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Abstract

Image annotation has been a challenging problem due to the well-known semantic gap between two
heterogeneous information modalities, i.e., the visual modality referring to low-level visual features and the semantic
modality referring to high-level human concepts. To bridge the semantic gap, we present an extension of latent
Dirichlet allocation (LDA), denoted as class-specific Gaussian-multinomial latent Dirichlet allocation (csGM-LDA), in an
effort to simulate the human’s visual perception system. An analysis of previous supervised LDA models shows that
the topics discovered by generative LDA models are driven by general image regularities rather than the semantic
regularities for image annotation. To address this, csGM-LDA is introduced by using class supervision at the level of
visual features for multimodal topic modeling. The csGM-LDA model combines the labeling strength of topic
supervision with the flexibility of topic discovery, and the modeling problem can be effectively solved by a variational
expectation-maximization (EM) algorithm. Moreover, as natural images usually generate an enormous size of
high-dimensional data in annotation applications, an efficient descriptor based on Laplacian regularized uncorrelated
tensor representation is proposed for explicitly exploiting the manifold structures in the high-order image space.
Experimental results on two standard annotation datasets have shown the effectiveness of the proposed method by

Laplacian regularization

comparing with several state-of-the-art annotation methods.
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1 Introduction

Automatic image annotation is a challenging work of tasks
related to understanding what we see in a visual scene due
to the well-known semantic gap [1]. Given an input image,
the goal of image annotation is to assign meaningful tags
to the image aiming at summarizing its visual contents.
Such methods are becoming more and more important
given the growing collections of both private and publicly
available images. However, challenges for these methods
often lie in three aspects: the inter-tag similarity prob-
lem that different tags may have similar visual contents,
the tag locality problem that most tags are only related
to their corresponding semantic regions, and the intra-tag
diversity problem that the relevant regions for each tag at
different images can be different.
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The inter-tag similarity problem reveals the fact that the
visual similarity does not always guarantee the semantic
similarity, which in general is conflicting with the inher-
ent assumption of many image annotation methods, e.g.,
some relevant methods [2,3] that perform tag propaga-
tions according to their visual similarities. To cope with
this problem, it is emergent to develop more discrimina-
tive visual features that can be used to separate various
visual contents for different tags. However, traditional
vector representations in the form of bag-of-features or
bag-of-words, such as the visual descriptor that quantizes
SIFT local features [3] and the colored pattern appear-
ance model (CPAM) [4], are usually incompetent for the
intention. The reason is that these features usually ignore
the high-order characteristics of natural images and might
lead to the curse of dimensionality problem when requir-
ing a relatively discriminative representation for describ-
ing the complex visual world. In practice, an image is
intrinsically a two-dimensional or high-order tensor. To
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fairly evaluate the high-order characteristics of image con-
tents, tensor representations [5,6], which can explicitly
describe the multiple interrelated restrictions, might allow
us to avoid the problem of curse of dimensionality.

To tackle the tag locality problem, one may employ
local image features instead of holistic image features to
describe the visual contents of a certain tag. The work
in [7] considered each image as a bag of multiple seg-
mented regions and predicted the tag of each region by
a multiclass bag classifier. This method, however, heav-
ily depends on the segmentation performance, which is
very sensitive to the image noise. Recently, implicit image
representations attract much attention on describing local
regions. To reveal the tag locality, Bao et al. [8] intro-
duced hidden concepts for decomposing holistic image
representation into tag representations. Mesnil et al. [9]
learned implicit representations for both the objects and
their parts. Although these representations cannot explic-
itly describe the regions of a certain tag, they implicitly
capture the tag’s local visual contents by learning from
large amount of annotated images. Thus, implicit image
representation is nontrivial for tackling the tag locality
problem in large-scale datasets.

Considering the problem of intra-tag diversity, a
straightforward way is to set up the class-specific tech-
niques [10,11] by treating annotation tags as class labels
and learning the visual contents within each class.
Although capable of identifying sets of visual contents
discriminative for the classes of interest, these straight-
forward methods do not explicitly model the interclass
and intraclass structures of visual distributions due to its
lack of hierarchical content groupings. To facilitate the
discovery of these structures, various hierarchical gener-
ative methods have been recently ported from the text to
the vision literature. Among these methods, topic models,
such as latent Dirichlet allocation (LDA) [12] and proba-
bilistic latent semantic analysis (pLSA) [13], that consider
probabilistic latent variable models for hierarchical learn-
ing have caused extensive interest. However, an analysis of
previous supervised topic models [14] shows that the top-
ics discovered by these models are driven by general image
regularities rather than the semantic regularities for image
annotation. For example, it has been noted in [14] that
given a collection of movie reviews, LDA might discover
topics as movie properties, such as genres, which are not
central to the annotation task. Therefore, incorporating a
class label variable into a generative model might tackle
the intra-tag diversity problem well. Such extensions have
been successfully applied into the classification task, such
as class LDA (cLDA) [14], supervised LDA (sLDA) [15],
class-specific-simplex LDA (css-LDA) [16], and so on.

In this paper, we develop a new extension of LDA
coupled with Laplacian regularized uncorrelated tensor
representation for learning semantics in the image data.
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Since tensor representation can well capture the high-
order statistics and structures from the training data,
the proposed representation method achieves an efficient
compressed image representation by imposing noncorre-
lation constraints and Laplacian regularization in tensor
factorization. Based on this representation, a three-level
hierarchical probabilistic model, denoted as class-specific
Gaussian-multinomial latent Dirichlet allocation (csGM-
LDA), is developed by using class supervision at the level
of visual features. In csGM-LDA, latent variables or top-
ics are served as middle-level concepts for building the
correspondences between visual features and annotation
tags.

The core contributions of this paper are listed as follows:

¢ A novel hierarchical probabilistic model, namely
c¢sGM-LDA, is presented by combining the labeling
strength of topic supervision with the flexibility of
topic discovery, and can be effectively modeled by
applying a variational EM algorithm.

e An effective image representation method, namely,
Laplacian regularized uncorrelated tensor
representation, is developed to explicitly consider the
manifold structures in the high-order image space.

e By learning with csGM-LDA, a unified framework is
introduced to infer the hierarchies of multiple
modalities and predict tags for a new image.
Benefiting from the exploration of hierarchical
probabilistic inferences, the unified framework can be
effectively conducted.

The rest of this paper is organized as follows. We first
discuss the related work in Section 2. Then, we present
Laplacian regularized uncorrelated tensor representation
in Section 3. After that, the proposed model is described
in Section 4. Moreover, quantitative experiments vali-
dating strong improvements by the proposed method
are presented in Section 5. Finally, Section 6 draws the
conclusion.

2 Related work

In this section, we outline research contributions which
are most related to our work. We first review techniques
for tensor-based image representation. Then, topic mod-
els are further discussed.

2.1 Tensor-based image representation

It is believed that the specialized structures of a visual
object are intrinsically in the form of second or even
higher order tensor [5]. To retain these high-order char-
acteristics, tensors or multidimensional arrays become a
natural choice for the visual representation. In practice,
exact image representation as a full tensor is often redun-
dant and impossible when coping with mass of images.
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However, approximative image representation using ten-
sor subspace learning techniques in many cases can be
helpful for describing various visual objects. In this paper,
we discuss two main kinds of tensor subspace learning
(TSL) algorithms: supervised and unsupervised TSL.

Supervised TSL algorithms use concept-driven dimen-
sionality reduction to achieve discriminant tensor sub-
spaces by considering the subsequent classification or
recognition tasks. This line of algorithms requires that
either manual class labels or object priors in the training
set can be applicable to a particular image classifica-
tion [5,6] or object representation [17,18]. However, as
image annotation system needs to handle a large num-
ber of classes and most classes may require many training
samples due to significant intraclass shape and appear-
ance variations, it is important that the learning does
not involve any human interaction. This makes unsuper-
vised TSL algorithms more appealing. Unsupervised TSL
algorithms are actively explored for data-driven dimen-
sionality reduction that uses low rank tensors to approx-
imate the exact represented tensors. The extensions of
principal component analysis (PCA) and singular value
decomposition (SVD) are most familiar methods for the
research on this line. By maximizing the variance mea-
sure, two-dimensional PCA (2DPCA) [19] represented an
image by projecting it to principal components along the
vertical direction of the image data. Then, generalized
PCA (GPCA) [20] employed bilinear subspace analysis
for dimensionality reduction with matrices. Later, the
multilinear PCA (MPCA) [21] and uncorrelated MPCA
(UMPCA) [22] were proposed for dimensionality reduc-
tion with tensors of any order. By minimizing the recon-
struction error, the generalized low-rank approximation
of matrices (GLRAM) [23] took into account the spatial
correlation of image pixels within a localized neighbor-
hood and applied bilinear transforms to the input image
matrices. For higher-order tensors, the work in [24] used
the high-order SVD (HOSVD) to decompose an ensem-
ble of images into basis images that capture the different
underlying factors of variations. Furthermore, concurrent
subspaces analysis (CSA) [25] was presented as a gener-
alization of GLRAM for higher-order tensors. Recently,
multiple tensor rank-R decomposition (MTRD) [26] was
proposed for approximating a higher-order tensor with a
series of rank-R tensor approximations.

In this paper, we propose an unsupervised method with
Laplacian regularized uncorrelated tensor representation
to explicitly consider manifold structures in the high-
order image space. That is, data points that are close in the
intrinsic geometry of the image space shall thus be close
to each other under the factorized tensor basis. By com-
bining unsupervised TSL and Laplacian regularization,
we can achieve a more discriminative descriptor which is
much important for accurate semantic learning.
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2.2 Topic models forimage annotation

Topic models annotate images as the samples from a
specific mixture of topics, where each topic is a dis-
tribution over image observations. Three alternatives of
pLSA-based models that provided in [13] were presented
by using asymmetric learning for semantic indexing of
large image collections. Then, a Gaussian-multinomial
pLSA (GM-pLSA) model [27] was presented to learn
multimodal correlations from the image data by apply-
ing continuous feature vectors. Furthermore, the work in
[28] extended pLSA to a higher-order formalism, so as
to become applicable for more than two observable vari-
ables. However, pLSA-based models are incomplete in
that they provide no probabilistic restriction on how to
generate the training data. In these models, each image
is represented as a list of the mixing proportions for top-
ics, and there is no probabilistic inference for generating
these numbers of topics. This leads to two problem:s: first,
the number of modeling parameters grows linearly with
the size of the training set, which leads to serious prob-
lems with overfitting; second, it is not clear how to assign
probability to an image outside of the training set. To over-
come these problems, it is much effective to endow the
topic model with Dirichlet priors over topic parameters
as they are conjugate to the multinomial distribution of
the associated tags. The correspondence LDA (Corr-LDA)
[29] was first presented for modeling the joint distribu-
tion of images and tags. To capture more general forms of
association and allow the number of topics in the two data
modalities to be different, topic regression multimodal
latent Dirichlet allocation (tr-mmLDA) [30] was proposed
by introducing a regression module to correlate the two
sets of topics. Taking advantage of limited tagged train-
ing images and rich untagged images, the work in [31]
proposed a regularized semi-supervised latent Dirichlet
allocation (r-SSLDA) for learning visual concept classifiers
in a semi-supervised way. However, several supervised
methods [14-16] show that the topics discovered by LDA
models are driven by general image regularities rather
than the semantic regularities for image annotation. To
address this, we propose a new three-level hierarchical
probabilistic model by incorporating supervision into the
extended LDA model, making the annotation applications
be much effective than previous LDA models.

3 The proposed representation method

In this section, we first give the notations that are nec-
essary in defining the multiway problem. Then, a tensor-
based method is proposed for visual representation.

3.1 Notations and definitions

We follow the notation conventions in tensor algebra
[32]. Vectors are usually denoted by lowercase letters, e.g.,
x; matrices by uppercase letters, e.g., X; and tensors by
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calligraphic letters, e.g., X. Their elements are denoted
with indices in parentheses. Table 1 lists the key notations.
The inner product of two tensors of the same
size A, B e ROhxLx-xIN s defined as (A4, B) =
Zh Ziz cee ZiN A(iv,iz,---in) -B(i1,i2, - - - in). Thus, the
Frobenius norm of A can be denoted by || Al = +/(A4, A).
The n-mode matricization of A € R *2xxIN denoted
as Ay € Rl Uxbuimixlupix-xIN) are obtained from A
by varying the index i, while keeping all the other indices
fixed. The n-mode product of a tensor .4 by a matrix
U € RMv*In denoted by A x, U, is a tensor with entries:

(A Xn U)(l'lt . rin—1rjnl iVH—'II' . rlN)
=" Al in) - UG in) )

3.2 Laplacian regularized uncorrelated tensor
representation

For image representation, we first represent a two-
dimensional image I with an exact tensor representation,
X e RhxDxI3 \where {I1, I} denotes the size of the image
and I3 denotes the depth of image feature maps. In this
representation, we consider the edge energies and the flow
directions as supplementary to pixel-wise color informa-
tion. At this point, we employ the Gaussian derivative
(GD) and the difference of offset Gaussians (DoG), as
defined in [33], for defining these features. The filter banks
by convolving GD and DoG functions can be defined as:

E;(I(x,9)) = \/\I(x,y) % GDy,0(x,9)|* + [1(x,7) % GDg /2 (x, )|
Fo(xy) = \/|I(x,y) % D0Go,0(x,9)|* + |I(x,9) % DoGy /2(x,9)|*

()

Table 1 List of key notations

Symbol Description

X, /\?n, Gn  The representations of an original tensor, centered tensor,
and its core tensor

U®, 0k  The k-mode transformed matrix and the Kronecker
products except the matrix

w,D,L The weight matrix of tensorial features, its diagonal matrix,
and its Laplacian matrix

gni Yn Vectorizations of the core tensor and the transformed
tensor

o, B, uc,0.  Parameters of the Dirichlet distribution for latent topics,
multinomial distribution for tags, mean and variance of
Gaussian distribution for visual features

W, Vd Symbol of the tag and the visual feature

Ymi Zd Latent topics for the tag and the visual feature

W,V Collections of tags and visual features

Y,Z Collections of latent topics for tags and visual features
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where (x,y) denotes the coordinates of the image and o
is a scale parameter. Then, the image can be represented
by:

X =Y Cp G Eop2(Y) Eg(Y) Exo (Y) Foy2(Y) Fo(Y) Fao (Y)]
(3)

where Y, Cp, C, are the three color channels obtained by
transforming the original RGB image.

Let {X,|X, € R0*2XB y — 1,... N} be a set of rep-
resented tensors from an image dataset. To learn uncorre-
lated features without loss of generality, training samples
are subtracted to be zero-mean so that the constraint of
uncorrelated features is the same as orthogonal projected
features. Usually, the image space is always of high dimen-
sionality. However, image contents are typically embedded
in a lower dimensional tensor subspace, in analogy to the
dimensional reduction problem that considers both fea-
ture selection (i.e., give a more informative description to
pixels) and spatial correlation. Thus, the task is to find a
tensor subspace that captures most of the characteristics
in the input space, i.e., define multilinear transformations
U e R,k =1,2,3] (UO) U = Iy that rewrite
the original tensor as:

Xy~ Gy UV x UP x3U® (4)

where X, = X, — X, X = (1/N) Z]n\; X, and G, €
R/1*)2%J3 is a core tensor. To capture the core tensor,
we determine the objective function with the following
minimization problem:

T
{u(k) e Rl g, | (U(k>> u® = ]} = arg r(\;)in ¥+ AMg
u®,g,

(5)

- 2
where ¥ = Zﬁlﬂ HX,, — Gy x1 UM x5, UD x5 u® HF,
= R 2
and Mg = GTLG = Zi/- W (i, )) ||gi _gi”z' Here,
{g,, eRP,D= ]_[,3(=1 ]k} is the vectorization of G,;,, and G
is a matrix with the column of g,. Define the diagonal
matrix D whose entries are column sums of the weight
matrix W, and L = D— W is a Laplacian matrix. The near-
est neighbor graph is used to construct the weight matrix
by finding the nearest neighbors for each image data. We

use NN (&X;,) to denote the set of Kyn nearest neighbors of
X),. The weight matrix can be simply defined as:

1 if X; e NN(A&)) or &A; € NN (X))
0 otherwise

Wi j) = { (6)
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To solve the problem defined in Equation 5, an alternat-
ing iteration scheme is applied. Given all the projection

matrices {L[(k) e Rk = 1,2,3}, we can obtain
that:
{Q,,,n:1,-~,N}=argn2jin\lly+)\/\/lg (7)
N 2 >
where ¥y, = >, ||y,,,—gn|F, Yu = vec(X,,x1

(L[“))T X2 (U(Z))T X3 (U(3))T>. The above function
defines a quadratic programming problem and can be
solved linearly by using the Newton-Raphson method [12]

with the following iteration:
D =g —d+ 2D g =+ 2 Y Lonjg” | (8)
J

Given the core tensor G,,, we can rewrite Equation 5 as:

T
(U® e Rk =1,2,3] (u<k>) u® =1y = argmin w
u
)

Since the projection to a high-order tensor subspace
consists of several projections to the corresponding vec-
tor subspaces, the optimization can be iteratively solved
by finding the k-mode projection that maximizes the scat-
ter in the k-mode vector subspace. To optimize U®), we
first define two scatter matrices:

d)g() = ZJVY:'I Gh(ry U(T—k) Uk Gz;(k) (10)
o = 30 Ko Uiy Gy
where I:[(—k) =um Q- ® 17 ® Lk+D Q- ® u®
and ‘®’ denotes the Kronecker product. Then, the solution
to Equation 9 can be achieved by:

—1
u® — (q)g()) q,;f) 11)
The pseudo code for the proposed representation
method is described in Algorithm 1. For this repre-
sentation, a full solution is referring to the formal-
ism in Equation 5. However, the alternating solution
for this problem is quadratic with respect to the num-
ber of the image dataset, which is much expensive for
image representation when dealing with a large dataset.
In real applications, we perform the above representa-
tion method with a much smaller size by first using
graph shift [34] for image clustering and then learn-
ing the representation for each group. Noticeably, the
image data of one group should subtract the projections
of previous multilinear transformations to preserve the
orthogonality.
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Algorithm 1: Laplacian regularized uncorrelated tensor
representation

Input: A group of image samples {X,|X;, € RI*2xJ3,
n=1---,N}

Output: Multilinear transformations {U® e Rk,
k =1,2,3}and core tensors {G,,n =1,--- ,N}

Step 1: Center the input image samples as (XX, =
X,—X,n=1,---,N}.

Step 2: Calculate the eigen-decomposition of S® =
>N Xn(k)f(nT(k), and set U™ to consist of the least
number of the eigenvectors corresponding to the largest
Jk eigenvalues.

Step 3: Iteratively compute {G,, n =1, -
to Equation 8.

Step 4: Update {LI® e Rk, k
Equation 11.

Step 5: Alternately perform steps 3 and 4 until
convergence.

-, N} according

1,2, 3} according to

4 The proposed annotation method

In this section, we first describe the proposed method
for image annotation. Then, we turn our attention to
parameter estimation for the modeling problem. Finally,
a unified framework is presented to infer the hierar-
chies of multiple modalities and predict tags for a new
image.

4.1 Class-specific Gaussian-multinomial latent Dirichlet
allocation

The proposed model, csGM-LDA, is a supervised proba-
bilistic model for learning multiple relationships between
images and tags. The basic idea is that the visual and
semantic modalities of images are represented as ran-
dom mixtures over multiple latent topics, where each
topic is characterized by a distribution over each modal-
ity. In Figure 1, the generative process of csGM-LDA for
an image-tag pair with M associated tags and D visual
features is given as follows:

1. Draw an image topic proportion 8 ~ Pr(0; )
2. For each associated tag
WueW={1,---,Ctm=1,--- M

N 77 AN

M - __/./.’\ £ \'

’,/‘ “\\ X /,/“’\\.
(a — 0 ) } =t /'II:C )

I\\, e 4 \\_/'\ D AT i \\;__/ /)
a | \

N 1 O1c)

N

Figure 1 lllustration of csGM-LDA.
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(a) Draw a topic assignment,
Ym ~ Pyinml0),ym € Ty ={1,--- , K}
(b) Draw a tag, wy, ~ Pw|y (Wm|ym; B) Wm €
W={1,-,C)

3. For each visual word vy,d =1,---,D

(a) Draw a topic assignment,

Zd ~ PZ|1‘[(Zd|9),Zd € 7; = {11' t ,I(}
(b) Draw a visual description,

va ~ Pvizw (Valzd, Wim; Hw,,: Ow,,)

Similar to the earlier LDA extensions, Pr(-) is a Dirich-
let distribution on the topic simplex # € RKwith the
parameter o € RK, Pyn(-) and Pzn(-) are two multi-
nomial distributions over the topic simplex 6, Pw |y ()
is a categorical distribution over a topic y, with the
parameter 3 € REK*XC where B(k,c) = pw, =
clym = k), and Pyizw(:) is a Gaussian distribu-
tion over a topic z; with the class-dependent param-
eters {,uwm (za, ), 0w, (24, D) w,, Ow,, € RKXD}. In this
way, semantic topics generate tags or classes for images
with each defining a prior distribution in visual topic
space. Taking Bayesian rules, the joint distribution of
{G,ym, Wiir Zds vd} for each image is given by:

PH,Y,W,Z,V(QlyWu Wi Zds Vd|Ot, ﬂl Mw,,r me) =
Pri(010) Py 1 Vm|O) Pw )y Wi |Ym: B)Pz11(2410)
Pvizw(Valza, iw,,, Ow,,)

(12)

The modeling problem is then to maximize the log
likelihood of the following marginal function:

N M D
Py yv(W,Vla, B, nu1.c,01:.c) ngn ITIT I1T>X>

n=1m=1d=1Ynm Znd
Pry,w.z,v Ons Yims Whims Znds Vudlot B, Mw,ppr Gwnm)den
(13)

In ¢sGM-LDA, the parameters {«, B, w1.c,01:c} are
dataset-level parameters, assumed to be sampled once in
the process of generating a set of images. The variables
0, is an image-level variable, sampled once per image.
The variables y,;, and wy,, are tag-level variables, sam-
pled once for each annotated tag. And the variables z,;
and v,y are structure-level variables, sampled once for
each visual description. Structural models similar to that
shown in Figure 1 are often studied in Bayesian statisti-
cal modeling, where they are referred to as conditionally
independent hierarchical models. Indeed, as we discuss
in the following subsection, we adopt the empirical Bayes
approach to estimating parameters with a variational EM
algorithm.

4.2 Parameter estimation via variational inference
In this section, we describe a convexity-based variational
algorithm for parameter estimation. The basic idea of
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convexity-based variational inference is to make use of
Jensen’s inequality to obtain an adjustable lower bound
on the log likelihood [13]. Essentially, a family of lower
bounds is usually indexed by a set of variational param-
eters. The variational parameters are chosen by an opti-
mization procedure that attempts to find the tightest
possible lower bound. In particular, the objective function
in Equation 13 is usually intractable due to the couplings
between 6, and {B, i1.c,01:c} in the summation over
latent topics. By dropping these edges and endowing the
simplified graphical model with free variational parame-
ters, we obtain a new family of distributions on the latent
variables as seen in Figure 2. The variational distribution
q,Y,Z|n, ¢, ¢) can be characterized by:

N M D
a0, Y, ZIn,$,¢) = [ [ 4Oulnn) [ | 40mnldwm) [ | 4@naltna)

n=1 m=1 d=1
(14)

where {Y,Z} are the collections of latent topics, the
Dirichlet parameter 7,, and the multinomial parameters
{®nm, Cna} are the free variational parameters.

Having specified a simplified family of probability distri-
butions, the next step is to set up an optimization problem
that determines the values of the variational parameters:

{n*, 9", ¢*} = arg min Dkz (q(0,Y,Z|n,¢,¢)
{ne.c}

1Py, z(6, Y, ZIW, V,a, B, 1., 01:C))
(15)

where Dy (-) is the Kullback-Leibler (KL) divergence and
{W,V} are the corresponding collections of their low-
ercase variables. To achieve this minimization, we begin
with the expression of the true log-likelihood for an
image-tag pair {W, V} by bounding the log likelihood of
Py v(W, Vla, B, t1.c, 01:c) using the Jensen’s inequality:

log Py, v (W, Vla, B, u1.c,o1.c) =
E4llog Pr,y,w,zv (0, Y, W,Z, Vla, B, n1.c,01.0)]
_Eq[ |Og Q(er Y, Z|7/: ¢I g)]

(16)

Figure 2 The variational model for approximating csGM-LDA.
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It can be easily verified that the difference between the
two sides of the above inequation is the KL divergence
that provided in Equation 15. Let £L(n, ¢, ¢; &, B, it1:c, 01:C)
denote the right-hand side of the inequation, we have:

|OgPW,V(WI V|O{, ,3, MH1:Cy UT:C) = 5(77: ¢: {;arﬂr M1:Cr U1ZC)+
Dk (46, Y, ZIn, &, O)|IPn,y,z(6, Y, ZIW, V., B, u1.c, o1:0))

(17)

This shows that maximizing the lower bound
E(’?: ¢r ¢a, ﬂr MH:C, O"I:C) with respect to {77: ¢l {} is equiv-
alent to minimizing the above KL divergence. As seen in
the Appendix, we obtain pair of updates:

B () 0 Bk W) xp (W 1K) = W (L, 1))

M
Cna (k) o ( [T Pviz,wWudlk, s Ow,)
m=1

K
exp <w<nn<k>> —v (g 1 (j)
I:
(k) = a(k) + XML () + 5, Laa (k)

(18)

Based on the above variational inference, parameter
estimation with respect to {«, 8, t1.c, 01:.c} yields the fol-
lowing EM algorithm:

1. E-step: For each image, find the optimizing values of
the variational parameters{n, ¢, ¢}.

2. M-step: Maximize the resulting lower bound
L, ¢, ¢, B, L1:c, 01:c) on the log likelihood of
Py v(W, Vi, B, 1.c, 01:c) with respect to the
model parameters{c, 8, 11:.c, 01:.c}-

The update in the M-step corresponds to finding
maximum likelihood estimates with expected sufficient
statistics for each image under the approximate pos-
terior which is computed by the variational parame-
ters. Thus, we can also maximize the lower bound
LM, ¢, ¢, B, n1.c,01:c) with respect to the parameters
{a, B, 1:c, 01:c}. In Appendix, we show that the update in
the M-step for the Dirichlet parameter o can be imple-
mented with an efficient Newton-Raphson method. The
parameters {8, i1.c, 01:.c} can be obtained as:

N M
Bk, c) ox 2"51 Z},Wn:1 Grum (k)8 (¢, Wim)
_ _ k)8 (c,Wym)V,
k d) = Don=1 Dm=1 nd nd
Helks @) o Cna ()8 (CWom) X
2 k d — Zn:] Zmz‘l {nd(k)a(C:an)(vndfllc(krd))
octk.d) et 2ot End (KB (€Wum)

(19)

We summarize the parameter estimation algorithm
in Algorithm 2. This is a standard EM process, and the
lower bound L(n, ¢, ¢; a, B, 1:c,01:c) is a concave func-
tion. Therefore, Algorithm 2 is convergent. From the
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pseudo code, it is clear that each iteration of the E-step for
c¢sGM-LDA requires O(NMDK) operations. Empirically,
we find that the number of iterations in this step is in
proportion to the number of tags and the dimensionality
of visual features. Parameter estimation in M-step for
{B, n1.c, o1:.c} requires O(NCMDK) operations. And the
number of iterations required for the Newton-Raphson
method is linear to the dimensionality of «. Therefore,
each EM iteration yields a total number of operations
roughly on O (NM (C + M + D) DK). The number of
iterations for the EM algorithm is mainly determined by
the number of involved parameters, which is in propor-
tion to C (1 4+ D) K. Thus, the complexity for building the
proposed model is about O (NCM (C+M+D) D2K2).
When coping with large-scale data (i.e, N > K,C,D),
the complexity of our modeling system is approxi-
mately linear to the number of images, which is much
effective by comparing with the typical quadratic anno-
tation models (e.g., pLSA [13] that requires O (N21<C)
operations, GM-pLSA [27] that yields the number
of operations roughly on O (N21(2C), and so on).

Algorithm 2: Parameter estimation for csGM-LDA
Input: Observations {v,4, Wy, n = 1,--- Nom = 1,---,
M,d=1,---,D}

Output: Modeling parameters {«, 8, i1.c, 01.c}
repeat

In E-step:

For each image in the image dataset, initialize

@um (k) = £uq(k) = 1/K by indexing all m, d, and k;
Initialize 1, (k) = a(k) + M /K by indexing all k.
forn=1:N

repeat

Update {n, ¢, ¢} according to Equation 18.

until convergence

In M-step:

Initialize (k) = 1/K for all k. Update « with:
O,(iJH)(k) — a(i)(k)—

, S s [ (N @) o
(z’)uﬁlﬁk) N 1/(1\[\1/’(2]’;1 am(/)))/+z/1,<1 1/(N\p'(a(ﬁ(/)))) /(N‘I’ (@@ (k)))
Update {8, i1.c, 01:.c} according to (19).
until convergence

4.3 A unified framework for image annotation
The unified framework is illustrated in Figure 3. Laplacian
regularized uncorrelated tensor representation is first per-
formed on the whole dataset. Then, both the semantic and
the visual modalities are incorporated into building the
proposed model. To annotate a new image, we first get the
corresponding core tensor and then predict potential tags
with Bayesian inference.

Given an observed visual image, our goal for image
annotation is to estimate the posterior distribution of the
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annotated tags. Taking Bayesian rules, we can infer their
posterior probability by:
P V1:D |2 Bt Ow
PwyvWlvip, o, B, pw, o) = 7‘%5::;“5';5&5 2
_ JyPa@ (X, Prin010)Pwiy w1y ) (X., Pain Galo)Pyizw Valzasi o) (zad)) )do
- Jy Pr@la)(X., Pan GalOPyizw Valzauitn ad) o zad) ) do

(20)

For simplicity, we employ Monte Carlo inference [35]
to approximate the integral of 6. To get the above proba-
bility, we first generate samples {6%,s = 1, - - , S} from the
posterior 8° ~ Prj(0|a). Then, the tags’ probability can be
rewritten by:

Py iy (wlvip, o, B, tw, o) =
Z§:1 (Zy Pyin(y16°)Pw )y (lerﬁ)) (sz Pzin(zaq \95)1’\/|Z,W(Vd|2drﬂwﬂw))
Y5 Y., P2 @al09)Py 2w (Valzaubin zad) 0w (za.d)

(21)

5 Experiments

To evaluate the performance of our annotation frame-
work, we set up several quantitative experiments. First, we
investigate the effects of the setting parameters by con-
ducting cross validation to select the best parameters for
our proposed model. Then, we give a comparison of differ-
ent image representations and validate the effectiveness of
our representation method. Finally, we evaluate the pro-
posed method on two benchmark datasets and report the
results over state of the art.

5.1 Datasets and representations

We evaluate the proposed framework on two well-known
benchmarks: Corel-5K [36] and ESP-Game [37]. The
details of the two image datasets are shown in Table 2.
The training percentage of each dataset is set as 80%, a
validation set occupies 10% of the total images, and the
remainder is the test set.

To get a reasonable size that keeps the images from
serious deterioration for our representation method, we
fix the size of images in Corel-5K and ESP-Game as
128 x 192 and 225 x 169, respectively. The vectorization
of the core tensor constituting the D-dimensional Lapla-
cian regularized uncorrelated tensorial vector (LGUTV)
can be viewed as an image descriptor, with each item
corresponding to an uncorrelated elementary multilin-
ear projection. In our experiment, the dimensionality of
LGUTYV is fixed as 128 for each group in both the two
datasets. We further divide the Corel-5K and ESP-Game
into five and ten groups by graph shift [34], resulting in
a 640-dimensional vector and a 1,280-dimensional vec-
tor for these two datasets, respectively. In addition, we

Table 2 Statistics of two image datasets

Dataset Number of tags Number ofimages Tags per image
Corel-5K 5,000 374 34
ESP-Game 20,000 268 4.7
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compare the proposed representation method with sev-
eral common representation methods, i.e., the quantified
color histograms with 16 bins in each color channel for
RGB, LAB, HSV representations (C-HIST), the quantified
SIFT features both extracted densely on a multiscale grid
(D-SIFT) or for Harris-Laplacian interest points (H-SIFT)
[3], local binary patterns (LBP) [38], and CPAM [4]. To
get a proper evaluation of these image descriptors, we set
their dimensions equal to that of LGUTV.

5.2 Evaluation criteria and baselines

The performance of image annotation is evaluated by
comparing the automatically generated tags for the test
set with the human-produced ground truth. In this paper,
we give the following two measures for annotation evalua-
tion. Firstly, F1 score is measured by computing precision
(Prec) and recall (Rec) for fixed annotation length with the
five most relevant tags.

2 X Prec x Rec

F, =
Prec + Rec

(22)

Note that each image is forced to be annotated with five
tags, although the image might have fewer or more tags
in the ground truth. Therefore, even if a model predicts
all ground truth tags with a significantly higher probabil-
ity than other tags, we will not measure perfect precision
and recall. Thus, we also measure the precision at differ-
ent levels of the recall for assessing the general annotation
performance. The mean average precision (mAP) [13]
over tags are found by computing for each tag the aver-
age of precisions measured after each relevant image is
retrieved.

Nq
mAP = NL Z Z Prec(i) /‘rel(q)| (23)

1 g=1 ierel(q)
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where Prec(i) is the precision of the correctly retrieved
images at rank i in the ranking results of a query g, rel(q)
is the set of relevant images for this query, and Nj is the
number of all queries.

For all images in the two standard datasets, our methods
are compared with several most relevant and state-of-the-
art methods, including TagProp [3], pLSA [13], GM-pLSA
[27], GM-LDA [29], Corr-LDA [29], topic regression mul-
timodal latent Dirichlet allocation (tr-mmLDA) [30], and
css-LDA [16].

5.3 Investigate the impact of the setting parameters

We first investigate the neighborhood size Kyn for the
graph construction and the tradeoff parameter A for eval-
uating the effectiveness of Laplacian regularization. These
two parameters reflect different facets of data construc-
tion; we joint discuss the sensitivity of these two param-
eters. As seen in Figure 4, we measure the Fy scores for
different parameters by setting the number of latent top-
ics equal to the number of tags. Then, we choose to set the
two parameters as the most promising for the two datasets
in the following experiments, which are Ky = 10,1 =
0.1 for Corel-5K and Knyy = 15,1 = 0.1 for ESP-Game,
respectively. Besides, we observe that Laplacian regular-
ization can achieve a more effective representation for
better semantic learning by comparing the case that A # 0
with the case that A = 0.

Regarding topic models, they require the number of
latent topics (i.e.,K) to be estimated, as this hyper param-
eter defines the capacity of the model. We analyze the
parameter with a cross validation scheme. As seen in
Figure 5, the improvement of annotation performance
grows much slowly when the number of latent topics
arrives at 100 for both the two datasets. When this num-
ber increases over the total number of tag vocabularies,
¢sGM-LDA might suffer from the overfitting problem.
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Figure 4 Investigation of the neighborhood size and the tradeoff parameter. F1 score is measured to evaluate the performance of csGM-LDA by
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For example, the measures of F; score and mAP in both
Figure 5a,b decrease when the number of latent topics
is larger than 300. In the following experiments, we set
the parameter as K = 300, which achieves the best
performance for both the two datasets.

5.4 Evaluation of different image representations

In this paper, we argue that traditional vector-based image
representations ignore high-order characteristics in image
space, and thus, we combine unsupervised TSL and Lapla-
cian regularization for achieving a more discriminative
descriptor, i.e., LGUTV. To evaluate its effectiveness,
we compare this descriptor with several state-of-the-art
image descriptors on the two datasets by measuring F;
Scores for the results of csGM-LDA. As seen in Figure 6,
the performance of modeling csGM-LDA with LGUTV
achieves the best performance by comparing with oth-
ers on both the two datasets, confirming that tensor

representation is most likely to provide a discriminative
descriptor for recognizing the complex visual scenes.

5.5 Comparison with existing methods

In this section, we perform the annotation tasks on both
the Corel-5K and ESP-Game datasets by comparing the
proposed method with others. In Table 3, we report the
performance by measuring both Fy score and mAP for dif-
ferent methods based on LGUTYV. On both two datasets,
we observe that class-specific methods (e.g., TagProp, css-
LDA, and csGM-LDA) obviously perform better than oth-
ers. This is consistent with the analysis in the introduction
since the generative domains of the complex visual world
are much hard to describe. In addition, the measures for
ESP-Game are consistently lower than that for Corel-5K
because the retrieval tasks on which these measures are
now computed are more challenging: an average of nearly
2,000 images for testing (versus 500 images) are ranked.
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Figure 6 Annotation performance of csGM-LDA with different image representations.
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Table 3 Comparison of different methods on both
Corel-5K and ESP-Game

Corel-5K ESP-game
Methods Fy Score mAP F; score mAP
TagProp 0.342 0374 0323 0.281
pLSA 0.193 0.235 0.185 0.156
GM-pLSA 0.254 0.289 0213 0.179
GM-LDA 0.276 0.303 0.224 0.192
Corr-LDA 0316 0.354 0.288 0.253
tr-mmLDA 0323 0.361 0.295 0.259
css-LDA 0.350 0.391 0325 0.282
csGM-LDA 0.353 0.394 0334 0.290

The proposed method achieves much more improve-
ment on the ESP-Game dataset by comparing with a bit
improvement on the Corel-5K dataset, demonstrating its
effectiveness of modeling the large-scale dataset. For all
the test sets, our proposed method performs best, and the
instantiations of csGM-LDA and css-LDA clearly outper-
form others. We further compare the time required for
training of different LDA models on ESP-Game and Corel-
5K on a Intel Core i5-2410M CPU 2.30 GHz processor.
Figure 7 gives the results. We observe that csGM-LDA is
much faster than css-LDA. The reason is probably that the
number of parameters in css-LDA is much larger than that
of csGM-LDA. All the above results show the efficiency of
our method.

6 Conclusions

In this paper, we propose a novel model, denoted as
¢sGM-LDA, based on Laplacian regularized uncorrelated
tensor representation for image annotation. The pro-
posed annotation possesses two characteristics, namely:
1) images are represented by a set of uncorrelated
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tensorial descriptions and 2) class-specific information is
integrated into semantic learning with the extension of the
standard LDA model. The entire problem is formulated
within the proposed framework, and csGM-LDA is pre-
sented to bridge the semantic gap between image contents
and annotated tags. The experimental results demonstrate
the effectiveness of our proposed method. Following the
research on this line, we will further exploit region-based
tensorial features for discriminative image representation
and discuss the correlation of the class-specific informa-
tion in a hierarchical LDA formalism.

Appendix
To maximize the lower bound in the E-Step that described
in Section 4, we begin by expanding it with the fac-
torizations of Pryy, w2 v(6,Y, W, Z, Via, B, n1.c, o1:c) and
q(6,Y,Z|n, ¢, ¢):

L, ¢, 5o, B, ur:cio1:c) = Eqllog Pri(6]a)]

+E,4llog Pyin (Y0)1 +E4[log Py y (WY, B)]

+E4[log Pz(ZI0)]1+E4llog Py zw (VIZ, W, ui.c, o1:.0)]

—Eqllog q(01m] —E4llog q(Y1¢)] —E4[log q(Z]¢)]

We unfold each item, and obtain:

Pr@a) = M 1_[ g(k)a(k)—1'
k

[T T (k)
PYIH(ym|9) = GO’M)
Pzin(z4160) = 0(z2), Pwiy Wil ym: B) = BV Win)

1
PV\Z,W(Vd|Zd: Mwmldwm) = m
Win \Zdr

< exo [ V4= P G )?
P 202 (24,d)

To evaluate L(n,¢,¢;a, B, u1.c,01:c), we should mea-
sure E; (log6). We find that the sufficient statistic in
defining Prj(fla) is log (k). Since the derivative of the
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log normalization factor with respect to the parameter
is equal to the expectation of the sufficient statistic, we
obtain:

K
E,llog8(k)]= W(n(k)) — ¥ (Z n(k))
k=1

where W(.) is the first derivative of logI'(-). Thus, we
expand L(n, ¢, ¢; o, B, 1:c, 01:¢) as:

5(’7:¢: {;O{, /31 N—1:CIO'1:C) =
YN (Iog r (2521 a(k)) — YK log I (@ (k)
+ LI @) = 1) ELlog 6, (K1) )
01 Yot Ykt Sum(KVEL10g 0, (K) [1,]
Y o Ykt bum(K) 10g BK, W)
Y K 6ua(KET10g 6, (K) [17,]
AN M S S K 60a(K) 109 Py 2, (VdlK B Gu)
—3N4 (1log TR mak)) + 324 1og T 1, (K)
= I (1a(0) = 1) ETlog 6, (K11 )
=Y Yot Ykt Gum (K) 10G G (k)
— Y Gna(K) 10g §a(K)
In the E-Step, we first maximize the above function with
respect to ¢y, (k). Observing that this is a constrained

maximization since 22(:1 Gum(k) = 1, we first take the
corresponding derivative:

K
= Wnu(k) = [ Y 14() | +log B, Wym)
j=1
- |09 ¢nm(k) -1

Adding Lagrange multipliers to £ and setting the deriva-
tive of the summation to zero yields the maximizing value
of the variational parameter ¢, (k):

oL
dnm (k)

K
Bram () 0 Bk, W) €xp | W(n(K)) — W [ D" 1))
j=1

Similarly, we can obtain the variational parameter ¢, (k)
as follows:

M
Cnd (k) o (H Py\z,w (Vnalk, /Lwnm,ownm>

m=1
K
x exp | W, (k) — ¥ Z 7 (j)
j=1

Next, we maximize £ with respect to 1, (k). Taking the
corresponding derivative, we obtain:

Tl = W01 () = a0

+ oy bam ) + L0 £nah))
— 2 v (S ) (0 = mk)
X bk + L G0 )
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Setting this equation to zero yields a maximum at:

M D
(k) = (k) + > bum®) + Y Cua (k)

m=1 d=1
In the M-Step, we also maximize the resulting lower
bound L(n, ¢, ¢; &, B, L1:c, 01:c) with respect to the model
parameters {«, B, u1.c,01.c}. To estimate the Dirichlet

parameter o, we first get the derivatives as:
K

Y ‘
aa(k)zz v > el | - wm)

n=1 j=1

K
i RZCHOIERE DPUHT)
j=1

This derivative depends on «(j), for j # k, and we there-
fore must use an iterative method to find the maximal o.
In particular, we can invoke the Newton-Raphson method
with the update:

(k) = a9 (k)—

oL _ =1 galg/ NV @) /
wO® 1 [(Nw(TE000)) +55 1/ (N @O ))

(N (oD (k)))

To maximize L(n, ¢, ¢; &, B, L1:c, 01:c) with respect to S,
we add Lagrange multipliers and set the derivative of the
summation to zero, we can obtain:

N M

Bk,c) o Y > bum (k)8 (C, W)

n=1m=1
As to {u1:.c, 01:c}, we set the corresponding derivatives
of L(n, ¢, ¢; e, B, 11:c, 01:c) to zero and can exactly obtain:
S St Cnd (K)S(C, Wiam) Vg
Y S nd ()8 (C, W)

N M (K)S (e W) (Vg — ek, d))?
qu\l=1 2%21 Cnd (k)‘S (C, an)

/,Lc(k, d) =

o2(k,d) =
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