the training samples col-
lected previously inherit the same feature and distribution
as new, incoming data samples during operation [9]. How-
ever, in many real-world cases, this assumption does not
always hold. In fact, in regard to data classification in non
stationary environment, it is not unlikely that the training
data set follows a different data distribution as compared
with the actual incoming data samples during operation.
Such as, in communication channels, discrete signals gen-
erated by a specific sequence from a source could be
corrupted by Gaussian noise in the transmission pro-
cess; so, the received signals could deviate from the signal
sequence [10]. In this case, traditional machine learning
models may not be able to perform well when dealing
with the new data samples in the target domain. Hence,
the ability of transfer learning would greatly improve the
robustness of machine learning models by transferring
and adapting knowledge learned from one domain to
another related, but different domain. On the other hand,
a large set of data samples from a particular task nor-
mally is required to train an effective machine learning
model [11]. The main principle of transfer learning is that
even though the data distributions in the source and target
domains are different, some common knowledge across
both domains can be adapted for learning [12].

Many researchers have proposed all kinds of meth-
ods to transfer learning information or knowledge from
auxiliary data. In [13], authors proposed a TrAdaBoost
transfer learning framework which constructed a high-
quality classification model for target domain by a small
number of labeled data and auxiliary data. In [14], authors
proposed an extensional method called MultiSource-
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TrAdaBoost to extend the TrAdaBoost framework for
solving multiple sources. In [15], authors proposed a
matrix factorization framework to build two mapping
matrices for the training images and the auxiliary text
data. Based on the co-occurrence data, the correlative
principle was introduced to transfer knowledge from text
to images by Qi et al. [16]. The authors of reference [17]
use an auxiliary data set to construct the pseudo text for
each target image, and then, by exploiting the semantic
structure of the pseudo text data, the visual features are
mapped to the semantic space which respects the text
structure. Generally speaking, these methods attempted
to transfer information from a lot of auxiliary data to train
a more effective model for target data. In our paper, we
employ the texture feature information of auxiliary data
set to build the similarity matrix for target data set, and
then by exploiting the texture information structure of the
similarity matrix, the valuable features are mapped to the
spectral space and the textural space. At last, the original
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Figure 1 Flowchart of proposed approach.
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Table 1 Information classes and training and test samples for PUD

Class No Samples
Name Train Test Auxiliary data

1 Asphalt 548 6304 300
2 Meadow 540 18146 300
3 Gravel 392 1815 300
4 Tree 524 2912 300
5 Metal sheet 265 1113 300
6 Bare soil 532 4572 300
7 Bitumen 375 981 300
8 Bricks 514 3364 300
9 Shadow 231 795 300
- - 3921 40002 2700

spectral information is combined with texture informa-
tion to improve the performance of classification model.
In order to solve the shortcomings of scale sensitive and
more time consuming, Zhang et al. [22] proposed a poten-
tial support vector machine (PSVM) algorithm, which
uses a novel objective function to overcome the problem
of scale sensitivity in SVM.

The remainder of this paper is organized as follows.
Section 2 briefly reviews the formulations of relevant
knowledge. In Section 3, the derivation process of the pro-
posed method is described in detail. The effectiveness of
the proposed method is demonstrated in Section 4 by
experiments on remote sensing images. Finally, Section 5
concludes this paper.
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Figure 2 The distribution of training data for PUD.
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2 Relevant knowledge

2.1 Transferring knowledge of feature representations

A new case of clustering problems, known as self-taught
clustering, was proposed by Dai et al. [18]. Self-taught
clustering (STC) is an instance of unsupervised transfer
learning, which aims at clustering a small collection of
unlabeled data in the target domain with the help of a large
amount of unlabeled data in the source domain. STC tries
to learn a common feature space across domains, which
helps in clustering in the target domain. The objective
function of STC is shown as follows:

J X1, X5,2) =1&X7,2) (X1, Z) 42 [I (X5, 2) — I (X5, Z) ],
(1)

where Xs and X7 are the source and target domain data,
respectively. Z is a shared feature space by X5 and X7, and
I(-, ") is the mutual information between two random vari-
ables. Suppose that there exist three clustering functions
Cx; : Xr —>N)?T, Cxg : Xs — )?5, and Cz : Z — Z, where
)?T, )N(g, and Z are corresponding clusters of Xr, X5, and Z,
respectively. The aim of STC is to learn Xr by solving the
optimization problem (1):
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An iterative algorithm for solving the optimization func-
tion (2) was given in [18].

2.2 Fisher linear discriminant analysis (FLDA)

The main goal of FLDA is to perform dimension reduc-
tion while preserving as much information as possible.
Linear discriminant analysis aims to find the optimal
transformation matrix such that the class structure of
the original high-dimensional space is preserved in the
low-dimensional space. But in hyperspectral remote sens-
ing images classification problem, generally dimension
of the feature vectors is very high with respect to the
number of feature vectors. In this subsection, we briefly
review the two-dimension Fisher discriminant analysis
(2DFLDA) method by Kong et al. [19] proposed to handle
the reduce dimensional problem. The main content can be
summarized as follows:

Let ¢ be the number of classes, N; be the number of
selected samples from ith class, N be the number of total
selected samples from each class, Al be the jth image
from ith class, and m; be the mean image of ith class.
N = Y0 Nymi= %Y AL =1, ,c). The opti-
mal projection matrix G =[g1,£, - ,g] can be found
in 2DFLDA. Where [ is at most min(c — 1,N). We can

arg_min_ J ()?T’ XS,Z) ) @) obtam. the qptlmal projection matrix by maximizing the
X7.X5,Z following criterion:
o
o2 =
= g ¥ & = z
< E % 5 @ =
w @ s @ @ i
<L = 0] = i T3]

A

Figure 3 The distribution of test data for PUD.
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GTs,G

J(G) = m,

3)

where S, and S, are the inter-class and intra-class
scatter matrices, respectively. S, = Zle (m; —mo)T

- T,
(mi—mg) , Sw= i, Zjvzll (AJL - mi) <A/l B mi)’ =
% > i, m; is the global mean image of all classes.

3 Learning for information transferring

In this section, based on gray level co-occurrence matrix
(GLCM), we first obtain the texture feature information of
an image. In addition, the feature matrix of auxiliary data
for remote sensing images can be obtained, as described
in the following. According to Equation 3, compute matri-

Table 2 Confusion matrices, ¥ and time (s) of PUD
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ces Sp and S, and solve the optimal projection matrix G.
Let A;, i = 1,2, -, 1) be the absolute values of the diag-
onal elements of the G corresponds to matrix. The value
of k is determined such that E is at least some fixed per-
centage of the whole energy of the image. In our following
experiments, we choose E = 99.99%:

k
Zi:l’\i SE

> E, (4)
Zg=1 Ai

Figure 1 shows a block diagram of our simple system. In
the next, we will introduce the proposed approach which
can be summarized as follows.

Class no. 1 2 3 4 5 6 7 8 9 UA (%)
Spectral space

1 5,244 37 130 22 19 16 368 460 8 83.19
2 0 12,230 0 2,223 0 3,675 0 18 0 67.40
3 29 8 1,194 0 0 3 1 580 0 65.79
4 0 36 0 2,858 1 17 0 0 0 98.15
5 0 1 2 2 1,105 0 0 0 3 99.28
6 5 118 0 40 99 4,216 0 24 0 92.21
7 96 0 1 0 0 0 872 12 0 88.89
8 31 19 185 3 0 31 8 3,087 0 91.77
9 21 0 7 0 0 0 0 0 767 96.48
PA(%) 96.65 97.69 78.60 5552 90.28 52.98 69.82 73.83 98.59

OA(%) = 7893

k =0.7340

t=1.265

Fusion space

1 5,286 5 4 41 3 1 403 547 14 83.85
2 0 18,145 0 1 0 0 0 0 0 99.99
3 0 0 1,782 0 0 33 0 0 0 98.18
4 0 0 0 2911 1 0 0 0 0 99.97
5 0 0 0 4 1,109 0 0 0 0 99.64
6 0 0 11 26 33 4,502 0 0 0 9847
7 95 0 0 0 0 0 872 14 0 88.89
8 32 0 0 0 0 0 8 3,324 0 98.81
9 21 0 0 0 0 0 0 3 771 96.98
PA(%) 97.28 99.97 99.17 97.59 96.77 99.25 67.97 85.49 98.22

OA(%) =96.75

Kk =0.9562

t=0.51s




Gao et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:38

98 T T T T

§ i

= 94t g
(&)

s

= 92 4
Q

[$)

© 90} ]
c

o

T 88r R
Q

%G 86| 1
2]

©

© 84}

T

5 82 :
>

o 80 —— spectral space [

—#— fusion space
78 L L L n
0 10 20 30 40 50
k value of KNN classifier (Pavia University data)

Figure 4 The overall classification accuracy of PUD with KNN.

3.1 Notations

In this paper, we consider two data sets. One is the target
data set (viz. original image) which only includes spec-
tral information. The other is the auxiliary data set which
consists of texture information (Please consult Figure 1).
Both the two data sets include ¢ classes. Let RK and R””
be the spectral information and texture information fea-
ture spaces. And without loss of generality, we use S
and $® to represent target data set and auxiliary data
set, respectively. Denote the feature matrix of target data
set as X e RO the feature matrix of spectral infor-
mation of auxiliary data set as X@ e Rk xn® and the
texture feature information matrix in auxiliary data set
as T@ e R™"” For target data set, we assume that
each sample corresponds to particular auxiliary informa-
tion. We use S to represent the target data as below
Equation 5:

s — { (xm o y<t)>‘ 1<i< n(t)}’ )

i 070
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where x(t € RF is the column vector of X¥, fl» e R”

is the feature vector of the pseudo texture feature infor-
mation of target data, and yl@ € {1,2,---,c} is the class
label of target data. Similarly, we use S to represent the
auxiliary data as below Equation 6:

S(a) — { (x;a)’f]{a)’y/(cz)ﬂ 1 </ < n(a)}’ (6)
where x'¥ e RK is the column vector of X@, £ ¢ rm
is the feature vector of the texture feature information of
target data, and y]@ € {1,2,---,c}isthe class label of aux-
iliary data. In addition, we use C,, and Cj, to represent the
relationship of xl@

and x;t)
8, respectively:

as follows in Equations 7 and

cw — [ (xl(t) <t>) ‘ yO = y;(t)] )
c® — [ (X,@ (r)) ‘ ¥ % (t)] ' )
Equation 7 shows that x.t and xAt are in the same class in

target data set. And then, Equatlon 8 shows that x(t) nd

}( ) are in the different classes in target data set.

3.2 Construct the similarity matrix of S® and §@

As we all know, there are same spectrum and texture infor-
mation for the same region (or field). Therefore, the sim-
ilarity matrix with very important information for target
data set is constructed based on the similarities between
samples in S® and $@. For the sample xl@ in §®, the most
similar sample in S is defined as Equation 9:

. t t
/() =mind (xxf%) ¥ioi”
X

J

n(“)),
)

where d(-, -) is the Euclidean distance in R¥. The Equation

9 shows that the auxiliary data set corresponding to x\@
can approximately reflect the similarity relationship of

y(ﬂ) (]'21’2,...,

Table 3 Information classes and training and test samples for HUD

Class No Samples
Name Train Test Auxiliary data

1 Road 488 64,650 100
2 Roof 242 56,560 100
3 Tree 266 24,765 100
4 Bare soil 230 36,650 100
5 Water 182 36,600 100
6 Shadow 304 21,220 100
- - 8,220 240,445 600
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xl@. So, we can obtain the /fgt) = x/(.“). In the following
steps, we will obtain the similarity matrix of intra-class
W,, and the similarity matrix of inter-class W by com-

puting Equations 10 and 11:

W) _ D Ha) ® _ ®
w, =1 "i =dl(f; ,f; )’yi =y (10)
, otherwise
) _ D da) (®) (®)
Wy =10 =d(8767), 5" 5" (11)
0, otherwise
In Equations 10 and 11, wtg”) and wl@ are the elements of

W,, and Wy, respectively. d(:, -) is the Euclidean distance
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between two feature vectors with very important texture
information. For W, and W, in order to simplify the cal-
culation, we have done the approximate calculation. The
specific steps are as follows:

Firstly, we build feature matrices of similarity matrix

SO by using}ft) (i=1,2--, n(t)) and auxiliary data set
matrix S by using t]{“) (] =12 ,n@ ), respectively.
Viz:

t) ) =)
S%t):[lizi"':fn(ﬂ]: (12)
(a) ) ¢la) )
5@ = [éfé ,%], (13)

Figure 5 The airborne remote sensing digital image of HUD.
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Secondly, we build the similarity matrix of intra-class
W,, and the similarity matrix of inter-class W}, by using

the feature vector of each sample of S%t) and SE“) . At last,
the W,, and W, as Equations 14 and 15.

2 @

_ () @\T ( o(®) (@)
Wy =33 -5 (s -5, (14)
i=1 j=1
n® y@ p
<) @ <) <@
Wb=ZZ<SE —Sf].“) (S; —Sf/.“), (15)
i=1 j=1
where g%t) is the ith row mean value of S%t) and ggz) is the

jth row mean value of SE“).

3.3 Information transferring of auxiliary data

In this paper, our goal is to learn an optimal linear map-
ping matrix U € R**” which project the texture infor-
mation from auxiliary data set to the target data set. That
is because the texture information of an image is very

Table 4 Confusion matrices, ¥ and time (s) of HUD
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important; meanwhile, it can enhance the image detail by
introducing the texture information of auxiliary data. We
formulate the regularization framework for information
transferring of auxiliary data as follows:

2
min F(U) = ”UTX(“) -T@| +Q), (16)

where || - ||12: is the Frobenius norm, and Q(-) is the regu-
larization constraint on §®. In this framework, we project
the texture feature information in S@ from the auxiliary
data set space to the target data set space. Meanwhile, the
constraint on S® is taken into account. In this paper, we
define 2(-) as follows:

QU) =a¥,U) - (1 —-a)¥p(U), (17)

where W, is the similarity constraints on C,, ¥, is the
diversity constraints on Cp, (0 < «o < 1) is regu-
larization parameter for balancing the tradeoff between

Class no. 1 2 3 4 5 6 UA (%)
Spectral space

1 44,609 19,748 0 188 0 105 69.00
2 16,283 37,422 250 777 4 1824 66.16
3 184 1,160 22,429 1 662 319 90.57
4 189 4,576 52 31,832 0 1 86.85
5 33 4 47 0 36,484 32 99.68
6 176 3041 1,165 2 4,358 12,478 58.80
PA(%) 72.57 56.74 93.68 97.02 87.90 84.55

OA(%) =77.05

k =0.7145

t=18s

Fusion space

1 64,634 16 0 0 0 0 99.98
2 0 56,560 0 0 0 0 100.0
3 0 638 22,843 0 662 622 9224
4 0 1,250 0 35,400 0 0 96.59
5 0 33 46 0 36,485 36 99.69
6 0 267 1,457 0 4,366 15,130 71.30
PA(%) 100.0 96.25 93.83 100.0 87.89 95.83

OA(%) = 96.09

k =0.9515

t=8s
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within-class and between-class constraints. Specifically,
U, is formulated as follows:

2
v,U) = > wl(jw) HUTXL@ - UTx]@ HF

(xf,xf) eCy (18)

= or (UTXVP, (X¥)" V)

_1 _1
where P, = I — D,,>W,,D,,> the normalized Lapla-
cian matrix, I is a unit matrix, and D,, = diag (W,, - 1)
is a weight matrix whose diagonal elements are DY, =

o)
Z]"Ztl wg”), and ¢r(-) denotes the trace function. Similarly,
Wy, can be formulated as Equation 19

b t
WU = Y w2 uTx® - uTx?)2
(xf-,xf)eCh

= ir (UTXP, (x)" U)

_1 _1
where P, = I — D, *W,;D, * the normalized Laplacian

matrix, D, = diag (W} - 1) is a weight matrix whose
~ ®

diagonal elements are D% = Z;’:tl 5;7)

Through the above analysis, the objective function in

Equation 16 can be rewritten as follows:

T 2
min F(U) = HU X9 —1@| + o)

_lyTx@ _ r@|? -
= |UTX@ —TO| 4 a,(U) — (1= a) (V)

- HUTX@ _ 7@

2 T
atr (UTx“)PW (x“)) U)

T
—-a)r (UTx“)Pb (xm) U) .

(20)

It is obvious that the above optimization is a convex
problem, which can be achieved using existing convex
optimization packages, such as fminunc and fmincon
functions [20], SeDuMi [21]. The detailed description
of the overall pseudo algorithm process is given in
Algorithm 1.
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Algorithm 1 Proposed approach

Input: Datasets SO, s@, regularization parameter «.
First stage:

Step 1. The value of k is determined by using Equations 3
and 4;

Step 2. Construct three matrices X®, X@ and T®, mean-
while, calculate matrices P,, and Py;

Step 3. Set initialize Uy = 0;

Step 4. According to the gradient descent method, solve
the U by using optimization packages;

Step 5. Until convergence or maximum iteration number
achieves;

Output: The mapping matrix U.

Second stage:

Step 1. For training and test datasets, the valuable texture
features are mapped to the spectral space, then com-
bined original spectral space. Viz. [U % T®;X@] and
[UsxT®; X®], where, T® is pseudo texture matrix of test
dataset.

Step 2. The effective classification model can be obtained
by using SVM or K-Nearest Neighbor (KNN) classifier to
train.

4 Experimental results and analysis

In this section, we demonstrate the effectiveness of the
proposed approach on remote sensing images classifica-
tion tasks. The available data set, namely Pavia Univer-
sity data set and Hohai University data set, are used for
experiments. In order to evaluate the efficiency of pro-
posed method, the Gaussian radial basis kernel function
is employed in our experiment as Equation 21. And then,
the penalty term C and the width of kernel g are need to be
tuned. In addition, the two parameters were set using five-
fold cross validation strategy. Each original data set was
scaled between [-1, 1] by using a per band range stretching
method.

2
ko (x;, %) = exp <—M) = exp (—g~ ||x, - x1'||2> )

202
(21)

4.1 Pavia University data set (PUD)
Pavia dataset is around the Engineering School at the
University of Pavia. It is 610 x 340 pixels. The spatial
resolution is 1.3 m per pixel. Twelve channels have been
removed due to noise. The remaining 103 spectral chan-
nels are processed. Nine classes of interest are considered:
asphalt, meadow, gravel, tree, metal sheet, bare soil, bitu-
men, bricks, and shadow. The training and test sets for
each class are given in Table 1.

In our experiments, the product’s accuracy (PA) and the
user’s accuracy (UA) are defined as Equations 22 and 23,
respectively:
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Xiji

PA; = b (22)
Xti

UA; = 2 (23)
Xit

where x;; is the value on the major diagonal of the ith
row in the confusion matrix, x;; is the total number of
the ith row, and x; is the total number of the ith column.
To measure the agreement between the classification and
the reference data, we compute the kappa coefficient («)
based on the following equation, where N is the number
of total pixels.

[N PRETEED SRCI TR x+i)]
[N2 - Zi’(:l (xiy X x+i)]

K =

(24)

The distribution of training data and test data are listed
in Figures 2 and 3, respectively. All the algorithms are

tested in MATLAB (2010b) running on a PC with Intel
Core 2 Celeron (2.40 GHz) with 2 GB of RAM. The two
parameters C and g (from 2710 to 219, the step is 20°) are
determined by fivefold cross-validation strategy. Accord-
ing to the experiments, we can see that C = 64, g = 8 is
the best choice in spectral space, while C = 16, g = 16 is
the best choice in fusion space. In addition, we also found
that the trained model is more efficient in fusion space
than only in spectral space by using SVM. The confusion
matrices of PUD were shown in Table 2.

According to Table 2, we found that the proposed
approach with the fusion space gives better results as com-
pared to the spectral space applied on PUD. In addition,
the proposed method gives more overall accuracy (OA)
(96.63%) and kappa value (0.9621) as compared to the
method original spectral space. So, the proposed method
can improve the overall classification accuracy and kappa
value. In addition, it is worth noting that the elapsed time
of proposed method is less than the original method.

Table 5 OA (%), ¥ and time (s) for SVM, PSVM, Mbsvd, Mbqgrcp and proposed method with SVM

PUD HUD
Method OA K Time OA K Time
SVM [22] 7893 0.7340 1.26 77.05 0.7145 18
PSVM [22] 95.36 0.9466 091 91.88 0.9345 1
Mbsvd [4] 95.91 0.9489 1.01 92.03 0.9366 28
Mbagrep [4] 96.60 0.9548 0.80 94.74 09411 10
Proposed 96.75 0.9562 051 96.09 0.9515 8
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Figure 4 will show the overall classification accuracy by
using KNN classifier. According to Figure 4, we can see
that the proposed method gives the best results.

4.2 Hohai University data set

The data is the airborne remote sensing digital ortho-
photo map images acquired in February 2012, at the
location of Jiangning campus of Hohai University,
Nanjing city, Jiangsu province, PR. China. This data set
is at a spatial resolution of 0.5 m, and the size of image
is 1,400 x 1,024 pixels. In this data set, we only consid-
ered six classes such as road, roof, tree, bare soil, water,
and shadow to characterize this area. The class definitions
and the number of samples for each experiment is listed
in Table 3.

The airborne remote sensing digital image of Hohai
University data set (HUD) is shown in Figure 5. According
to the experiments, we can see that C = 20° ~ 1.4142,
and g = 27 &~ 181.0193 is the best choice in fusion space
for HUD.

Table 4 shows the confusion matrices, kappa values, and
elapsed time obtained for different space.

According to Table 4, the OA in classification accuracy
obtained by proposed approach (96.09%) was much higher
than that obtained by original method (77.05%). In addi-
tion, it is worth noting that the elapsed time of proposed
algorithm is less than original algorithms. Meanwhile, we
also found that in the fusion space, the result is better as
compared to in the spectral space in terms of the accuracy
of each class classification and «.

Figure 6 will display the overall classification accuracy
by using KNN classifier.

From Figure 6, we can obtain that the proposed
approach gives a better result with respect to the OA by
using KNN classifier. In order to demonstrate the effec-
tiveness of the proposed approach on remote sensing
image classification task, the comparison with other tech-
niques proposed in the literature is implemented in the
following experiment. Table 5 gives the overall accuracy
and kappa value of different data sets. The best results are
reported in Table 5 according to different approaches.

From Table 5, we found that the proposed method
shows better performance as compared to other
approaches in terms of OA, «, and running time. This is
because the valuable texture information is employed in
classification process. Hence, in the classification phase,
the classification performance is improved.

5 Conclusions

In this paper, we proposed an information transferring
approach to enhance remote sensing images classifica-
tion performance. The main idea of the proposed method
is that the texture feature information of auxiliary data
set is transferred to the target data set, and then, the
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classification model is trained by using SVM or KNN clas-
sifier. And finally, experimental results show our approach
is feasible.

In addition, the authors realize that more work must be
done to improve the classification results in the further.
Such as, how to choose a suitable method in classifica-
tion tasks for remote sensing images. In addition, how to
avoid negative transfer is an important open issue that
is attracting more and more attention in the future. Of
course, in this paper, how to determine the parameter 2,
how to transfer other valuable information. This will be an
interesting open issue.
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