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Abstract

This paper presents a distributed approach to optimal power flow (OPF) in an electrical network, suitable for
application in a future smart grid scenario where access to resource and control is decentralized. The non-convex OPF
problem is solved by an augmented Lagrangian method, similar to the widely known ADMM algorithm, with the key
distinction that penalty parameters are constantly increased. A (weak) assumption on local solver reliability is required
to always ensure convergence. A certificate of convergence to a local optimum is available in the case of bounded
penalty parameters. For moderate sized networks (up to 300 nodes, and even in the presence of a severe partition of
the network), the approach guarantees a performance very close to the optimum, with an appreciably fast
convergence speed. The generality of the approach makes it applicable to any (convex or non-convex) distributed
optimization problem in networked form. In the comparison with the literature, mostly focused on convex SDP
approximations, the chosen approach guarantees adherence to the reference problem, and it also requires a smaller
local computational complexity effort.

Keywords: Alternating direction method of multipliers; Augmented Lagrangian methods; Convergence guarantee;
Distributed processing; Optimal power flow; Smart grid

Introduction
One of the key aspects of the current research trends for
the future smart grid is the possibility of devising dis-
tributed algorithms for solving a global problem. This
corresponds to the idea of a decentralized access to gen-
eration/storage resources, as well as to the much more
challenging task of decentralized control.
The typical smart grid problem taken into considera-

tion for distributed optimization is that of optimal power
flow (OPF), that is, the optimal management of electrical
power throughout the grid under a number of (electri-
cal) constraints (e.g., the satisfaction of a power request
from a load, the presence of a dispatchable/non dispatch-
able renewable generator or of a storage system). The
OPF problem, being non-convex in nature in both the
target function and the constraints, is very difficult to
solve. For this reason, a widely used approach is to map
it into a (somehow) close convex problem, and then solve
the convex counterpart by means of distributed meth-
ods, e.g., the alternating direction method of multipliers.
In this context, semi definite programming (SDP) relax-
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ations have emerged as a common option, e.g., see Lavaei
and Sojoudi et al. [1-4], Lam, Tse, and Zhang et al. [5,6],
Dall’Anese and Giannakis et al. [7,8], Gayme and Topcu
[9], and Erseghe and Tomasin [10]. One of the limits of
this approach lies in the lack of adherence to the original
problem, and in fact, optimality of the solution can only
be ensured for very specific networks. But complexity is
also an issue, since the number of variables involved in
the local processing is squared with respect to its natural
size. A few other worth mentioning approaches are avail-
able from the literature. S̆ulc et al. [11] exploit the (convex)
LinDistFlow approximation as a lower complexity alterna-
tive to SDP relaxation. Magnusson et al. [12] avoid SDP
relaxation and propose a sequential convex approxima-
tion approach, which, however, is known to imply slow
convergence speeds. Instead, the consensus and innova-
tion approach has been applied to the (convex) DC-OPF
problem by Hug and Kar et al. [13,14], but the chosen dis-
tributed algorithm only provides approximate solutions
even in the considered convex scenario.
The kind of approach we follow is alternative to the

main trend in the literature, in the sense that we do not
consider any convex relaxation and work directly on the
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non-convex OPF problem. In this way, we can guarantee
adherence to the original problem and develop an algo-
rithm which is capable of identifying local minima. This
idea was originally exploited in [15] where a distributed
algorithm based upon ADMM was proposed. This algo-
rithm provided undeniable evidence of the goodness of
the intuition but had two major drawbacks. First, opti-
mization for speedwas cumbersome and required central-
ized coordination. Second, no guarantee on convergence
was available, and in fact the algorithm often failed to con-
verge. Although the convergence failure did not practically
prevent the algorithm output for being usable, conver-
gence is an issue that practically limits the algorithm
speed.
In this paper, we wish to solve the above cited issues.

To simplify system parameters and improve convergence
speed, we remap the distributed problem in such a way to
reveal the network power flow. In the ADMM formulation,
the power flow variables are adequately weighted in order
to force the algorithm to solve an approximate linear prob-
lem in the power flow variables in the first iterations (sim-
ilarly to what happens with DC-OPF). The approximation
is progressively abandoned in later iterations. This corre-
sponds to the practical intuition that a linear power flow
exchange problem provides a solution which is close to the
optimum (some preliminary results on this aspect were
recently presented at an international conference [16]).
We also modify the plain ADMM algorithm and reinter-
pret it as a non-convex augmented Lagrangian method
(see the work of Martinez and Birgin et al. [17,18]) where
penalty parameters are constantly updated (increased) to
always guarantee convergence. More specifically, a global
convergence guarantee is available under the assumption
that local solvers are efficient, in the sense that they can
guarantee the identification of a (feasible) local minimum.
This might not be an easy task in general, but it is a rea-
sonable assumption when the number of local variables is
controlled. Furthermore, a certificate of convergence to a
local optimum is available when penalty parameters are
bounded. The kind of coordination involved in this pro-
cess is only local and therefore defines a fully distributed
algorithm.
The rest of this paper is organized as follows. First, the

reference OPF problem is presented and put in a net-
worked form readily usable for obtaining a distributed
algorithm. Then the distributed approach is discussed
in abstract form and its convergence properties proved.
Application to the specific OPF problem is then detailed,
and the proposed distributed algorithm is finally tested in
meaningful scenarios.

The OPF problem
We first introduce the OPF problem in its natural
(centralized) formulation.

Standard formulation
Consider an electrical network of N nodes at steady
state, where Vi, Pi, and Qi represent, respectively, the
local complex voltage, and the node’s active and reactive
powers. Assume that, at node i, a local cost is associ-
ated to active power production through a cost function
fi(Pi). Assume that the electrical neighbors of node i
are identified through the neighbors set Ni, and that the
line admittance Yi,j, j ∈ Ni, is known for each physi-
cal connection. Then the standard OPF problem has the
form

min
∑
i∈N

fi(Pi)

w.r.t. Vi ∈ C,Pi,Qi∈ R, i ∈ N

s.t. Pi + jQi = Vi
∑
j∈Ni

Y ∗
i,jV

∗
j

V i ≤ |Vi| ≤ Vi

Pi ≤ Pi ≤ Pi,

Qi ≤ Qi ≤ Qi

(1)

where N = {1, . . . ,N} is the nodes set. The first con-
straint in (1) refers to power flow equations (i.e., Kirchoff ’s
laws). The remaining constraints are voltage and power
constraint limitations, with Vi, Vi, Pi, Pi, Qi, Qi local
upper and lower bounds.
For the ease of simplicity here we refer to a basic

OPF problem, but additional constraints can be easily
added to (1), e.g., power flow constraints on specific
lines. Constraints referred to resources such as stor-
age systems and renewable generators (dispatchable or
not dispatchable) can be included by suitably select-
ing the cost factor fi, by introducing proper corrections
to the cost function, or by inserting a time variable.
Discrete variables can be also included in the prob-
lem formulation (e.g., the tap changing of the trans-
formers, or the cost to turn on/off a generator), in
which case a mixed-integer programming solver will be
needed. The results that follow are valid for all the above
generalizations.

Region-based formulation
We now wish to fully capture the network relations in (1),
in such a way to be used in a distributed implementation.
The idea is to partition the network in R regions, where
the sets Rk , k = 1, . . . ,R, identify nodes belonging to
region k. We have

N =
R⋃

k=1
Rk , Rk ∩ Rh = ∅,∀k �= h . (2)
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Because of power flow equations in (1), the voltages of
interest in region k are those belonging to set

Vk =
⋃
i∈Rk

Ni (3)

where Ni identify the neighbors of node i. Note that set
Vk includes set Rk as a subset, as well as all those nodes
which belong to neighbor regions and which have a direct
connection (edge) with one of the nodes of Rk . Accord-
ingly, we identify the local voltage vectors xk with entries
xk,� by

xk =[ xk,�]�∈Vk , xk,� = V� (4)

and the corresponding constraint region

Xk = {
V � ≤ |xk,�| ≤ V �,∀� ∈ Vk ,
Pi ≤ Pi ≤ Pi,
Qi ≤ Qi ≤ Qi,

Pi + jQi = xk,i
∑
j∈Ni

Y ∗
i,jx

∗
k,j,∀i ∈ Rk

⎫⎬
⎭

(5)

collecting voltage constraints, active and reactive power
constraints, and power flow constraints, and to which we
may add any additional constraint of interest. Regions
Xk are deliberately chosen to be compact (closed and
bounded) in order to strengthen later derivations and
results.
Hence, a region-based equivalent formalization for (1)

corresponds to the non-convex problem

min
∑
k∈R

Fk(xk)

w.r.t. xk ∈ Xk , k ∈ R
s.t. xk,� = xh,�, ∀� ∈ Vk ∩ Vh, k, h ∈ R

(6)

whereR = {1, . . . ,R}, function

Fk(xk) =
∑
�∈Rk

f�(P�) (7)

collects local cost functions, and where the constraint
is forcing equivalence between duplicated (voltage) vari-
ables in vectors xk .

Capturing the power flow
The formalization given in (6), although correct, is some-
how unsatisfactory in terms of the slow convergence
speed involved with its distributed implementation, and in
terms of the difficulty in optimizing its system parameters

(see [15]). The key point is that we are not using any elec-
trical intuition that could help the distributed processing.
The intuition we use is illustrated in Figure 1.
The idea with Figure 1 is the following. Consider two

neighboring regions k, and h, and edge (i, j) connecting
the two regions, i.e., with i ∈ Rk and j ∈ Rh. It also is
{i, j} ⊂ Vk and ⊂ Vh. Then, equivalence between the local
variables can be written in the form

xk,i = xh,i
xk,j = xh,j

(8)

which is equivalent to the constraint in (6). However,
equivalence can be also written in the form

xk,i − xk,j = xh,i − xh,j
xk,i + xk,j = xh,i + xh,j

(9)

where the first equivalence captures the power flow, since
the power flowing through line (i, j) is of the form Zi,j|Vi−
Vj|2, i.e., it only depends on voltage differences as from the
first of (9).
The corresponding formulation for the OPF problem

can then be compactly written by using sets

Ok =
{
(i, j)

∣∣∣i ∈ Rk , j ∈ Ni ∩ (Vk\Rk)
}

(10)

collecting in region k those edges connecting a node of
Rk to a node in a neighbor region. By further introducing
two auxiliary variables z− and z+ belonging to the linear
spaces

Z− = {z−|z−i,j = −z−j,i, ∀(i, j) ∈ Ok , k ∈ R}
Z+ = {z+|z+i,j = z+j,i, ∀(i, j) ∈ Ok , k ∈ R}

(11)

Figure 1 A way to capture the power flow on edge (i, j) with i ∈ Rk

and j ∈ Rh .
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the OPF problem becomes

min
∑
k∈R

Fk(xk)

w.r.t. xk ∈ Xk , k ∈ R
z− ∈ Z−, z+ ∈ Z+

s.t. ρ (xk,i − xk,j) = z−i,j,

ζ (xk,i + xk,j) = z+i,j,∀(i, j) ∈ Ok , k ∈ R

(12)

where two positive constants ρ, ζ are used to differently
weigh the power flow constraint on z− (providing conver-
gence on an approximate linear problem on power flow
variables) from the full equivalence constraint on z+. The
linear constraints in (12) can be also expressed in the
compact matrix notation

zk =
[
z−i,j
z+i,j

]
(i,j)∈Ok

= Akxk (13)

where Ak is a sparse matrix of size 2|Ok| × |Vk|. In the
typical case of large regions having a few connections with
neighbors it is |Ok| 
 |Vk|.

The distributed approach
We now introduce the distributed algorithm in a general
and abstract form, in order to assess its properties and
capture its structure with a compact notation.

Reference optimization problem
The kind of problem we wish to solve in (12) is a non-
convex problem of the form

min F(x)
w.r.t. x ∈ X , z ∈ Z
s.t. Ax = z

(14)

where x = [ xk]k∈R collects all variables, z = [ zk]k∈R
collects all auxiliary variables, F(x) = ∑

k∈R Fk(xk) is sep-
arable, X = X1 × . . . × XR is a Cartesian product, set
Z = Z− × Z+ is a linear space with associated projec-
tor LZ , and A = diag(A1, . . . ,AR) has a block diagonal
form. The results given in the following further consider
X bounded (as we already assumed), and F(x) continuous.
We finally assume that (14) has a solution.
The smoothness of functions involved with the OPF

problem ensure that a one-to-one relation exists between
local minima of problem (14) and the correspond-
ing Karush Kuhn Tucker (KKT) conditions. We have
(e.g., see [19])

Theorem 1. (KKT stationary points)
The KKT stationary point conditions associated with the
primal problem (14) are given by

0 ∈ ∂F(x) + ∂ηX (x) + ATλ

Ax = z
x ∈ X , z ∈ Z , λ ⊥ Z

(15)

where ∂ is the proximal sub-gradient operator, and where
ηA is the indicator function of set A, with ηA(a) = 0 if
a ∈ A and +∞ if a �∈ A. Conditions (15) identify the local
minima of (14). �

Augmented Lagrangian formalization
No global minimum ensurance is given in the present con-
text, since the Lagrangian associated with problem (14)
may suffer of a primal-dual gap. A remedy in this respect
is to use a Powell Hestenes Rockafellar (PHR) augmented
Lagrangian formulation. The augmented Lagrangian asso-
ciated with problem (14) can be written in the form

L(x, z,λ, ε) = F(x) + ηX (x) + ηZ(z)

+ λT (Ax − z) + 1
2
‖Ax − z‖2ε

(16)

where ‖x‖2ε = xTdiag(ε)x is a scaled norm, and where
the entries of ε are strictly positive. In (16), the couple
(x, z) plays the role of primal variables, while (λ, ε) play
the role of dual variables (Lagrange multipliers). The dual
function associated with (16) is

D(λ, ε) = min
x,z

L(x, z,λ, ε) . (17)

The PHR augmented Lagrangian of (16) is well defined,
in the sense that it ensures the typical properties of ordi-
nary Lagrangians of convex functions, i.e., the zero dual-
ity gap property and the applicability of a saddle point
theorem. The result is given in ([20], Theorem 11.59).
Incidentally, we are using a vector of weighting factors ε

instead of a unique multiplication by scalar factor ε. This,
however, does not modify derivation nor the final result.

Theorem 2. (Rockafellar-Wets)
1. Zero duality gap Let (x∗, z∗) be a solution to the primal
problem (14), and let (λ∗, ε∗) be any maximizer of the dual
function (17). The corresponding duality gap is zero, that
is, we have

F(x∗) = D(λ∗, ε∗) . (18)



Erseghe EURASIP Journal on Advances in Signal Processing  (2015) 2015:45 Page 5 of 13

2. Saddle pointThe solutions in 1 identify a saddle point
of PHR augmented Lagrangian (16), that is

(x∗, z∗) ∈ argmin
x,z

L(x, z,λ∗, ε∗)

(λ∗, ε∗) ∈ argmax
λ,ε≥0

L(x∗, z∗,λ, ε) .
(19)

Conversely, any saddle point (19) identifies a primal and
dual solution, as from 1. �

In this context, the search for an optimum point can
be turned into the search for a saddle point of the PHR
augmented Lagrangian, which is in general more effec-
tive in terms of efficiency and speed. However, since only
a local optimization point may be available for the first
of (19) (because of non-convexity), then only local saddle
points can be practically identified. It is then interesting
to observe the following result, which is a straightfor-
ward consequence of the fact that local minima/maxima
conditions of (19) correspond to KKT stationary point
conditions (15), as the reader can easily verify.

Theorem 3. There exists a one-to-one correspondence
between local minima of the original problem (14), KKT
stationary points (15), and local saddle points of the PHR
augmented Lagrangian in (19). �

As a consequence, the search for local minima can
be mapped into a search for local saddle points of the
augmented Lagrangian.

Alternating direction search for a local saddle point
The search for a local saddle point can be dealt with by
using the method of [17] (see also [18]). In our context,
the method can be mapped into an alternating direction
algorithm of the form

xt+1 ∈ argmin
x∈X L(x, zt ,λt , εt)

zt+1 ∈ argmin
z∈Z L(xt+1, z,λt , εt)

λt+1 = λt + Et(Axt+1 − zt+1)

(20)

where Et = diag(εt), and where εt is suitably updated at
each cycle by guaranteeing εt+1 ≥ εt . Note that, differ-
ently from [17], and similarly to what we have in ADMM,
an independent update is used for xt and zt . In turn, dif-
ferently from ADMM, the weighting parameters εt are
updated in order to ensure convergence of the process in
a non-convex scenario.
Throughout the process, we assume that the commuta-

tion property

LZEt = EtLZ (21)

holds, which corresponds to the request

εk,i,j = εh,j,i , (i, j) ∈ Ok , j ∈ Rh, k, h ∈ R . (22)

We also assume that

λ0 ⊥ Z . (23)

These are light hypotheses guaranteeing that (20) sim-
plifies to updates

xt+1 ∈ argmin
x∈X F(x) + 1

2
‖Ax − (zt − E−1

t λt)‖2εt
zt+1 = LZAxt+1

λt+1 = λt + Et(Axt+1 − zt+1)

(24)

and we also have

zt+1 ∈ Z , λt+1 ⊥ Z (25)

so that the third line in KKT conditions (15) is satisfied
throughout the iterative process. Note that the update of
xt in the first of (24) corresponds to the parallel of a num-
ber of local updates because F is separable, and X is a
Cartesian product. In addition, since the full minimum for
the first of (24) may be not available, we relax the result by
assuming that a local minimum is achieved and that the
target function in this local minimum xt+1 is smaller than
or equal to the function value in xt . Therefore, a reliabil-
ity assumption on the local solver is required. Although
this might be in general a strong request (e.g., see [21]),
especially when the local constraints identify a very small
feasibility region, we expect it to be reasonably met when
the number of local variables is not too large (i.e., for small
regions).
Interestingly, given the fact thatX is bounded, then both

sequences {xt} and {zt} are bounded. This may not be the
case for {λt}, but it is convenient to force this property by
assuming

λt+1 = P[λt + Et(Axt+1 − zt+1)] (26)

with P[λ]= max(λmin,min(λ,λmax)) a projection onto
a compact box. The reason for this action will become
clearer later on in the proof of Theorem 5.
Concerning penalty parameters εt , in the centralized

fashion of [17] the update criterion on εt is of the form

εt+1 =
{

εt if�t+1 ≤ θ �t
τεt otherwise (27)

with constants 0 < θ < 1 and τ > 1, and with

�t = ‖Axt − zt‖∞ (28)
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a measure of the primal gap (in infinity norm), in such
a way to increase the penalty only if the primal gap is
not decreasing sufficiently. The criterion can be also made
local. The approach we propose is the following. We first
check the primal gap decrease in region k via

ε̌k,t+1 =
{ ‖εk,t‖∞1 if�k,t+1 ≤ θ �k,t

τ‖εk,t‖∞1 otherwise (29)

with 1 the all-ones vector, and with

�k,t = ‖Akxk,t − zk,t‖∞ (30)

the local gap. We then select the smallest εt+1 ≥ ε̌t+1
satisfying (29), which in our context implies

εk,i,j,t+1 = max
(
ε̌k,i,j,t+1, ε̌h,j,i,t+1

)
(31)

where (i, j) ∈ Ok , j ∈ Rh, k, h ∈ R. This approach only
requires local message exchanges.With this definition, the
update is such that if one value of εk,t grows to ∞, then all
the values in the network do so, as it is for the centralized
counterpart (27).
The proposed solution is summarized in Algorithm 1.

Algorithm 1: Alternating direction search method
1 Update variable xt+1 using the first of (24). When a
global minimum guarantee is not available, a local
minimum must be identified, with the guarantee that
the target function is decreased with respect to its
value at xt .

2 Update auxiliary variables zt+1 = LZAxt+1.
3 Update the Lagrange multipliers λt+1 using (26).
4 Update the penalty parameters εt+1 using (27) or
(29)-(31).

Convergence guarantees
The important characteristic of Algorithm 1 is that, in
the given scenario, it provides a distributed solution. The
main difference with the inspiring technique of [17] lays
in the use of an alternating search with respect to x and
z (versus the joint minimum search on (x, z)), this being
the key point for obtaining a distributed algorithm. Never-
theless, the algorithm always converges (despite the non-
convex scenario), and convergence guarantees essentially
equivalent to those of [17] can be derived.
We separately treat the case where the penalty con-

stant parameters are bounded and the case where they
are unbounded. For bounded parameters we have the
following result.

Theorem 4. (Bounded penalties)
Consider Algorithm 1, and assume that the sequence of
penalty parameters {εt} is bounded. We have:

1. Sequences {zt} and {λt} converge to finite values, z∗
and λ∗, respectively.

2. There exists a finite limit point (accumulation point)
for the sequence {xt}, and if ATA is invertible then
sequence {xt} is further guaranteed to converge to a
finite value x∗.

3. The triplets (x∗, z∗,λ∗), with x∗ any limit point of
{xt}, satisfy the KKT conditions of (15), hence all
limit points x∗ identify a local minimum to the
original problem. Even more, in the limit t → ∞ any
triplet (xt , zt ,λt) satisfies the KKT stationarity
conditions, i.e., identifies a local minimum and
satisfies the constraint Axt = zt . �

Proof of Theorem 4. Consider that the sequence of
penalty parameters {εt} is bounded, to have εt = ε∞ for
t ≥ t0. For both (27) and (29), we have that �t+1 ≤ θ �t
for t > t0, and therefore λt is bounded and converges to a
finite value λ∞ (also in case the projection (26) is limiting
the value to its maximum).
Now, by exploiting equivalence zt = LZAxt , we rewrite

the update of xt in (24) in the form

xt+1 ∈ argmin
x∈X

F(x) + 1
2
‖(I − LZ)Ax‖2εt

+ 1
2
‖LZA(x − xt)‖2εt + λT

t Ax .
(32)

By then using the shorthand notation

gt = F(xt) + ηX (xt) + 1
2
‖Axt − zt‖2ε∞ + λT∞Axt

ζt = (λt − λ∞)TA(xt − xt+1) ,

and �gt = gt+1 − gt , from (32) we have

�gt + 1
2
‖zt+1 − zt‖2ε∞ ≤ ζt ≤ |ζt| , t > t0 (33)

which implies �gt ≤ |ζt| for t > t0. By noting that
‖A(xt − xt+1)‖ is bounded because X is assumed
bounded, and by recalling that limt→∞ λt = λ∞, then
it also is limt→∞ |ζt| = 0. This is sufficient to guaran-
tee that �gt converges to 0 for t → ∞, which can be
proved by contradiction. Specifically, if �gt does not con-
verge to 0 then there exists an infinite sequence for which
|�gt| ≥ ε > 0. Moreover, since �gt ≤ |ζt|, where the
right value can be made arbitrarily small for large t, there
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also exists an infinite sequence for which �gt ≤ −ε. By
denoting the sequence as Sε ⊂ (t0,∞), this would imply

g∞ − gt0 =
∑
t �∈Sε

�gt +
∑
t∈Sε

�gt ≤
∑
t �∈Sε

|ζt| −
∑
t∈Sε

ε .

Since |ζt| is guaranteed to be exponentially decreasing
because of the assumption �t+1 ≤ θ �t , the above implies
g∞ = −∞, hence a contradiction. Therefore, gt con-
verges to a finite value, and, as a consequence of (33), the
weighted norm ‖zt+1 − zt‖2ε∞ converges to 0, i.e., zt con-
verges to a finite value too. These results justify points 1
and 2.
To conclude with point 3, since xt+1 is assumed a local

minimum, from (32) we also have, for t > t0,

0 ∈ ∂F(xt+1) + ∂ηX̧(xt+1) + ATλ∞
+ ATE∞(I − LZ)Axt+1

+ ATE∞(zt+1 − zt) + AT (λt − λ∞)

and since the values on the second and third lines tend to
0 in the limit, then in the limit, the KKT stationary point
conditions (15) are satisfied.

As a consequence, bounded penalty parameters guaran-
tee a convergence of the algorithm to a KKT stationary
point, i.e., they imply the identification of a local mini-
mum. Note that the result is sufficiently strong also in the
case where ATA is not invertible (see second part of point
3). This is an important property since the invertibility
of ATA is only ensured for a single-node regions choice
Rk = {k}.
The result for unbounded parameters assumes that the

ill conditioning associated with very large/infinite values
is adequately solved, e.g., by locally normalizing the min-
imization in (32) by the maximum penalty value ‖εk,t‖∞.
We have

Theorem 5 (Unbounded penalties). Consider Algo-
rithm 1, and assume that the sequence of penalty parame-
ters {εt} is unbounded. We have:

1. Sequence {zt} converges to a finite value, z∗.
2. There exists a finite limit point for the sequence {xt},

and if ATA is invertible then sequence {xt} is ensured
to converge to a finite value x∗. �

Proof. The results in the proof of Theorem 4 can be
applied by suitably (locally) normalizing parameters. The
kind of replacements we use are

εt =⇒ ε̃t =
[

εk,t
‖εk,t‖∞

]
k=1,...,R

F(x) =⇒ F̃(x) =
R∑

k=1

Fk(xk)
‖εk,t‖∞

λt =⇒ λ̃t =
[

λk,t
‖εk,t‖∞

]
k=1,...,R

which have the characteristic of providing bounded quan-
tities. For both (27) and (29), all entries εk,t are diverging
by construction, hence λ̃t is ensured to converge to 0 in the
limit. Convergence is also guaranteed to be exponential,
because of the presence of parameter τ > 1 in the update
of penalty parameters. These properties are fundamental
and are ensured by use of projection (26). Furthermore, ε̃t
is guaranteed to converge to the all ones vector 1. By then
investigating the counterparts to gt and ζt , namely,

g̃t = F̃(xt) + ηX̧(xt) + 1
2
‖Axt − zt‖2ε̃t

ζ̃t = λ̃
T
t A(xt − xt+1)

we still verify that properties limt→∞ |ζ̃t| = 0 and

�g̃t + 1
2
‖zt+1 − zt‖2ε̃t ≤ ζ̃t ≤ |ζ̃t| (34)

hold, and we also have that �g̃t converges to 0. Hence
g̃t converges to a finite value, so that there exist limit
points for the sequence {xt}. From (34) we also find that zt
converges to a finite value. This proves the theorem.
Note that Theorem 5, although being able to prove con-

vergence of both sequences {xt} and {zt}, cannot guaran-
tee that the limit solution is feasible, i.e., it satisfies Axt =
zt . As a matter of fact, in the limit, the minimization in
(32) assumes the (approximate) form

xt+1 ∈ argmax
x∈X

‖(I − LZ)Ax‖2 + ‖LZA(x− xt)‖2 (35)

which corresponds to an iterative algorithm for perform-
ing a projection of x onto the feasible space X ∩ {x|Ax =
LZAx}, and in this context, the contribution ‖LZA(x −
xt)‖2 plays the role of a proximity operator, forcing vicinity
to the solution available from the previous step. Therefore,
if the algorithm used to solve the local problem (32) is suf-
ficiently powerful, then convergence to a feasible point is
also ensured in the limit. This is the case, in practice, only
for moderately non-convex scenarios.

The distributed OPF algorithm
The distributed OPF algorithm that we obtain by apply-
ing Algorithm 1 to problem (12) is summarized in
Algorithm 2. The local penalty parameters update (29)-
(31) is used.
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Algorithm 2: Distributed OPF processing in region k
(t denotes the iteration number)
1 for t = 0 to ∞ do
2 if t = 0 then
3 Initialize local voltages xk,0
4 else
5 Update local voltages xk,t via

xk,t ∈ argmin
xk∈Xk

Fk(xk) + 1
2
xTk Dk,txk + yTk,txk

where
6

Dk,t = AT
k diag(εk,t−1)Ak

yk,t = AT
k (diag(εk,t−1)zk,t−1 − λk,t−1)

7 A local minimum must be identified, with the
guarantee that the target function is
decreased with respect to its value at xk,t−1.

8 end if
9 Prepare messagesmk,t = Akxk,t

10 ⇒ Broadcast messagesmk,t to neighbor regions
11 ⇐ Receive messagesmh,t from neighbor regions h
12 Update auxiliary variables via
13

z−k,i,j,t = 1
2
(m+

k,i,j,t − m−
h,j,i,t)

z+k,i,j,t = 1
2
(m+

k,i,j,t + m+
h,j,i,t)

14 if t = 0 then
15 Initialize Lagrange multipliers λk,0. If no a

priori information is available, then set them
to 0.

16 Initialize the local gap �k,0 = ∞
17 Initialize penalty parameters εk,0 = 1ξ
18 else
19 Update Lagrange multipliers via

λk,t = P̧
[
λk,t−1+diag(εk,t−1)(Akxk,t−zk,t)

]
where P is a projection onto box [λmin,λmax].

20 Update the local gap �k,t = ‖Akxk,t − zk,t‖∞
21 Locally update penalty parameters

εk,t =
{‖εk,t−1‖∞1 if�k,t ≤ θ �k,t−1

τ‖εk,t−1‖∞1 otherwise

22 ⇒ Broadcast εk,i,j,t to neighbor regions
23 ⇐ Receive εh,j,i,t from neighbor region h
24 Correct local penalty parameters via

εk,i,j,t+1 = max
(
εk,i,j,t+1, εh,j,i,t+1

)
25 end if
26 end for

Note that two local message exchanges (denoted with
arrows) are required in lines 10 to 11 and lines 22 to 23
to exchange, respectively, the updated values xk,t (in order
to update auxiliary variables) and the temptative penalty
parameters updates ε̌k,t (in order to make sure that the
final update satisfies (21)). In principle, a single message
exchange could be obtained by postponing the penalty
parameters correction of line 24 after the auxiliary vari-
able update in line 13, at the cost of some sub optimality
in performance.
Overall, the local processing effort of Algorithm 2 is

light. The algorithm complexity is determined by the
update of xt in line 5, which corresponds to a region-based
optimization problem, and which can be efficiently solved
by state-of-the-art methods, e.g., interior point methods
(IPMs). The remaining actions require a limited effort,
especially in the standard case where a few connections
are active with neighboring regions and auxiliary vectors
are short (i.e., |Ok| 
 |Vk|).
We finally underline that five key parameters are used in

Algorithm 2, and these need to be accurately set for good
performance. We have:

1. Weighting constants ρ and ζ (they define matrices
Ak , see (12)-(13)). They should be chosen in such a
way that ρ � ζ > 0, in order to force the algorithm
towards an approximate linear solution on power
flow variables.

2. Initialization value for penalty parameters ξ . It
should be set to a small value to guarantee a good
algorithm outcome even when starting from a point
very far from the optimum.

3. Penalty parameters update constants 0 < θ < 1 and
τ > 1. In order to avoid a rapid increasing behavior
on penalty parameters, the constants should be set to
values close to 1.

Performance assessment
The algorithm performance is tested using three differ-
ent scenarios, namely: 1) the wide area network IEEE
Power System Test Case Archive [22]; 2) the IEEE PES
Distribution Test Feeder [23,24]; 3) a microgrid topol-
ogy generated according to the model proposed in [25].
The networks in Scenarios 2) and 3) have a tree topol-
ogy, while Scenario 1) involves networks with many loops
where algorithm convergence may be an issue. All cho-
sen scenarios aremoderate sized networks, withmoderate
non-convexities, which constitute the applicability field
of the proposed algorithm. Applicability to more com-
plex networks with more severe non-convexities and a
high number of loops (e.g., the Polish system models)
requires use of some additional (quasi centralized) coor-
dination between entities, and will be the subject of future
investigation.
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Description of the scenarios
A power losses minimization problem under voltage and
power constraints is considered (i.e., fi(Pi) = Pi), and the
following settings are used in the various scenarios:

1. Networks sizes N = 30, 57, 118, and 300 are used.
Constraints and load requests are set as from the
MATPOWER distribution [26].

2. The N = 123 nodes network is used in single-phase
fashion. The chosen settings are inspired by [6]. Load
requests are set as given in the dataset, and
generating capabilities ranges are added in the form
|QG,i| ≤ 1.2|QL,i|, and 0 ≤ PG,i ≤ 30 kW, where the
subscript L stands for load and G for generation.
Voltage regulation is applied with 0.94 ≤ |Vi| ≤ 1.06.

3. A unique network is selected with N = 120. The
network is generated as four joint small-world
graphs with 30 nodes (to limit the depth of the
graph) and rewiring probability p = 0.4 (see also
details in [16]). Lines lengths have an exponential
distribution with parameter μ = 65.86m and a
minimum distance set to 10m. The impedance value
is chosen 2.9400 + j0.0861
/km (class 1, 10mm2

cables). Load requests are randomly generated with
an uniform distribution in [ 0, 3] kW, and with a
uniform cosφ with φ ∈[−π

8 ,
π
8 ]. 20% of the nodes

are given generation capabilities, randomly
distributed in [ 0, 10] kW for active power and
[−20, 20] kVAr for reactive power. Voltage
regulation is applied in the range 0.9 ≤ |Vi| ≤ 1.1.

Region partitioning
Region partitioning is a fundamental aspect for ensur-
ing a good performance. Ideally, compact regions with
very few outer connections guarantee limited complex-
ity, accuracy of the solution, and controlled computational
time. In the considered scenarios, region partitioning is
chosen in such a way that a unique generator is available
in each region, and the region further includes those loads
which are electrically closer (in terms of line impedance)
to the generator. Since this corresponds to an excessively
fine partitioning in Scenario 2), for the IEEE feeder, the
region choice is made in such a way that a local controller
is placed at each network bifurcation point, and the asso-
ciated region corresponds to all those nodes which are
electrically closer to it (in terms of line impedance).

Simulation tools
The local optimization problem (see line 5 of Algorithm 2,
or see the first of (24)) is solved by using IPOPT [27],
an efficient IPM solver which allows a MatLab interface.
Although a true optimality guarantee is not available, IPM
methods are known to perform very well for OPF kind
of problems. MUMPS linear solver is used within IPOPT,

and the warm start option is used in such a way to start
the local minimization process using the solution available
from the previous iteration (this reduces computational
times). The code is run on a MacBook Air and is written
in MatLab [28].

Convergence test in the considered scenarios
A test on the behavior of Algorithm 2 in the three differ-
ent scenarios using the parameters of Table 1 is illustrated
in Figure 2. The starting point is chosen to be the all-ones
vector xk,0 = 1, and Lagrange multipliers are initially set
to zero, λk,0 = 0. This corresponds to the unavailability
of any a priori information on both position and Lagrange
multipliers and is therefore a worst case scenario. Iter-
ations are stopped (and convergence is declared) when
the primal gap ‖Axt − zt‖∞ (infinity norm) reaches 10−4.
The maximum values for Lagrange multipliers are set to
λmax = 103 · 1, λmin = −103 · 1.
For the three scenarios considered, Figure 2 shows in

the first column the voltages Vi (amplitude and phase dia-
gram) at convergence, together with the active voltage
constraints. Observe that all voltage limitations are met.
The second column of Figure 2 shows the behavior of

the primal gap in norm 2 and norm ∞ as a function of the
iteration number t. Although the curves are not strictly
decreasing, they are clearly diminishing to zero-gap value.
The penalty parameters update, illustrated in the third
column of Figure 2, shows the ability of (29)-(31) of keep-
ing a small gap between maximum and minimum values
of εt . The fact that the parameters are always increasing is
due to the sub optimality of the distributed criterion with
respect to the centralized criterion (27) which would be
more effective in limiting the increase of penalty parame-
ters. Nevertheless, the algorithm converges to points very
close to the optimum (see Table 1) despite the very badly
chosen initial point. In this respect, the local IPM solvers
are fully capable of resolving the limit problem (35) and
hence guarantee convergence to a feasible point. Note that
the slower convergence is experienced with Scenario 2),
i.e., the IEEE feeder with N = 123. This is due to the fact
that this is the network with highest depth due to its radial
structure. This makes the distributed process particularly
challenging since agreement must be obtained between
regions that are very far one from the other.
Finally, in the fourth column of Figure 2, we provide the

locally determined reactive power regulation (QG,i stands
for reactive power at generators), which show a converg-
ing behavior in accordance with the fact that the primal
gap is vanishing. A perfectly equivalent behavior is found
for active powers (but this is not shown in figure).

Performance evaluation
A more in-depth performance measure for the tests
of Figure 2 is given in Table 1, where the distributed
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Table 1 Performance starting from a remote point

Network

IEEE 30 IEEE 57 IEEE 118 IEEE 300 IEEE feeder 123 radial 120

IPOPT

Generated power PG 190.80MW 1.26 GW 4.25 GW 23.74 GW 3.53MW 169.81 kW

Number of iterations 12 10 20 33 17 22

Processing time 0.17 s 0.29 s 1.56 s 20.97 s 1.55 s 1.45 s

Algorithm 2

Number of regions R 5 7 54 69 24 25

ρ 3 3 5 5 10 10

ζ 1/3 1/3 1/5 1/5 1/10 1/10

ξ 3 3 10 10 30 30

θ 0.99 0.99 0.99 0.99 0.99 0.99

τ 1.02 1.02 1.02 1.02 1.02 1.02

Generated power PG 191.07MW 1.26 GW 4.26 GW 23.79 GW 3.55MW 170.78 kW

Gap 0.14% 0.002% 0.25% 0.23% 0.42% 0.57%

Number of iterations 110 144 186 216 246 85

Processing time (aggregate) 8.93 s 20.03 s 119.18 s 214.88 s 110.22 s 32.28 s

Max processing time per region 2.08 s 6.42 s 3.25 s 12.16 s 10.36 s 5.18 s

Average processing time per region 1.79 s 2.86 s 2.21 s 3.11 s 4.59 s 1.29 s

approach of Algorithm 2 is compared with the perfor-
mance of a centralized IPOPT solver.
Note that the performance gap with respect to a central

solver is always below a 1% error, which is an impres-
sive performance considering that we are dealing with
a worst case situation, and that we are approaching the
problem in distributed form with a severe network parti-
tioning. As a matter of fact, the outstanding performance
of IPMs is mainly due to their central coordination capa-
bilities (e.g., see [15]). Incidentally, we observed that the
performance of Algorithm 2 is almost independent of the
chosen settings. As a consequence, the performance gap
in Table 1 coincides with the ultimate accuracy that could
be achieved after thousands of iterations for every studied
case.
By inspecting the references, the reader can further

appreciate the substantial improvement with respect to
the performance of the ADMM-based algorithm of [15],
and the sensibly improved network size and partitioning
performance with respect to the preliminary algorithm
version of [16].

Processing times
Some information on the processing times involved with
Algorithm 2 is given in both Table 1 and Figure 3.
Figure 3 shows, for the six networks under consid-

eration, the maximum local processing time and the
aggregate processing time per iteration. These are almost
constant throughout the iterative process, evidencing the

fact that the processing time is approximately linear in the
number of iterations. From Table 1, we can further extract
some information on the time needed per region (themax
processing time per region), which is in a range between 2
and 13 s, the value being in agreement with the literature
on distributed OPF (e.g., see [6]).
Observe that communication delays were not taken into

account in Figure 3 and Table 1, and in fact these can
be made negligible by choosing a suitable communication
technique. High data rate communication standards with
associated short packet lengths are to be preferred. This
is the case, for example, of broadband power line commu-
nication techniques which can guarantee packet lengths
of less than a millisecond [29] and which can be deployed
in small area applications (e.g., in micro grids). WiMax
is a wireless alternative in these scenarios. For wide area
applications, instead, optical fiber communications (e.g.,
gigabit Ethernet) are an appropriate solution.

Conclusions
In this paper, we proposed a distributed algorithm for
OPF regulation based upon a non-convex formulation. By
suitably controlling penalty parameters, the algorithmwas
proven to always converge under a proper assumption on
local solver reliability. A certificate of convergence to a
local minimum is also available under the request that
penalty factors are bounded. The algorithm was shown
to provide a reliable performance also in a worst case sit-
uation where the search for the optimum is initialized
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Figure 2 Performance of distributed OPF with IEEE and microgrid networks.

on a point very far from its final destination. The algo-
rithm was proven to be efficient and fast and to be also
robust with respect to a severe network partitioning. Its

required computational effort was found to be of the
order of state-of-the-art methods (using convex problem
approximations to ease the convergence issue), with the
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Figure 3 Local and aggregate processing times per iteration.

added value of allowing for a full adherence to the original
problem since no (convex) approximation is used.
On the applicability side, the distributed algorithm is

readily applicable on moderate time scales (tens of sec-
onds) and on moderate sized networks (up to 300 nodes)
for system optimization purposes, not concerning fast
regulation (e.g., fault or protection issues require much
faster time scales). In this scenario, the algorithm is also
expected to be robust to packet losses, because of its
alternating direction structure.
Applicability to larger network sizes, with many loops,

and more severe non-convexities is instead out of the
scope of the present work. As a matter of fact, the pro-
posed alternating direction search allows distributing the
processing burden, but might not find an agreement (or
it might take too long) in harsh situations. To overcome
these difficulties, two strategies can be jointly employed.
On the one side, some criteria to determine the opti-
mal region partition strategy should be identified. On the
other side, some additional coordination between agents
should be used, e.g., a proper distributed generalization of
the techniques used in the work of Martinez and Birgin
et al. [18] which could also be capable of closing the per-
formance gap with respect to a centralized solver. Use of
recent advances on ADMMacceleratedmethods and scal-
ing techniques (e.g., see [30]) is also an interesting option
but need to be suitably adapted to a non-convex context.
These aspects are left for future investigations.
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