
Xu et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:41 
DOI 10.1186/s13634-015-0225-y

RESEARCH Open Access

Noisy image magnification with total variation
regularization and order-changed dictionary
learning
Jian Xu1,2*, Zhiguo Chang3, Jiulun Fan1, Xiaoqiang Zhao1, Xiaomin Wu1 and Yanzi Wang1

Abstract

Noisy low resolution (LR) images are always obtained in real applications, but many existing image magnification
algorithms can not get good result from a noisy LR image. We propose a two-step image magnification algorithm to
solve this problem. The proposed algorithm takes the advantages of both regularization-based method and
learning-based method. The first step is based on total variation (TV) regularization and the second step is based on
sparse representation. In the first step, we add a constraint on the TV regularization model to magnify the LR image
and at the same time to suppress the noise in it. In the second step, we propose an order-changed dictionary training
algorithm to train the dictionaries which is dominated by texture details. Experimental results demonstrate that the
proposed algorithm performs better than many other algorithms when the noise is not serious. The proposed
algorithm can also provide better visual quality on natural LR images.

Keywords: Image magnification; Super-resolution; Total variation regularization; Dictionary training; Sparse
representation; Image denoising

1 Introduction
The technology of image magnification focuses on how to
magnify a low resolution (LR) image and at the same time
recover some high resolution (HR) details. The methods
of this technology can be divided into three categories:
the method based on up scaling [1], the method based on
reconstruction [2-5], and the method based on learning
[6]. Some methods based on up scaling, such as bilinear
and bicubic interpolation (BI) [7], are popular since they
have low computational complex, but they always pro-
duce blurring edges and suffer from artifacts since they
use the invariant kernels for all kinds of local textures.
Methods based on reconstruction aim at reconstructing
the HR image by imitating the inverse process of degra-
dation [2]. These methods rely on the rationality of the
reconstructing model. The methods based on up scal-
ing and reconstruction have smaller memory space costs

*Correspondence: xujian_paper@126.com
1School of Telecommunication and Information Engineering, Xi’an University
of Posts and Telecommunications, Weiguo Road, 710121 Xi’an, China
2Image Processing and Recognition Center, Xi’an Jiaotong University,
Xianning road, 710049 Xi’an, China
Full list of author information is available at the end of the article

than the learning-based methods in most of the cases.
But it is difficult to use some simple mathematical mod-
els to fit the sophisticated natural conditions. This makes
these methods can not recover many texture details. The
learning-based methods are more flexible to deal with the
problem [6]. They use the training images to learn the
relationship between the HR and LR images, and many
existing works have demonstrated their good effect for the
high magnification factors.
There are two important aspects in the learning-based

algorithms. The first is the feature extraction methods.
The second is the learning models.
Many existing feature extraction methods can be uti-

lized to extract features for image magnification prob-
lem. Gradient features [6,8], Gabor features [9], fields of
experts (FoE) [10] features and histogram oriented gra-
dients (HoG) [11] are developed. To deal with different
texture features by different strategies, the input image
can be separated into edge and texture components [12],
shape and texture components [13,14], different texture
regions [15], or different frequency bands [16,17].
The main idea of many existing learning-based models

is to use some tools to learn the relationship between the
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LR and HR images. Neighbor embedding (NE) is based
on the assumption that the LR and HR local patches
have similar geometries in two distinct feature spaces [18].
However, finding neighbors in millions of data samples is
a high time-exhaustive task for the NE-based algorithm.
Canonical correlation analysis (CCA) [19-21] assumes
that the corresponding HR and LR images have great
inner product similarity after a transformation. Com-
pared to the NE-based methods, CCA can accomplish
the transformation with lower computational complex-
ity. Sparse representation-based models are widely used
[22] in image processing because of its good generaliza-
tion ability. Yang et al. [6,8] proposed a classical model to
transform the HR and LR images into a unified subspace.
They suppose the HR and LR images should have the
same sparse representations in the subspace. To accom-
plish the transformation, coupled dictionary training is
an important step. Yang et al. proposed joint learning
[6] and coupled learning [23] algorithms to train coupled
dictionaries. The joint learning algorithm combines the
LR and HR patch pairs together to convert the coupled
dictionary training task into a single dictionary training
task. However, the reliable sparse representations are not
guaranteed to be found in the test phase. Yang’s cou-
pled learning algorithm [23] uses the alternately steepest
descent algorithm to update the LR and HR dictionaries.
Zeyde et al. [8] use a single dictionary training algo-
rithm to train the LR dictionary and then generate the
HR dictionary by solving a least square problem. Xu et
al. [24] alternately update the LR and HR dictionaries
with K-singular value decomposition (K-SVD). In these
dictionary training algorithms, Zeyde’s algorithm has the
smallest time complexity. Since it is a too strict condition
to let the LR and HR sparse representations to be exactly
the same, some tools (such as the neural network [25]
and linear transformation [26,27]) are employed to model
the relationship between the two sparse representations.
To accelerate the sparse representation-based algorithm,
Timofte et al. group the dictionary atoms [28] or the train-
ing samples [29] to decrease the time complexity of cal-
culating the sparse representations. Some algorithms can
provide excellent results on some special image classes
(such as face [30] and buildings [31]). Besides the above-
mentioned tools, support vector regression (SVR) [32],
Kernel-based regression [33], deep convolutional neural
network [34], and fuzzy rule-based prediction [35] are
also used as the tools to solve the image magnification
problem.
In real applications, the obtained LR images always con-

tain noise (such as taking photos in low-light or strong
interference conditions). Since some existing algorithm
is not good at dealing with the noisy LR image, we
propose an algorithm to cover the shortage. The des-
tination of this algorithm is to reconstruct a clear HR

image according to a noisy LR image. The proposed
algorithm takes the advantage of both the regularization-
based method and the learning-based method. We firstly
use the regularization-basedmethod to suppress the noise
and then use the learning-based method to recover the
details. To make it simple, we briefly call the proposed
method total variation and order-changed dictionary
training (TV-OCDT) algorithm.
Our contributions can be summarized as follows:

1) We propose a constraint for the total variation (TV)
regularization-based image magnification model.
The constraint is helpful to suppress the noise and
recover sharp edges.

2) We propose an order-changed dictionary training
algorithm to train the coupled dictionaries. The
traditional dictionary training algorithm firstly trains
the LR dictionary. Then, generate the HR dictionary
according to the LR dictionary. But we firstly train the
HR dictionary and then generate the LR dictionary
according to the HR dictionary. This strategy
changes the dominated content of the dictionaries so
that the texture details can be recovered well.
Experimental results show that the proposed
algorithm is superior to others on the noisy images.
The remainder of this paper is organized as follows.
Section 2 describes the proposed algorithm. The
experimental results are presented in Section 3.
Section 4 concludes this paper.

2 The proposed algorithm
If the input LR image has noise, how could we deal with it?
An idea that flashed into themindmay be firstly denoising
the LR image and then magnify it. But it is difficult to be
executed, since the textures are dense and incomplete in
the LR image. Therefore, we propose an algorithm to solve
this problem. The framework of the proposed algorithm is
shown in Figure 1. A TV regularization-based algorithm
is employed to simultaneously accomplish magnification
and denoising at first. The details of the proposed TV
regularization model will be described in Section 2.1.
After the TV regularization, some texture details are dam-
aged. We use an OCDT algorithm to compensate the
texture details. The details of this step will be shown in
Section 2.2.

2.1 TV regularization with LR constraint
In real applications, we often obtain the noisy LR images.
If we directly use some magnification algorithm on these
images, the noise will be magnified simultaneously. The
strategy of denoising at first is not a good choice. Many
existing denoising algorithm [36] works very well on HR
images, but can not be executed on LR images because
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Figure 1 The framework of the proposed algorithm.

the textures are dense and incomplete (as shown in
Figure 2).
To fit the recovered HR image to the initial input LR

image Ls , the famous iterative back projection (IBP) [38]
algorithm is widely used in image magnification technol-
ogy. It can be executed without storing any tools (such as

data samples or dictionaries) and has low computational
complexity.
The model of IBP is as follows:

Zs,IBP = argmin
Z

∥∥F(Z) − Ls
∥∥2
2 (1)

Figure 2 The results of applying some famous denoising algorithm on the LR images. The first column shows the noisy LR images. The second
column shows the results of median filter [37]. The third column shows the results of non-local mean denoising [36].
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where Zs,IBP is the reconstructed HR image of IBP and
‘F(·)’ is the operation of down sampling by BI.
The model (1) can be solved in the following ways:

ZJ+1 = ZJ + λ[U(Ls − F(ZJ ))] (2)

where ZJ is the output of the Jth iteration and ‘U(·)’ is the
operation of up sampling by BI.
If the input is a noisy image, the model of IBP certainly

will propagate the noise to the HR image and the noise will
be evenmagnified (as shown in Figure 3). Therefore, some
constraints should be added on the IBP model so that it
can suppress the noise.
The traditional TV regularization [39] considers that

the HR images have a small TV norm. The reconstructed
image is obtained from :

Zs,TV = argmin
Z

{
∫

|G(Z)| + λ

2
∥∥F(Z) − Ls

∥∥2
2} (3)

where Zs,TV is the reconstructed HR image of TV regular-
ization and λ is a Lagrangemultipliers, ‘G(·)’ is to calculate
the gradients. But we found the traditional TV regulariza-
tion is not effective enough to suppress the noise in image
magnification (as shown in Figure 3).
To suppress the noise in LR images, we add another

constraint. We propose the following model:

Zs,TV = argmin
Z

{∫
|G(Z)| + λ1

∫
|G (F(Z))|

+ λ2
2

∥∥F(Z) − Ls
∥∥2
2

} (4)

where λ1 and λ2 are the Lagrange multipliers. Obviously,
the motivation of the constraint is to make the LR image
also have a small TV norm. This motivation is inspired
by the classical Rudin-Osher-Fatemi (ROF) TV denoising
model [40].
Inspired by the reference [39], the model (4) is solved

with the following method.
Define the following functions:

�1(X) = [ (X)2x + (X)2y + ε1] · 32
�2(X) = (X)xx • ((X)2y + ε1)
�3(X) = (X)xy • (X)x • (X)y

�4(X) = (X)yy • ((X)2x + ε1))

(5)

where (·)· 32 is to calculate the 3
2 power for every ele-

ment in the matrix and 1 stands for a matrix of ones of
the proper size. ‘•’ is to multiply the corresponding ele-
ments in matrices. The gradient items are generated with
the four gradient filters: f1 =[−1 0 1] , f2 = fT1 , f3 =
[−1 0 2 0 1] , f4 = fT3 , where ‘T ’ is transposition.

(X)x = X ∗ f1 (X)y = X ∗ f2
(X)xx = X ∗ f3 (X)yy = X ∗ f4 (6)

where ‘∗’ is convolution.
The model (4) is solved by the following iterative for-

mula:

ZJ+1 = ZJ + AJ + λ1BJ + λ2CJ

AJ = (�2(ZJ ) − 2�3(ZJ ) + �4(ZJ )) • /�1(ZJ )

BJ = U
[(

�2(F(ZJ )) − 2�3(F(ZJ ))

+ �4(F(ZJ ))
) • /�1(F(ZJ ))

]
CJ = U[Ls − F(ZJ )]

(7)

Figure 3 Visual comparison of the outputs of the traditional and the proposed TV regularization. The first column shows the outputs of BI without
any other treatment. The second column shows the outputs of IBP. The third column shows the outputs of traditional TV regularization. The fourth
column shows the outputs of the proposed TV regularization.
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where ‘•/’ is to do division on the elements of matrices, ε
is a positive parameter to avoid singularity and is set to 1
according to [39].
Figure 3 compares the images before and after TV reg-

ularization. As shown, the proposed TV regularization
constraint is benefit to suppress the noise and recon-
struct sharp step edges. More experimental results shown
in Section 3 will further demonstrate the effect of the
proposed TV model.

2.2 OCDT algorithm
Since most of the smooth part and step edges have
been recovered by the previous steps, we use the sparse
representation-based algorithm to recover the missing
texture details. Most of the sparse representation-based
image magnification methods work on patches. We also
use this strategy. As the operation in Zeyde’s method [8],
we produce four gradient maps of Zs,TV with four fil-
ters (f1, f2, f3, f4). These gradient maps are divided into
patches, and four gradient patches in a given position
are connected into a 4p2 dimensional column vector to
form the data set {ps,di }Ni=1, where ps,di is the feature vec-
tor for the ith patch, N is the patch number. Difference
between the desired HR image Zs and Zs,TV is calculated
with:

Zs,e = Zs − Zs,TV (8)

The data set
{
ps,ei

}N
i=1 is generated by dividing Zs,e into

patches, where ps,ei and ps,di are corresponding patches.
The classical coupled dictionary training model [23] is:

min
Dd ,De,{αi}

∑N
i=1

(
‖ps,ei − Deαi‖22 + ‖ps,di − Ddαi‖22

)

s.t ‖αi‖0 ≤ T̂ , ‖ddr ‖2 ≤ 1, ‖der‖2 ≤ 1, r = 1, 2, · · · , n
(9)

where αi is the sparse representation, Dd and De are dic-
tionaries corresponding to {ps,di }Ni=1 and {ps,ei }Ni=1, respec-
tively, ddr and der are their rth dictionary atoms, T̂ is the
sparseness constraint.
This model can be easily solved with Zeyde’s method

[8]. But it is not proper to use the strategy to generate
the Dd firstly and then calculate the De according to the
Dd. We should change the order of the dictionary training.
According to the observation, we found Zs,TV is domi-
nated by smooth regions and step edges, but lacks texture
details. The smooth regions can be well recovered by BI,
so the smooth training patches are dropped in dictionary
training stage as Yang’s operation [23]. If we train the Dd

firstly, Dd will be dominated by step edges. But we need
coupled dictionaries dominated by texture details, since
the step edges have been recovered by TV regularization
in the previous steps. Zs,e contains the lost texture details
in Zs. Therefore, we firstly train De and then calculate Dd

according to De.
We firstly train De. We solve the standard single dictio-

nary training problem with K-SVD [41]:

min
De,{αi}

N∑
i=1

∥∥ps,ei − Deαi
∥∥2
2,

s.t.
∥∥der∥∥2 ≤ 1, ‖αi‖0 ≤ T̂ , r = 1, 2, · · · , n

(10)

The next issue is how to estimate the Dd that can
provide similar sparse representation αi for pdi . We
use the following model to calculate the representation
of der :

βr = argmin
z

‖z‖2, s.t. der = Ps,ez, r = 1, 2, · · · , n (11)

where Ps,e = [
ps,e1 ,ps,e2 , . . . ,ps,eN

]
.

The solution of Equation 11 is:

βr = Ps,e+der =
(
Ps,eTPs,e + ςI

)−1
Ps,eTder , r = 1, 2, · · · , n

(12)

where ς (set to 0.1) is a small positive parameter to avoid
singularity, I is an identity matrix.
Dd is calculated with:

Dd = Ps,dB (13)

where Ps,d =
[
ps,d1 ,ps,d2 , . . . ,ps,dN

]
, B = [β1,β2, · · · ,βn].

Figure 4 shows the visual quality of before and
after OCDT. As shown, the output of TV lacks tex-
ture details. The step of OCDT recovers the texture
details.

2.3 Summary of the proposed algorithm
The dictionary training scheme of the TV-OCDT algo-
rithm is summarized in Algorithm 1. Since it is difficult to
estimate the noise level for a natural image in real appli-
cations, we trained the dictionaries with clear training
images. The test images with different noise levels are all
recovered by same dictionaries.
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Algorithm 1 Dictionary training algorithm
Input:

HR training images Zs
i , i = 1, 2, · · · ,Q, where Q is the

number of training images.
Output:

Coupled dictionaries Dd and De.
1: Down sample and up sample the Lsi according to the

magnification factor γ with BI. Denote the output as
L̃si . The size of L̃si is the same as Zs

i .
2: Enhance L̃si with the TV regularization model (4). The

initial value of the iteration is L̃si . Denote the output as
Zs,TV
i . Zs,TV

i can be considered as a degraded version
of Zs

i .
3: Calculate the difference image Zs,e

i by Zs,e
i = Zs

i −
Zs,TV
i .

4: Produce four gradient maps of Zs,TV
i with four filters

(f1, f2, f3, f4) as the operation in Zeyde’s algorithm [8].
5: Divide these gradient maps into patches and connect

the four gradient patches in each position into a 4p2
dimensional column vector to form the training data
set {ps,di }Ni=1.

6: Divide Zs,e
i into p × p dimensional patches. Then,

change the patches into p2 dimensional column vec-
tors to form the training sets {ps,ei }Ni=1. (The smooth
patch is dropped. We only use N patches which con-
tain textures. The variance of patches is used to distin-
guish the smooth and texture patches. If the variance
of ps,ei is small, we drop the ps,ei and ps,di . The similar
operation has been used in Yang’s work [6].)

7: Train the HR dictionaryDe by solvingmodel (10) with
K-SVD dictionary training algorithm [41,42].

8: Calculate βr according to model (11).
9: Obtain the Dd by Equation 13.

The reconstruction stage of the proposed algorithm is
summarized in Algorithm 2.

3 Experiments
In this section, we will first introduce the experimental
settings and compare our algorithm with five state-of-
the-art algorithms. Then, we will discuss two influential
factors for the sparse representation stage (including the
patch size and the dictionary size) and two parameters in
TV regularization stage (including two Lagrange parame-
ters and iteration number). Finally, we will show the time
complexity of the proposed algorithm.

3.1 Experimental settings
In our experiments, we magnify the input LR image
both by the factors of 3 and 4. We use the training

Algorithm 2 Reconstruction algorithm
Input:

LR testing images Lt .
Output:

Reconstructed HR image Ẑt .
1: Up sample the Lt to the desired size K1 × K2 with BI.

Denote the output as L̃t .
2: Enhance L̃t with the TV regularization model (4). The

initial value of the iteration is L̃ti . Denote the output as
Zt,TV .

3: Produce four gradient maps of Zt,TV
i with four filters

(f1, f2, f3, f4) as the operation in Zeyde’s algorithm [8].
Divide these gradient maps into patches and connect
the four gradient patches in each position into a 4p2
dimensional column vector to form the testing data
set {pt,di }Mi=1. Let Pt,d =

[
pt,d1 ,pt,d2 , · · · ,pt,dM

]
, whereM

is the number of testing patches.
4: Calculate the sparse representations for each patch

by solving the following problem with orthogonal
matching pursuit (OMP) algorithm [43]:

min{αt
i }

M∑
i=1

∥∥∥pt,di − Ddαt
i

∥∥∥2
2
, s.t.

∥∥αt
i
∥∥
0 ≤ T̂ (14)

5: Reconstruct the HR patches pti by:

pti = pt,di + Deαt
i (15)

6: Synthesis the output Ẑt by putting {pti}Mi=1 into their
proper locations and averaging the overlap regions.

images in the software package about Yang’s algorithm
[6]. Figure 5 shows some training images. We collected
100,000 coupled patches as the external training database.
Figure 6 shows some LR test images. The color train-
ing images are transformed into gray images. We only
use the patches which contain the texture information
and the smooth patches are discarded. ps,ei whose vari-
ance exceeds 12 is discarded. Its corresponding ps,di is also
discarded.
For the overlapped regions between the adjacent

patches, averaging fusion is usually used to obtain the
final pixel values. The median value has been consid-
ered to be more robust than average value, since it is
uneasy to be affected by a handful of bad values. In
our algorithm, a Gaussian weighted average is employed
for more accurate results. The median values are used
as the mean μ of the Gaussian distribution, the vari-
ance θ2 is calculated according to μ and the overlap
pixel values (u1,u2, · · · ,uv), where v is the number of
overlap pixels. The final pixel value u∗ is calculated by
Equation 16. Compared with the traditional average val-
ues, the Gaussian weighted averages can reduce the effect
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Figure 4 Visual quality of before and after OCDT. (a) TV output of flower image. (b) TV-OCDT output of flower image. (c) TV output of Lena image.
(d) TV-OCDT output of Lena image.

of the very bad values which are far away from the desired
values.

u∗ =
∑v

i=1 exp
(−|ui − μ|2/2θ2)ui∑v

i=1 exp
(−|ui − μ|2/2θ2) (16)

θ2 = 1
v

∑v

i=1
(ui − μ)2 (17)

3.2 Comparison with other methods
We compare our algorithm with five state-of-the-art algo-
rithms, including: Zeyde’s method [8], Anchored Neigh-
borhood Regression (ANR) [28], ANR plus[29], Statistical
Prediction Model (SPM) [25], and Deep Convolutional
Network (DCN) [34]. The parameter settings about our
method will be described in the following sections. In
Tables 1 and 2, we compare the peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) [44] of the

Figure 5 Illustration of training images.
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Figure 6 Gallery of test images. From left to right and from top to bottom, they are ‘Hat’, ‘Lena’, ‘Butterfly’, ‘Leaves’, ‘Parrot’, ‘Plants’, ‘Head’, ‘Bike’,
‘Flower’, and ‘Zebra’.

reconstructed HR images referring to different noise stan-
dard deviation σ . PSNR and SSIM are all quantitative
evaluations of the images. Figures 7 and 8 show the visual
comparison. According to the comparison, we can see
that though the proposed method obtains lower PSNR
and SSIM values than others for images without noise,
the reconstructed images have sharp edges and less arti-
facts than others. When the standard deviation of the
noise is less than 10, the proposed algorithm obtains the
highest PSNR and SSIM values in most of the cases. The
average values are higher than others. From the visual
comparison, we can see that the proposed algorithm can
suppress the noise well when the noise is less than 10.
When the variance of the noise is larger than 10, the
PSNR and SSIM values of the proposed algorithm are
lower than some of the existing algorithms. From the
visual comparison, we can see that all of the algorithms
can not obtain good visual quality. Therefore, how to

Table 1 The average PSNR and SSIM values for different
methods (3×)

Method Zeyde ANR ANR plus SPM DCN Proposed

Without

28.762 27.545 29.376 29.080 29.255 29.238

noise
0.8539 0.8411 0.8535 0.8465 0.8453 0.8586

σ = 5
27.044 26.851 27.181 27.089 27.191 27.673

0.7273 0.7129 0.7189 0.7268 0.7223 0.7980

σ = 10
24.460 24.101 24.020 23.714 23.996 24.836

0.5662 0.5440 0.5381 0.5280 0.5376 0.6381

σ = 15
22.129 21.698 21.420 20.912 21.281 22.079

0.4436 0.4216 0.4110 0.3898 0.4047 0.4801

σ = 20
20.238 19.762 19.403 18.811 19.190 19.838

0.3588 0.3383 0.3260 0.3029 0.3174 0.3716

PSNR, peak signal-to-noise ratio; SSIM, structural similarity; ANR, Anchored
Neighborhood Regression; SPM, Statistical Prediction Model; DCN, Deep
Convolutional Network.

magnify images with serious noise is a problem to be
solved.
To test the robustness of the proposed algorithm, we

test these algorithms on some natural images. Figure 9
shows the results. The test images are taken with a Cool-
pad 8750 mobile phone working on LR pattern and the
flashlight is on. They are taken in a ground parking at
21:30 in the evening. From the results, we can see that
the proposed algorithm provides sharper edges with less
artifacts.

3.3 Effects of the parameters
3.3.1 Effects of the dictionary size and patch size
The dictionary and patch size greatly affect all the
sparse representation-based image magnification meth-
ods. Since a larger overlap is good to denoising, we use
the overlap of p − 1 for each patch size. In TV regular-
ization step, the iteration number is set to 200 and the

Table 2 The average PSNR and SSIM values for different
methods (4×)

Method Zeyde ANR ANR plus SPM DCN Proposed

Without

26.812 26.680 27.172 26.951 27.059 27.129

noise
0.7841 0.7806 0.7860 0.7771 0.7780 0.7995

σ = 5
25.494 25.335 25.623 25.535 25.766 26.055

0.6796 0.6651 0.6774 0.6809 0.6916 0.7409

σ = 10
23.476 23.138 23.115 22.863 23.337 23.762

0.5445 0.5208 0.5194 0.5100 0.5409 0.6061

σ = 15
21.485 21.055 20.858 20.428 20.964 21.413

0.4350 0.4100 0.4032 0.3831 0.4171 0.4709

σ = 20
19.810 19.323 19.045 18.503 19.005 19.428

0.3539 0.3298 0.3200 0.2982 0.3283 0.3697

PSNR, peak signal-to-noise ratio; SSIM, structural similarity; ANR, Anchored
Neighborhood Regression; SPM, Statistical Prediction Model; DCN, Deep
Convolutional Network.
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Figure 7 The visual comparison of different methods of the flower image (3×). To make the readers see them clearer, we only show a small part of
every result image.

Lagrange multipliers are all set to 0.6 for the 3× mag-
nification and λ1 is set to 0.4 and λ2 is set to 0.6 for
the 4× magnification (we will discuss these parameters
in the next section). Tables 3 and 4 show the average
PSNR and SSIM values for different dictionary and patch
sizes.
For the 3× magnification, all the best PSNR values are

obtained when the dictionary size is 512. Most of the best
SSIM values are also obtained when the dictionary size is
512. Therefore, we choose 512 as the dictionary size for
the 3× magnification. When the noise standard deviation
is 5, the best patch size is 3. When the noise standard
deviation is 10 and 20, the best patch size is 5. When the
noise standard deviation is 15, the best patch size is 7.
Therefore, there are no best patch size which is suitable
for every noise standard deviation. But the worst values
appear when the patch size is 7. Furthermore, larger patch
size will result in larger time complexity. Therefore, we

choose 5 in our experiments since it is suitable for two
standard deviation values.
For the 4× magnification, most of the best PSNR and

SSIM values are obtained by the dictionary size 1,024.
The patch size 7 gets the highest PSNR and SSIM values
for most of the standard deviations. Therefore, we choose
1,024 as the best dictionary size and 7 as the best patch
size.

3.3.2 Effects of the parameters in TV regularization
The iteration number Ĵ and two Lagrange multipliers are
important parameters for TV regularization. Tables 5 and
6 show the change of the PSNR and SSIM values for dif-
ferent iteration numbers. It is obvious that 200 is the best
iteration number for the 3× magnification. For the 4×
magnification, the best iteration number is 200 when the
noise standard deviation is 5 or 20. The best iteration
number is 300 when the noise standard deviation is 10 and
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Figure 8 The visual comparison of different methods of the parrot image (3×). To make the readers see them clearer, we only show a small part of
every result image.

Figure 9 The visual comparison of different methods of the natural images (3×).
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Table 3 The average PSNR and SSIM values for different
patch and dictionary sizes (3×)

Patch size Dictionary size

256 512 1,024 256 512 1,024

σ = 5 σ = 10

3
30.423 30.433 30.430 26.744 26.660 26.670

0.8869 0.8857 0.8873 0.7198 0.7197 0.7179

5
30.422 29.883 30.437 26.660 27.567 26.572

0.8858 0.8552 0.8879 0.7148 0.7570 0.7113

7
30.486 29.883 30.364 26.700 27.449 26.554

0.8896 0.8576 0.8840 0.7173 0.7495 0.7076

σ = 15 σ = 20

3
22.928 22.823 22.856 19.379 19.356 19.325

0.4474 0.4432 0.4449 0.3381 0.3346 0.3395

5
22.989 24.848 22.933 19.317 22.020 19.399

0.4523 0.5323 0.4513 0.3405 0.4493 0.3444

7
22.853 24.881 22.821 19.357 22.013 19.237

0.4390 0.5373 0.4417 0.3350 0.4502 0.3347

PSNR, peak signal-to-noise ratio; SSIM, structural similarity.

15. Since more iteration number will result in more time
cost, we choose 200 in our experiments.
Tables 7 and 8 show the average PSNR and SSIM val-

ues for different Lagrange multipliers. As shown, the
best Lagrange multipliers are different for different noise
standard deviations and magnifications. According to the

Table 4 The average PSNR and SSIM values for different
patch and dictionary sizes (4×)

Patch size Dictionary size

256 512 1,024 256 512 1,024

σ = 5 σ = 10

3
28.803 28.730 28.831 25.688 25.623 25.710

0.8333 0.8306 0.8354 0.6544 0.6575 0.6490

5
28.799 28.769 28.877 25.637 25.704 25.607

0.8317 0.8289 0.8342 0.6498 0.6607 0.6505

7
28.850 28.382 28.417 25.639 26.372 26.314

0.8328 0.8008 0.8031 0.6486 0.6780 0.6782

σ = 15 σ = 20

3
22.076 22.027 21.945 19.302 19.217 19.366

0.3863 0.3892 0.3892 0.3472 0.3473 0.3455

5
22.123 21.885 22.151 19.458 19.173 19.353

0.3971 0.3837 0.4024 0.3495 0.3413 0.3551

7
21.962 23.776 23.777 19.212 21.650 21.870

0.3905 0.4734 0.4695 0.3397 0.4405 0.4628

PSNR, peak signal-to-noise ratio; SSIM, structural similarity.

Table 5 The average PSNR and SSIM values for different
iteration numbers (3×)

Iteration numbers σ

5 10 15 20

100
30.589 27.525 24.514 21.975

0.8858 0.6994 0.5369 0.4179

200
30.654 27.574 24.510 22.112

0.8881 0.7075 0.5428 0.4280

300
30.634 27.518 24.509 21.993

0.8865 0.7061 0.5407 0.4204

400
30.623 27.514 24.437 22.002

0.8859 0.7055 0.5335 0.4197

PSNR, peak signal-to-noise ratio; SSIM, structural similarity.

comparisons stated in Section 3.2, our method is supe-
rior to others when the noise standard deviation is less
than 10. The advantage is more significant when the noise
standard deviation is 5. Therefore, we choose the best
Lagrange multipliers according to the data about noise
standard deviation 5. For the 3× magnification, λ1 and λ2
are all set to 0.6. For the 4× magnification, λ1 is set to 0.4
and λ2 is set to 0.6.

3.4 Time complex analysis
The time complexity is analyzed as follows. Suppose the
time complexity of calculating an unknown pixel value
with interpolation algorithm is c, the TV regularization
requires order O(cK1K2 Ĵ) flops according to Equation 7.
OMP algorithm [43,45] is used to calculate the sparse
representations. OMP algorithm needs O

(
4p2nT̂

)
flops

when calculating sparse representation for a given feature
vector [41]. Therefore, the whole time complexity of the
testing phase is O(4K1K2p2nT̂ + cK1K2 Ĵ). Our algorithm
is tested on an AMD FX8150 CPU with 3.6 GHz and 16

Table 6 The average PSNR and SSIM values for different
iteration numbers (4×)

Iteration numbers σ

5 10 15 20

100
28.753 26.580 23.678 21.350

0.8209 0.6646 0.5194 0.4075

200
28.791 26.588 23.704 21.621

0.8225 0.6661 0.5217 0.4164

300
28.770 26.594 23.756 21.598

0.8210 0.6725 0.5211 0.4166

400
28.788 26.609 23.807 21.533

0.8212 0.6710 0.5213 0.4122

PSNR, peak signal-to-noise ratio; SSIM, structural similarity.
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Table 7 The average PSNR and SSIM values for different
Lagrangemultipliers (3×)

λ1 λ2

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

σ = 5 σ = 10

0.2
30.391 30.329 30.368 30.061 27.615 27.660 27.763 27.480

0.8763 0.8732 0.8714 0.8461 0.6927 0.6984 0.7048 0.6406

0.4
30.596 30.575 30.675 30.083 27.018 27.155 27.196 27.531

0.8834 0.8833 0.8867 0.8463 0.6358 0.6513 0.6560 0.6449

0.6
30.623 30.653 30.677 30.077 26.770 26.809 26.842 27.583

0.8783 0.8813 0.8826 0.8459 0.6162 0.6185 0.6218 0.6508

0.8
30.557 30.592 30.610 30.088 26.541 26.624 26.565 27.470

0.8694 0.8746 0.8757 0.8485 0.5910 0.6017 0.6048 0.6422

σ = 15 σ = 20

0.2
23.833 24.115 24.271 24.459 20.997 21.136 21.327 22.030

0.5460 0.5735 0.5851 0.5448 0.3961 0.4036 0.4117 0.4123

0.4
23.141 23.266 23.316 24.428 20.020 19.999 20.031 22.065

0.4908 0.5003 0.5078 0.5411 0.3359 0.3317 0.3400 0.4158

0.6
22.785 22.795 22.931 24.415 19.602 19.754 19.723 22.157

0.4673 0.4685 0.4835 0.5370 0.3075 0.3197 0.3132 0.4273

0.8
22.385 22.465 22.612 24.512 19.432 19.583 19.557 22.022

0.4411 0.4515 0.4592 0.5526 0.3069 0.3108 0.3147 0.4108

PSNR, peak signal-to-noise ratio; SSIM, structural similarity.

Table 8 The average PSNR and SSIM values for different
Lagrangemultipliers (4×)

λ1 λ2

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

σ = 5 σ = 10

0.2
28.595 28.622 28.554 28.566 26.399 26.329 26.415 26.533

0.8182 0.8215 0.8116 0.8073 0.6754 0.6745 0.6851 0.6889

0.4
28.795 28.748 28.824 28.719 25.908 25.972 26.048 26.056

0.8284 0.8253 0.8306 0.8208 0.6334 0.6464 0.6500 0.6493

0.6
28.791 28.716 28.751 28.799 25.644 25.768 25.809 25.820

0.8211 0.8219 0.8249 0.8216 0.6158 0.6158 0.6234 0.6282

0.8
28.759 28.760 28.694 28.807 25.529 25.631 25.539 25.651

0.8168 0.8220 0.8188 0.8226 0.6040 0.6108 0.6038 0.6130

σ = 15 σ = 20

0.2
23.479 23.622 23.787 23.744 21.353 21.579 21.898 21.970

0.5023 0.5123 0.5255 0.5292 0.3841 0.3954 0.4336 0.4300

0.4
22.777 22.824 22.984 23.110 20.667 20.689 20.985 20.886

0.4488 0.4556 0.4658 0.4790 0.3484 0.3473 0.3627 0.3684

0.6
22.415 22.445 22.582 22.698 20.488 20.284 20.459 20.532

0.4260 0.4260 0.4393 0.4407 0.3358 0.3267 0.3313 0.3399

0.8
22.227 22.241 22.529 22.399 20.271 20.269 20.210 20.357

0.4150 0.4094 0.4297 0.4254 0.3174 0.3167 0.3146 0.3309

PSNR, peak signal-to-noise ratio; SSIM, structural similarity.

Table 9 Time cost comparison (Second)

Size Zeyde ANR ANR plus SPM DCN Proposed

256 × 256 1.53 0.88 0.89 31.89 6.57 4.17

512 × 512 6.24 4.10 4.42 143.73 40.48 24.21

ANR, Anchored Neighborhood Regression; SPM, Statistical Prediction Model;
DCN, Deep Convolutional Network.

Gmemory PC at windows platform. Table 9 compares the
time costs of different methods. Our time cost is larger
than Zeyde’s method, ANR, and ANR plus but smaller
than SPM and DCN.

4 Conclusions
The capability of dealing with the noisy LR images is
greatly related to the performance of an image magnifica-
tion algorithm in real applications. In this paper, we pro-
pose an algorithm to magnify a noisy LR image. This algo-
rithm combines the ideas of regularization and learning-
based algorithm. The experimental results demonstrate
that the proposed algorithm performs well when the
standard deviation of noise is not very high. But some
problems still need to be solved in the future. Firstly, the
existing algorithms and the proposed algorithm all can not
deal with LR images with serious noise. From Figures 7
and 8, we can see that when the noise is higher than 10,
the visual quality is not ideal for all of these methods. Sec-
ondly, the performance on the natural images is not good
enough. Many texture details still cannot be recovered.
We should find better ways to deal with complex natural
conditions in the future research.
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