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Abstract

Bayesian filter is an efficient approach for multi-target tracking in the presence of clutter. Recently, considerable
attention has been focused on probability hypothesis density (PHD) filter, which is an intensity approximation of
the multi-target Bayesian filter. However, PHD filter is inapplicable to cases in which target detection probability
is low. The use of this filter may result in a delay in data processing because it handles received measurements
periodically, once every sampling period. To track multiple targets in the case of low detection probability and to
handle received measurements in real time, we propose a sequential measurement-driven Bayesian filter. The
proposed filter jointly propagates the marginal distributions and existence probabilities of each target in the filter
recursion. We also present an implementation of the proposed filter for linear Gaussian models. Simulation results
demonstrate that the proposed filter can more accurately track multiple targets than the Gaussian mixture PHD
filter or cardinalized PHD filter.

Keywords: Multi-target tracking; Bayesian filter; Probability hypothesis density filter; Marginal distribution;
Existence probability
1 Introduction
Multi-target tracking aims to detect individual targets in
the surveillance region of interest and estimate their
states according to a sequence of noisy and cluttered
measurements collected by sensors. The most efficient
technique for multi-target tracking is the multi-target
Bayesian filter, which propagates joint posterior distribu-
tion of the multi-target state [1, 2]. However, such
propagation is computationally intensive because of the
high dimensionality of the multi-target state space [2, 3].
With the use of the Bayesian framework to propagate
the posterior intensity of multiple targets recursively, the
probability hypothesis density (PHD) filter provides a
numerically tractable solution to this problem [2, 3].
Two numerical solutions, namely sequential Monte
Carlo (SMC) [4–9] and Gaussian mixtures (GM) [10–17],
have been developed for the PHD filter. Extensions of
the PHD filter have also been proposed to improve its
performance. PHD filters with observation-driven birth
intensity were independently proposed in [16, 18, 19] to
eliminate the need for exact knowledge of birth
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intensity. Methods for maintaining track continuity were
proposed in [4, 20] for the SMC-PHD filter and in [21]
for the GM-PHD filter. To improve the accuracy and
stability of the target number estimate, the cardinalized
PHD (CPHD) filter, which jointly propagates moment
and cardinality, was proposed in [22]. Methods for esti-
mating an unknown clutter rate, which is an important
parameter of the PHD and CPHD filters, were proposed
in [23] and [24]. In [12], the GM-PHD filter was ex-
tended to linear jump Markov multi-target models for
use in tracking maneuvering targets.
Although the PHD filter has several advantages, it be-

comes inefficient in cases with low target detection
probability. This inefficiency occurs because the PHD
filter has a weak memory and is easily influenced by new
incoming measurements [2, 17, 22]. Owing to its weak
memory, the PHD filter fails to provide state estimates
of existing targets if these targets are missing from new
incoming measurements [2]. Moreover, the PHD filter
may result in data processing delay. This delay occurs
because the PHD filter handles new incoming measure-
ments periodically, once every sampling period. In this
manner, new measurements have to be gathered for a
sampling period before being processed. Therefore, a
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significant delay arises from a long sampling period. The
CPHD filter has a better memory than the PHD filter
but has a slower response in detecting target appearance
and disappearance and is less influenced by new incom-
ing measurements. Despite its strong memory, the
CPHD filter may also be inefficient in cases with low de-
tection probability because it has more difficulty than
the PHD filter in giving state estimates of new targets
because of its slow response to new targets. In addition,
similar to the PHD filter, the CPHD filter may also result
in data processing delay because it also handles new in-
coming measurements periodically.
To resolve the multi-target tracking problem effi-

ciently in the case of low detection probability and to
reduce data processing delay, we propose a sequential
measurement-driven Bayesian filter. This filter propa-
gates the marginal distributions and existence probabil-
ities of each target in the filter recursion and uses
received measurements to generate new marginal dis-
tributions and update existing marginal distributions.
In this filter, we use the prediction marginal distribu-
tion and existence probability of a target as its update
marginal distribution and existence probability, respect-
ively, and propagate them in the filter recursion if this tar-
get is missing from the incoming measurements. Thus,
the proposed filter has a sufficient memory to missing tar-
gets, which enables this filter applicable to tracking mul-
tiple targets in the case of low detection probability.
Moreover, this filter reduces the data processing delay that
exists in PHD and CPHD filters because new incoming
measurements can be processed whenever they become
available. We also propose a closed-form solution and
implementation of the proposed filter for linear Gaussian
models. In terms of optimal sub-pattern assignment
(OSPA) distance [25], we compare the proposed filter with
the PHD and CPHD filters through simulation. These
three filters are capable of tracking multiple targets in the
presence of clutter as well as target appearance and dis-
appearance. Among the three filters, the proposed filter is
the best at tracking multiple targets in cases of low detec-
tion probability.
The main contributions of this paper are twofold. First,

we propose a new Bayesian filter for sequentially handling
new measurements. The proposed filter handles received
measurements in real time and is applicable to tracking
multiple targets in the case of low detection probability.
Second, we present a novel implementation of the pro-
posed filter for linear Gaussian models.
The remainder of this paper is organized as follows:

Section 2 briefly introduces the multi-target Bayesian fil-
ter. Section 3 proposes the sequential measurement-
driven multi-target Bayesian filter to propagate marginal
distribution. Section 4 discusses the implementation of
the proposed filter in linear Gaussian models. Section 5
evaluates the performance of the proposed filter. Section
6 states the drawn conclusions.

2 Multi-target Bayesian filter
We first provide a brief description of the multi-target
Bayesian filter [1]. In a multi-target Bayesian filter, the
distribution of interest is the joint posterior f(xk|y1 : k),
which is also known as the filtering distribution, where k
denotes the time step, xk = (x1,k ⋯ xN ,k) is the multi-
target state at time step k, N is the target number, and
y1 : k = (y1 ⋯ yk) represents all observations from time
step 1 to time step k. The filtering distribution of a
multi-target Bayesian filter can be computed by using a
two-step recursion.
Prediction step:

f xk jy1:k−1
� � ¼ Z f xk jxk−1ð Þf xk−1jy1:k−1

� �
dxk−1 ð1Þ

Update step:

f xk jy1:k
� � ¼ g yk jxk

� �
f xk jy1:k−1
� �

f yk jy1:k−1
� � ð2Þ

where f(xk|xk − 1) denotes the Markov transition prob-
ability from state xk − 1 at time step k − 1 to state xk at
time step k, g(yk|xk) is the probability density that state
xk at time step k generates measurement yk at time step
k, and f(yk|y1 : k − 1) is given by:

f yk jy1:k−1
� � ¼ Z g yk jxk

� �
f xk jy1:k−1
� �

dxk ð3Þ

Equation 2 clearly shows that the new filtering distri-
bution is obtained by directly applying the Bayesian rule.
The generally intractable multi-target Bayesian filter in-
volves integrals of high dimensions. This intractability is
usually resolved by applying fixed grid approximation,
SMC approximation, and PHD approximation [1, 2].

3 Sequential measurement-driven multi-target
Bayesian filter
Similar to the PHD filter in [10] and CPHD filter in [22],
we consider the following assumptions to present the se-
quential measurement-driven Bayesian (SMB) filter.

A1. Targets evolve and generate observations
independent of one another.
A2. Clutter is independent of target-originated
measurements.
A3. The survival and detection probabilities of each
target are state independent.

To derive the SMB filter conveniently, we also assume
that the number of targets at time step k − 1 is Nk − 1; the
states of individual targets at time step k − 1 are xi,k − 1,
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i = 1 ⋯ Nk − 1; the marginal distributions and existence
probabilities of individual targets at time step k − 1 are
fi(xi,k − 1|y1 : k − 1), i = 1 ⋯ Nk − 1 and pi,k − 1, i = 1 ⋯
Nk − 1, respectively; and y1 : k − 1 = (y1 ⋯ yk − 1) repre-
sents all observations up to time step k − 1. The object-
ive is to determine the marginal distributions for each
target and their existing probabilities at time step k.
Individually using Equation 1 to process each marginal

distribution fi(xi,k − 1|y1 : k − 1) at time step k − 1, we
obtain individual prediction distributions fi(xi,k|y1 : k − 1),
i = 1 ⋯ Nk − 1 at time step k as:

f i xi;k jy1:k−1
� � ¼ Z f i xi;k jxi;k−1

� �
f i xi;k−1jy1:k−1
� �

dxi;k−1;

i ¼ 1⋯Nk−1

ð4Þ

The existence probability pi,k|k − 1 of the prediction
distribution fi(xi,k|y1 : k − 1) is given by:

pi;kjk−1 ¼ pS;k tk ; tk−1ð Þpi;k−1; i ¼ 1⋯Nk−1 ð5Þ

where pS,k(tk, tk − 1) is the time-dependent survival
probability of the target, and tk is the time of time
step k.
Assuming that the observations at time step k are de-

noted by yk = (y1,k ⋯ yM ,k) where M is the number of
observations at time step k, we deal with these M obser-
vations one after another to obtain individual update
distributions and their corresponding existence probabil-
ities. The procedure is as follows:

f i;0 xi;k
� �

p0i;k

� �Nk−1

i¼1

→
y1;k f i;1 xi;k

� �
p1i;k

� �Nk−1

i¼1

→⋯ →
yj−1;k

f i;j−1 xi;k
� �

pj−1i;k

( )Nk−1

i¼1

→
yj;k

⋯ →
yM;k f i;M xi;k

� �
pMi;k

� �Nk−1

i¼1

where fi,0(xi,k) = fi(xi,k|y1 : k − 1) and p0i;k ¼ pi;kjk−1. After
observation yj − 1,k is processed, the update distributions
and their corresponding existence probabilities are fi,j − 1

(xi,k), i = 1⋯Nk − 1 and pj−1i;k , i = 1⋯Nk − 1, respectively.

Using the Bayesian rule to handle observation yj,k, we
can obtain the update distribution as follows:

f ui;j xi;k
� � ¼ pD;kp

j−1
i;k gi yj;k jxi;k

� �
f i;j−1 xi;k

� �
λc;k þ pD;k

XNk−1

e¼1

pj−1e;k

Z
ge yj;k jxe;k
� �

f e;j−1 xe;k
� �

dxe;k

ð6Þ

where λc,k is the clutter density, pD,k is the state-independent
detection probability of the target, and gi(⋅|xi,k) is the
measurement likelihood. Normalizing Equation 6, we
obtain the update distribution f ai;j xi;k

� �
as:

f ai;j xi;k
� � ¼ 1

pa;ji;k

f ui;j xi;k
� � ð7Þ

where pa;ji;k is the existence probability of the update dis-
tribution f ai;j xi;k

� �
, and is defined as:

pa;ji;k ¼
Z

f ui;j xi;k
� �

dxi;k ð8Þ

Given that observation yj,k may originate from one of
the targets or from clutter, therefore, we must determine
whether observation yj,k originates from target i or not.
This process can be accomplished by comparing previ-

ous existence probability pj−1i;k with existence probability

pa;ji;k . If pa;ji;k > pi;j−1 , then observation yj,k may originate

from target i; in this case, the update distribution fi,j(xi,k)
should be f ai;j xi;k

� �
. Otherwise, observation yj,k may ori-

ginate from other targets or from clutter; in this case,
previous update distribution fi,j − 1(xi,k) should be main-
tained. Therefore, we have:

f i;j xi;k
� � ¼ f ai;j xi;k

� �
; if pa;ji;k > pj−1

i;k

f i;j−1 xi;k
� �

; if pa;ji;k ≤ pj−1
i;k

; j ¼ 1⋯M

(

ð9Þ
The existence probability of update distribution fi,j(xi,k)

can be given by:

pji;k ¼
pa;ji;k ; if pa;ji;k > pj−1

i;k

pj−1i;k ; if pa;ji;k ≤ pj−1
i;k

; j ¼ 1⋯M

(
ð10Þ

After all the M observations are processed, we obtain
the update distributions fi(xi,k|y1 : k), i = 1⋯Nk − 1 at time
step k and their corresponding existence probabilities
pi,k, i = 1⋯Nk − 1 as:

f i xi;k jy1:k
� � ¼ f i;M xi;k

� �
; i ¼ 1⋯Nk−1 ð11Þ

pi;k ¼ pMi;k ; i ¼ 1⋯Nk−1 ð12Þ

From Equations 6, 7, 8, 9, 10, 11, and 12, it is clear
that fi(xi,k|y1 : k) = fi(xi,k|y1 : k − 1) and pi,k = pi,k|k − 1 if
no measurement is originated from target i. This
phenomenon indicates that this filter uses the prediction
marginal distribution and existence probability of a tar-
get as its update marginal distribution and existence
probability, respectively, if the target is missing from the
incoming measurements and also indicates that this fil-
ter has a sufficient memory to missing targets.
Please note that individual targets are not tracked inde-

pendently in the proposed filter. As shown in Equation 6,
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we use the marginal distributions fe,j − 1(xe,k), e = 1 ⋯
Nk − 1 of individual targets to obtain the update distribu-
tion f ui;j xi;k

� �
of target i. Therefore, individual targets are

dependent in this filter.
In addition to existing targets, new targets may appear

at time step k. Given that SMB filter is measurement
driven, the marginal distributions of the new targets
should be generated from the observations at time step
k. To enable the SMB filter to track the new targets
appearing at time step k, we extend update distributions
fi(xi,k|y1 : k), i = 1 ⋯ Nk − 1 to include the marginal dis-
tributions of the new targets as:

f i xi;k jy1:k
� �� 	Nk

i¼1¼ f i xi;k jy1:k
� �� 	Nk−1

i¼1 ∪ f jγ xi;k
� �n oM

j¼1

ð13Þ

The existence probabilities of the extended update dis-
tributions are given by:

pi;k
n oNk

i¼1
¼ pi;k
n oNk−1

i¼1
∪ pjγ
n oM

j¼1
ð14Þ

where Nk = Nk − 1 + M; f jγ xi;k
� �

, j = 1 ⋯ M are the mar-

ginal distributions of the new targets; and pjγ , j = 1 ⋯ M

are the existence probabilities of the new targets.
Posterior distributions fi(xi,k|y1 : k), i = 1 ⋯ Nk in

Equation 13 are marginal distributions at time step k,
and existence probabilities pi,k, i = 1 ⋯ Nk in
Equation 14 are existence probabilities of the marginal
distributions at time step k.

4 Implementation of the SMB filter for linear
Gaussian models
Similar to the GM-PHD filter in [10], the closed-form
solution to the recursion of SMB filter requires the fol-
lowing assumptions:

A4: Each target follows a linear Gaussian dynamic
model, and the sensor has a linear Gaussian
measurement model, i.e.,

f i xi;k jxi;k−1
� � ¼ N xi;k ;Fk−1xi;k−1;Qk−1

� � ð15Þ

gi yj;k jxi;k
� �

¼ N yj;k ;Hkxi;k ;Rk

� �
ð16Þ

where N(⋅; m, P) denotes a Gaussian density with mean
m and covariance P; Fk−1 is a state transition matrix,
and Hk is an observation matrix; and Qk−1 and Rk are
process noise and observation noise covariance matrices,
respectively.
A5: The new marginal distributions at time step k are
Gaussian distribution and are generated from
observations at time step k as:

f jγ xi;k
� � ¼ N xi;k ;mj

γ ;P
j
γ

� �
; j ¼ 1⋯M ð17Þ

where Pj
γ is the covariance matrix of new distribution j,

and mj
γ is the mean of new distribution j. This mean is

generated directly from measurement yj;k ¼ xjk yjk

h iT
and is given by mj

γ ¼ xjk 0 yjk 0
h iT

. At the same

time, we also assume that a small existence probability
pγ is assigned to each new distribution, i.e.,

pjγ ¼ pγ ; j ¼ 1⋯M ð18Þ

Any measurement received at time step k may be orig-
inated from a new target, an existing target, or clutter.
Instead of classifying a measurement as belonging to a
new target, we use each measurement to generate a new
distribution and assign a small existence probability to
each new distribution in the filter recursion.
Based on assumptions A4 and A5, we present a closed-

form solution to the recursion of the SMB filter for linear
Gaussian models. This solution consists of the following
prediction and update steps:

Prediction step: Given that the marginal distributions of
individual targets at time step k−1 are:

f i xi;k−1jy1:k−1
� � ¼ N xi;k−1;mi;k−1;Pi;k−1

� �
;

i ¼ 1⋯Nk−1

ð19Þ

and that existence probabilities of individual marginal
distributions are denoted as pi,k − 1, i = 1 ⋯ Nk − 1.
Using Lemmas 1 and 2 in [10], individual prediction dis-
tributions can be derived from Equations 4 and 15 and
are given by:

f i xi;k jy1:k−1
� � ¼ N xi;k ;mi;kjk−1;Pi;kjk−1

� �
;

i ¼ 1⋯Nk−1

ð20Þ

where mi,k|k − 1 and Pi,k|k − 1 are the mean and covari-
ance of prediction distribution i, respectively, and are
given by:

mi;kjk−1 ¼ Fk−1mi;k−1;

Pi;kjk−1 ¼ Qk−1 þ Fk−1Pi;k−1FT
k−1

ð21Þ
where T denotes the transpose. The existence probabil-
ities for the prediction distributions N(xi,k; mi,k|k − 1,
Pi,k|k − 1), i = 1 ⋯ Nk − 1 are given by:



Fig. 1 True target trajectories

Fig. 2 Measurement data
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pi;kjk−1 ¼ pS;k tk ; tk−1ð Þpi;k−1; i ¼ 1⋯Nk−1 ð22Þ
where pS,k(tk, tk − 1) is the time-dependent survival prob-
ability of the target and is defined as:

pS;k tk;tk−1
� � ¼ exp −

tk−tk−1
δ⋅T

! 
ð23Þ

where tk is the time of time step k, T is the sampling
period, and δ is a given parameter. This definition is rea-
sonable because the survival probability of an existing
target decreases as time interval increases.

Update step: In this step, we deal with the received
observations yk = (y1,k ⋯ yM,k) one after another by
using the Bayesian rule to obtain individual update
distributions and their corresponding existence
probabilities.

Let fi,0(xi,k) = fi(xi,k|y1 : k−1) and p0i;k ¼ pi;kjk−1 ; and let

f i;j−1 xi;k
� � ¼ N xi;k ;m

j−1
i;k ;P

j−1
i;k

� �
, i = 1 ⋯ Nk−1 denote

the individual update distributions after observation y j − 1,k

is processed. Using Lemmas 1 and 2 in [10], after
observation yj,k is processed, the update distribution fi,j (xi,k)

and its corresponding existence probability pji;k are as

follows:

f i;j xi;k
� � ¼ N xi;k ;m

j
i;k ;P

j
i;k

� �

¼
N xi;k ;m

a;j
i;k ;P

a;j
i;k

� �
; if pa;ji;k > pj−1i;k

N xi;k ;m
j−1
i;k ;P

j−1
i;k

� �
; if pa;ji;k≤p

j−1
i;k

; j ¼ 1⋯M

8<
:

ð24Þ

pji;k ¼
pa;ji;k ; if pa;ji;k > p j−1

i;k

pj−1i;k ; if pa;ji;k ≤ p j−1
i;k

(
ð25Þ

where

ma;j
i;k ¼ m j−1

i;k þ Ai⋅ yj;k−Ηkm
j−1
i;k

� �
ð26Þ

Pa;j
i;k ¼ I−Ai⋅Hkð ÞPj−1

i;k ð27Þ

Ai ¼ P j−1
i;k H

T
k HkP

j−1
i;k H

T
k þ Rk

� �−1
ð28Þ

pa;ji;k ¼
pD;kp

j−1
i;k N yj;k ;Hkm

j−1
i;k ;HkP

j−1
i;k H

T
k þ Rk

� �

λc;k þ pD;k
XNk−1

e¼1

p j−1
e;k N yj;k ;Hkm

j−1
e;k ;HkP

j−1
e;k H

T
k þ Rk

� �
ð29Þ

After all the M observations are processed, we obtain

the update distributions f i;M xi;k
� � ¼ N xi;k ;mM

i;k ;P
M
i;k

� �
,

i = 1 ⋯ Nk − 1 and their existence probabilities pMi;k , i = 1
⋯ Nk − 1. The update distribution fi(xi,k|y1 : k) at time step
k and their corresponding existence probability pi,k are
given by:

f i xi;k jy1:k
� � ¼ N xi;k ;mi;k ;Pi;k

� � ¼ f i;M xi;k
� �

¼ N xi;k ;m
M
i;k ;P

M
i;k

� �
; i ¼ 1⋯Nk−1 ð30Þ

pi;k ¼ pMi;k ; i ¼ 1⋯Nk−1 ð31Þ

To enable the SMB filter to track the new targets
appearing at time step k, we extend update distributions
fi(xi,k|y1 : k), i = 1 ⋯ Nk−1 to include new marginal distri-
bution from Equation 17 as:



Fig. 5 Tracking result of the PHD-M filter

Fig. 3 1-D view of true tracks and measurement data
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f i xi;k jy1:k
� �� 	Nk

i¼1¼ N xi;k ;mi;k ;Pi;k
� �� 	Nk

i¼1

¼ N xi;k ;mi;k ;Pi;k
� �� 	Nk−1

i¼1

∪ N xi;k ;mj
γ ;P

j
γ

� �n oM

j¼1

ð32Þ

The existence probabilities of the extended update dis-
tributions are given by:

pi;k
n oNk

i¼1
¼ pi;k
n oNk−1

i¼1
∪ pjγ
n oM

j¼1
ð33Þ

An implementation of the proposed filter for linear
Gaussian models comprises, in addition to the above
prediction and update steps, the following multi-target
state extraction step:

Multi-target state extraction step: Given the extended
update distributions fi(xi,k|y1 : k) = N(xi,k; mi,k, Pi,k), i = 1
⋯ Nk and their existence probabilities pi,k, i = 1 ⋯ Nk,
we first eliminate the Gaussian distribution whose
Fig. 4 Tracking result of the SMB filter
existence probability is smaller than a given threshold τ.
After pruning, the remaining Gaussian distributions and
their existence probabilities are used as inputs for the
next filtering recursion. We then select the Gaussian
distributions with existence probabilities pi,k > 0.5 as
outputs of the filter. The mean of a selected Gaussian
distribution is the state estimate of a target.
5 Simulation results
We select the PHD/CPHD filters with measurement-
driven birth intensity [19] as two contesting comparison
objects in the simulation. The selected filters adapt the
target birth intensity at each processing step with the use
of the received measurements, thereby eliminating the
need for prior specification of birth intensities [19].
We consider an example in this section. This example

shows the tracking performances of the PHD filter, the
Fig. 6 Tracking result of the CPHD-M filter



Fig. 9 Average OSPA distances of the three filters for different
detection probabilities

Fig. 7 OSPA distances of the three filters

Liu et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:43 Page 7 of 9
CPHD filter, and the proposed SMB filter for linear
Gaussian models. In this example, the pruning proced-
ure presented in [10] is performed at each time step of
both GM-PHD filter and GM-CPHD filter. The state ex-
traction in GM-PHD filter involves selecting the
means of the Gaussians that have weights greater than
0.5 as the state estimates [10], whereas the state ex-
traction in GM-CPHD filter involves estimating the
number of targets and then extracting the correspond-
ing number of Gaussians with the highest weights as
state estimates [22]. To assess the tracking perfor-
mances of these three filters, we use the OSPA dis-
tance [25] as the measure, where parameters are set as
p = 2 and c = 50 m.
Example: Targets move at a constant velocity in a 2-D re-

gion [−1,000 (m), 1,000 (m)] × [−1,000 (m), 1,000 (m)] in this

example. The state vector is represented by xi;k ¼
xi;k _xi;k yi;k _yi;k

 �T

, and the state transition matrix
Fk−1 and covariance matrix Qk−1 in Equation 15 are
given by:
Fig. 8 Average OSPA distances of the three filters
Fk−1 ¼
1 Δtk 0 0
0 1 0 0
0 0 1 Δtk
0 0 0 1

2
664

3
775;

Qk−1 ¼
Δt2k=2 0
Δtk 0
0 Δt2k=2
0 Δtk

2
664

3
775 Δt2k=2 Δtk 0 0

0 0 Δt2k=2 Δtk

� 

σ2
v

where Δtk = tk − tk − 1 and σv is the standard deviation
of the process noise. The observation matrix Hk and co-
variance matrix Rk in Equation 16 are:

Hk ¼ 1 0 0 0
0 0 1 0

� 

;Rk ¼ 1 0

0 1

� 

σ2
w

where σw is the standard deviation of the observation noise.
Ten targets exist in this example. Targets 1 to 8

appear at t = 1 s, t = 1 s, t = 3 s, t = 3 s, t = 5 s, t = 8 s,
t = 10 s, and t = 12 s, respectively, and continue to
exist in the remaining time. Targets 9 and 10 appear
at t = 14 s and t = 15 s but disappear at t = 40 s
and t = 30 s, respectively. The initial states of the in-
dividual targets are as follows:

x1;1 ¼ −950 mð Þ; 35 ms−1
� �

; −950 mð Þ; 35 ms−1
� �
 �T

x2;1 ¼ −950 mð Þ; 35 ms−1
� �

; 950 mð Þ; −35 ms−1
� �
 �T

x3;3 ¼ −950 mð Þ; 35 ms−1
� �

; −880 mð Þ; 35 ms−1
� �
 �T

x4;3 ¼ −950 mð Þ; 35 ms−1
� �

; 880 mð Þ; −35 ms−1
� �
 �T
Table 1 Average performing time (s) of a Monte Carlo run for
different detection probabilities

pD,k 1.0 0.95 0.9 0.85 0.8 0.75 0.7 0.65

SMB filter 23.21 22.44 22.02 21.73 21.36 20.88 20.35 19.75

PHD-M filter 1.84 2.46 3.09 4.09 4.29 4.98 6.25 6.50

CPHD-M filter 28.13 29.39 29.75 29.87 29.07 28.71 28.27 27.91
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clutter rates
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x5;5 ¼ −950 mð Þ; 43 ms−1
� �

; 440 mð Þ; 0 ms−1
� �
 �T

x6;8 ¼ −950 mð Þ; 43 ms−1
� �

; −440 mð Þ; 0 ms−1
� �
 �T

x7;10 ¼ −950 mð Þ; 43 ms−1
� �

; 500 mð Þ; 0 ms−1
� �
 �T

x8;12 ¼ −950 mð Þ; 43 ms−1
� �

; −500 mð Þ; 0 ms−1
� �
 �T

x9;14 ¼ −500 mð Þ; 0 ms−1
� �

; −950 mð Þ; 65 ms−1
� �
 �T

x10;15 ¼ −500 mð Þ; 0 ms−1
� �

; −950 mð Þ; 60 ms−1
� �
 �T

The true trajectories of the 10 targets are shown in
Fig. 1.
The sampling period of the sensor is T = 1 s, and the

measurements are generated by using pS,k = 1.0, pD,k = 0.8,
σv = 1 ms−2, σw = 2 m, and λc,k = 5 × 10−6 m−2. Figure 2
shows the measurement data in the horizontal plane. A
1-D view of these measurements along with the true
tracks is shown in Fig. 3.
To detect the targets in the surveillance space and to

estimate their states from the measurement data, we set
the corresponding parameters of these three filters to
λc,k = 5 × 10−6 m−2, pD,k = 0.8, σv = 1 ms−2, σw = 2 m, τ =
10−3, and δ = 2. The weight wj

γ of the new distribution

in Gaussian mixture PHD/CPHD filters and the exist-
ence probability pjγ of the new distribution in the SMB

filter are set to wj
γ ¼ pjγ ¼ 0:05. The covariance of the

new distribution is Pj
γ ¼ diag 50 25 50 25½ �ð Þð Þ2. In

both PHD and CPHD filters, the survival probability pS,k
is set to pS,k = 1.0.
Table 2 Average performing time (s) of a Monte Carlo run for differ

λc,k(m−2) 0.00000125 0.0000025

SMB filter 7.90 12.37

PHD-M filter 0.79 1.48

CPHD-M filter 14.48 19.89
To deal with the measurement data, we use SMD fil-
ter, Gaussian mixture PHD filter with a measurement-
driven birth intensity (PHD-M filter), and Gaussian
mixture CPHD filter with the measurement-driven
birth intensity (CPHD-M filter). Figures 4, 5, and 6 re-
spectively show the results given by these three filters.
Figures 4, 5, and 6 shows that these three filters can de-

tect multiple targets and estimate their states in the pres-
ence of clutter as well as target appearance and
disappearance. These three filters need a few time steps to
confirm the appearance of new targets. Given the fast re-
sponse of the SMB and PHD filters to the target appear-
ance, they take fewer time steps than the CPHD filter in
detecting a new target. The PHD filter fails to provide the
state estimates of existing targets if these targets are miss-
ing from the incoming measurements owing to the poor
memory of the filter. Meanwhile, the SMB and CPHD fil-
ters can provide the state estimates of missed targets be-
cause they have a sufficient memory for the existing
targets. The sufficient memory also enables the CPHD fil-
ter and PHD filter to give state estimates of a disappearing
target at the disappearing time, whereas the PHD filter
does not provide the state estimate of a disappearing tar-
get because of its fast response to target disappearance.
The strong memory of the CPHD filter causes it to pro-
vide excessive state estimates of existing and disappearing
targets. Figure 7 shows the OSPA distances of these three
filters and illustrates that the SMB filter performs best in
terms of OSPA distance.
We run 100 Monte Carlo trials for each filter to obtain

the average OSPA distance. The result shown in Fig. 8
reveals the following: 1) the SMB filter is the best at de-
tecting and tracking multiple targets because the average
OSPA distance of this filter is the smallest; 2) the aver-
age OSPA distances of SMB filter and PHD filter de-
crease faster than that of the CPHD filter between times
t = 1 s and t = 15 s because they respond faster to the
target appearance; and 3) each time a target disappears,
a peak emerges in the plots of both the SMB and CPHD
filters. This condition occurs because these two filters
provide the state estimate of a disappearing target and
are penalized with the cutoff distance, c = 50 m, at the
time of the target’s disappearance.
Figure 9 shows the average OSPA distances of these

three filters for different detection probabilities with
clutter rate fixed at λc,k = 5 × 10−6 m−2. The average
OSPA distance increases as the detection probability
ent clutter rates

0.00000375 0.000005 0.00000625

16.65 21.36 25.78

2.37 4.29 7.03

24.16 29.07 33.22
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decreases. In addition, the average OSPA distance of
the SMB filter is the smallest for each detection prob-
ability smaller than 1.0.
Table 1 shows the average performing time of a Monte

Carlo run for the different detection probabilities given a
fixed clutter rate of λc,k = 5 × 10−6 m−2. Based on Table 1,
the average performing time of the SMB filter is larger
than that of the PHD filter but smaller than that of the
CPHD filter at each detection probability.
Figure 10 shows the average OSPA distances of the

three filters on the basis of different clutter rates with
detection probability fixed at pD,k = 0.8. The average
OSPA distance increases as the clutter rate increases.
The average OSPA distance of the SMB filter is consist-
ently the smallest at each clutter rate.
Table 2 shows the average performing time of a Monte

Carlo run for different clutter rates with a fixed detec-
tion probability of pD,k = 0.8. Based on Table 2, the aver-
age performing time of the SMB filter is larger than that
of the PHD filter but is smaller than that of the CPHD
filter at each clutter rate.

6 Conclusions
In this study, we propose a sequential measurement-
driven multi-target Bayesian filter. This filter propagates
marginal distributions and existence probabilities for
each target. We also present an implementation of the
proposed filter for linear Gaussian models. The proposed
filter can process new observations as soon as these new
observations become available, thereby reducing data
processing delay. This filter can track multiple targets in
the presence of clutter as well as target appearance and
disappearance and is applicable to cases in which the de-
tection probability of the target is low and the sampling
period is long. Simulation results show that this filter
tracks multiple targets better than the PHD and CPHD
filters given a low detection probability of the target.
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