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Abstract

power fluctuations.

Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active
loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a
vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors,
etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is
becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and
operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated
with signal processing applied to power system analysis in terms of characterization and diagnostics. The following
techniques are reviewed and their characteristics and applications discussed: active power system monitoring,
sparse representation of power system signal, real-time resampling, and time-frequency (i.e,, wavelets) applied to
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1 Introduction

The increasing complexity of the electric grid requires
intensive and comprehensive signal monitoring followed
by the necessary signal processing (SP) for characterizing,
identifying, diagnosing, protecting, and also for better
unfolding the nature of certain phenomena and events.
Signal processing can also be used for predicting and an-
ticipating system behaviors; thus, SP for electrical engin-
eering is a vital tool for separating, decomposing, and
revealing different aspects and dimensions of the complex
physical operation of electrical systems, in which different
phenomena are usually intricately and intrinsically aggre-
gated and not trivially resolved.

As the electric grid becomes more multifaceted, mod-
eling and simulation become less capable of capturing
the influence of the multitude of independent compo-
nents within the network. Since SP deals with the actual
system (no modeling abstraction or reduction, though it
may be used in connection with simulations), it encom-
passes all without clashing and as such mediates its
unity through a great diversity of aspects. Consequently,
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SP can detect and reveal the true nature of the electric
grid behavior.

The aim of this paper is to present some useful power
system signal processing applications in the context of
smart grids. At the same time, it presents well-established
SP tools applied to a power system and it introduces new
concepts that would be helpful in the smart grids. “Section
2” presents the concept of active power system monitoring
and processing. In this concept, an external and controlled
signal is injected into the electric network and the behav-
ior of the system due to this external stimulus is acquired
and information is extracted using signal processing.
Although the idea can be applied for extracting a large set
of information, “Section 2” focuses on network impedance
estimation, which is a practical example of active monitor-
ing and signal processing, and it is an important param-
eter to be estimated in the smart grid context.

“Section 3” deals with the sparse representation of power
system signal. The sparse representation, over redundant
dictionary, has emerged as a potential method for detec-
tion, estimation, and compression of power system signal.
Although the section focuses on signal compressing appli-
cation, the authors wish to draw attention to the potential
of the method for other applications, such as detection and
classification. A special case comparing the compression
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rate between the well-established wavelet transform and
the sparse representation is presented in this section.

“Section 4” covers the topic of real-time resampling
technique, specifically the one when the fundamental
frequency varies with time. In this case, the concept of
arbitrary sampling rate interpolation (ASRI) is used. This
concept requires a frequency estimator and uses an adap-
tive interpolator filter in order to synchronize the signal in
real time. The adaptive filter can run using batch or sam-
ple by sample processing. After real-time synchronization,
the harmonic components can be estimated using the
regular fast Fourier transform (FFT) and the harmonic
and subharmonic groups and subgroups can be computed
according to the standard. An example showing that ASRI
reduces drastically the estimation error is also discussed.

“Section 5” explores the application of time-frequency
analysis (wavelet transform—WT) in generation and
load profiles. Through the analysis of relevant signals,
the variations in the signals of different frequency ranges
can be characterized. In this section, the power fluctua-
tions in a small 10-kV distribution network (acting as a
microgrid) are analyzed using WT and the results show
that the tool is useful both for the characterization of
possible electricity storage devices and the determination
of the required balancing capacities.

Finally, “Section 6” presents the conclusions of this paper.

Page 2 of 13

2 Passive versus active power system monitoring
and processing

Electrical parameter estimation like fundamental fre-
quency, phasor values, and harmonic components, among
others, is a significant piece of information used to diag-
nose the state of the electrical system regarding possible
solutions to restore the system health. Figure 1 illustrates
a comprehensive system-wide signal processing analysis.
This figure shows that if the electrical information is avail-
able from the network, signal processing can be used to
estimate several parameters of the system such as imped-
ance, power factors, power flow, stability, etc. where such
information can be used by the system operator for more
efficient control of the electric grid. The method presented
in Fig. 1 can be named as passive monitoring or noninva-
sive monitoring, because the information is extracted from
the system using noninvasive sensors allocated along it. In
passive monitoring, no external perturbation is applied to
the system. However, for some parameters, estimation by
passive monitoring is not the most appropriate method,
which can lead to inaccuracy. The classical example is
for harmonic impedance estimation. The noninvasive
methods rely on voltage and current harmonic varia-
tions caused by natural load variability [1-4]. The weak-
ness of noninvasive methods rests in the fact that the
harmonic content of the natural excitation cannot be

Fig. 1 A comprehensive system-wide signal processing analysis
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controlled; furthermore, the temporal natural excitation
is sensitive to changes of background voltage harmonics
as well as time variability of measured harmonic imped-
ance itself. Thus, in order to achieve satisfactory accuracy,
they require long-term recording and data averaging.

On the other hand, active invasive monitoring methods
rely on the fact that an external disturbance is injected
into the network and the resultant voltage/current is mea-
sured at the measuring point (MP) [5-12]. Such methods
often have better accuracy than noninvasive methods but
may cause interference in the electrical network, and the
equipment used to inject the transient signal increases the
cost in comparison to the noninvasive methods.

Invasive methods are generally divided into transient-
and steady-state measurement-based procedures. Transient-
based methods use capacitor switching to provoke transient
disturbances into the network to rate the frequency-
dependent network impedance by the ratio between the
measured voltage and current. Otherwise, steady-state-
based methods use voltage and current, pre- and post-
disturbance, to determine network impedances for each
harmonic frequency.

In [6], for example, the authors propose a steady-state
method that injects a square-wave current waveform,
with constant frequency and magnitude, in order to meas-
ure the harmonic impedance of a microgrid.

The method proposed in [7] uses a thyristor to create
a controlled short circuit at the measurement point. The
short circuit produces a pulse current and a voltage dis-
tortion, which is used to estimate the system impedance.
The method is able to estimate the harmonic impedance
even in the presence of nonlinear loads. The process
uses the extraction of the transient signals from the re-
corded voltage and current waveforms by subtracting
two consecutive cycles of the waveform. The transient
signals are produced by using multiple firing angles to
improve the precision at the frequencies with low transi-
ent current energy.

In [8], the method is based on processing the voltage
and current transients generated when a power trans-
former is switched on. The discrete Fourier transform is
applied to determine the harmonic components of volt-
age and current, and consequently, the harmonic imped-
ance is calculated. However, this method is only suitable
for the determination of low-order harmonic impedance
values in AC supply systems.

In [9], the authors present an improved power system
impedance measurement technique based on a power
converter that injects a short-duration spike current at the
MP. The advantage is that the width and weight of the
spike can be controlled to minimize the disturbance on
the grid. The fact that the spike length can be controlled
means that the harmonic content injected may have some
control; however, this control is not effective once the
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increasing of the frequency range requires the spike to be
close to an impulse signal, which is not feasible.

Despite of the problems regarding the invasive method,
such as costs, lack of frequency control, and network per-
turbation, they point to a very attractive methodology for
identifying the electrical parameters and performing reli-
able diagnoses: the active monitoring and processing.
Keeping the proportions in mind, active monitoring and
processing are similar to medical examinations performed
on patients, where a controlled signal or substance is
injected to obtain accurate information about the health
of the patients. The drawbacks of active monitoring can
be minimized if part of the smart grid infra-structure is
used to improve the system performance and reduce cost.
This concept is supported by the fact that renewable gen-
eration will increase significantly in this new scenario. The
power electronic interface for the renewable generation
will be fundamental to the new generators, and it can be
designed to inject power and exchange information within
the network. In fact, the network parameter seen from the
point where the generator will be installed is a relevant
parameter for the voltage source inverter (VSI) control.
For example, in [11, 12], current harmonic is injected
from the VSI with the goal of grid impedance information.

Figure 2 shows a basic example of an active monitoring
and processing system to impedance estimation. The elec-
tronic system to inject a transient signal can be stand-
alone or be a part of a power electronic interface of a gen-
erator. The impedance of the system from the MP can be
computed by injecting a transient signal and collecting the
voltage and current at the MP. To be effective, the
injected signal should have the following characteristics:

e Frequency controls, so the network can be excited
at the frequency range of interest.

e The transient generated by the injected signal at
network should be controlled, so the power system
is minimally disturbed.

e The injected signal should be generated as simply as
possible, which means at a low cost as possible.

A good waveform candidate to be injected is the
Morlet wavelet (MW) or the modulated Gaussian signal
(MGS) or any other signal that has finite support and
has the three characteristics described before. The MGS
was used in [13] for network impedance estimation ranges
from the second harmonic up the 50th harmonic. Figure 3
shows an example of the MGS waveform for the 5th, 11th,
and 30th harmonics, each one with time duration of half
cycle of the fundamental component. These signals are
injected sequentially including silence space of one cycle
between two consecutive MGS signals. After the injec-
tion of each modulated signal, the SWRDFT [14] is used
to process the signals and extract the impedance at
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Fig. 2 Basic example of harmonic impedance measurement using active monitoring and processing
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modulated frequency. The main advantage of this meth-
odology is that instead of injecting a single signal that
has energy in a large frequency range, small signals are
injected in different frequencies, so it is possible to have
control of all spectra of interest.

As an example to show the effectiveness of the pro-
posed method, the modified IEEE 13-bus industrial dis-
tribution system [15] is used. The modification is due to
the nonlinear loads (six-pulse AC/DC converters) in-
cluded at buses 5, 10, 11, and 13 of Fig. 4. Figure 5 shows
the magnitude and phase of the impedance. The results
were simulated using the SimPowerSystems/Simulink .
The estimated impedance was compared with the one
obtained by the impedance meter block (IMB) of the
Simulink. The difference between the ideal and esti-
mated impedance values was lower than 3.85 %. The
methodology of injecting a sequence of small signals of
controlled frequencies seems to be promising.

2.1 Where to go on active monitoring and processing

The results presented above are a preamble of possibil-
ities that can be explored through active monitoring and
processing for diagnoses and electrical parameter esti-
mation. In the new scenario of smart grid, the network
complexity will require new methods to overcome new
problems that are to come and some that are still a chal-
lenging topic. Active monitoring seems to be a useful

tool to help with problems such as the harmonic distor-
tion responsibility, islanding detection, resonance detec-
tion in the network, and smart power quality diagnostics.

3 Sparse representation of power system signal
Signal monitoring and data acquisition are increasingly
being required in contemporary scenarios of power sys-
tems. Several applications need real-time monitoring and/
or offline analysis such as protection, control, and power
quality (PQ) analysis. In many cases, acquisition and stor-
age of raw data are required. This is sustained by the fact
that the offline processing of this data can provide infor-
mation not shown in the real-time analysis, allowing fur-
ther system enhancement, troubleshooting, and algorithm
optimization among others [16, 17]. However, most of the
conventional recorders are application oriented, acquiring
either a short term of failure signal or a specific disturb-
ance signal [18, 19].

The raw data recorded will always be of great import-
ance in power systems and especially with the growth of
smart grids. However, continuous raw data recording of
electrical signal is not a simple task due the large amount
of data to be recorded. In this way, an efficient disturbance
detector [20] and data compressor algorithms assume im-
portant roles in the new smart grid scenario.

The discrete wavelet transform (DWT) [21, 22] has
been extensively used in lossy compression applications.
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However, recently, sparse representation [23-27] has
emerged as a potential method for compression, as well
as detection and estimation in power system applica-
tions. Thus, this section will present a brief review of
this new signal processing technique and present prom-
ising results in compression application that can be part
of a future PQ data or system performance recorder.
Despite the fact that most of the references on sparse
representation focuses on image compression, there are
some that address power system applications. In [24],
the author uses sparsity constraints and adaptive pursuit
techniques for transient detection in power system signals.
In [25], the authors propose to carry out a coherent repre-
sentation of electrical signals through adaptive decompos-
ition using exponentially damped sinusoidal components,
and for that, an intermediate step with Gabor atoms is
necessary. In [26], the same authors eliminate the use of
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Gabor atoms working directly with a dictionary formed by
damped sinusoids.

The application of sparse approximation techniques
faces two main problems: (i) algorithms for performing
sparse decomposition and their performance analysis and
(i) dictionary composition methods. The most widely
used algorithm for solving the first problem is the match-
ing pursuit [27] or some of its variations. The second
problem could be addressed in two ways: using a prede-
fined dictionary or a learning strategy. The former is sim-
pler and the latter more flexible. Since the compression
application needs to be done online, the simpler option is
the best choice.

If the dictionary represents a simple basis, the decom-
position will be unique. However, comprehensive dic-
tionaries are more useful since they allow different
decompositions of the signal, and in this way, compres-
sion applications must seek the sparsest one. One strat-
egy widely used is building the dictionary as a union of
orthogonal basis. In power systems, the wavelet basis is
widely used due to its capacity of representing transient
phenomena; however, it is not efficient in representing
harmonic components (a large number of wavelet coef-
ficients are necessary). One basis that is efficient for
harmonic representation is the Fourier basis. Thus, the
idea of building a dictionary as a union of the wavelet
and the Fourier bases seems to be very attractive. In this
way, the efficiencies in transient and harmonic repre-
sentations are put together.

In the following example, the dictionary was built con-
taining sine and cosine up to the 50th harmonic order
and wavelet signals derived from a Daubechies 3 and a
tree of three levels. The size of the dictionary is 512 rows
(number of samples of the signal) per 612 columns (100
harmonic and 512 wavelet components). The algorithm
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used to evaluate the sparse representation was the or-
thogonal matching pursuit (OMP) [27]. The OMP is a
greedy algorithm that in each iteration searches for the
dictionary element that has the biggest inner product
with the residual.

The results of the OMP with the proposed dictionary
were compared with a classical DWT using three levels
of decomposition based on Daubechies 3 mother wave-
let. Figure 6 shows a power signal containing 16, 10, and
7 % of the third, fifth, and seventh harmonics respect-
ively, besides the fundamental component and a transi-
ent at the beginning of the fourth cycle.

It can be noted in Fig. 6 that using the wavelet technique,
91 coefficients were necessary while using the sparse repre-
sentation with the proposed dictionary, only 19 coefficients
were used. As mentioned earlier, the composition of the
proposed dictionary outperforms the DWT in the repre-
sentation of stationary components.

Statistical tests were performed, and the results are
shown in Table 1 when the two techniques were submit-
ted to various disturbance signals, such as sag, swell, har-
monics, and transients. The disturbance parameters were
all randomly chosen for each generated signal.

Analyzing the results in Table 1, it is clear that the
sparse representation technique performs better than the
wavelet. It is due to the proposed dictionary that uses a
wavelet basis together with sinusoidal components,
combining the capacity of representing transient phe-
nomena of the wavelets with the ability of the Fourier
basis in representing sinusoidal steady-state signals.
One drawback of the sparse representation technique is

Table 1 Comparison of the methods [52]

Disturbance DWT Sparse
Sag/swell 69 31
Harmonics 103 13
Transients 87 25
Harmonics + transients 101 31

the computational complexity that is related to the dic-
tionary size. Therefore, dictionary structures must be
studied in order to lower the dictionary dimension as
well as the decomposition algorithms that are simpler
and faster to run in real time.

3.1 Where to go on sparse representation

Sparse representation of signals has received a great
attention in recent years. The search for a redundant
dictionary that guarantees compact representation using
atoms that has physical interpretation for the signal has
two advantages: at the same time the signal is compressed
efficiently, information regarding the signal composition
can be obtained with direct help to classification and esti-
mation task. A single example presented above, where the
signal was composed of harmonic and transient, shows
the ability of the method for the detection and classifica-
tion tasks through the knowledge of the atoms used to
represent the signal. Harmonic estimation follows directly
by analyzing the energy of each Fourier atom added. The
problem of sparse representation resides in the computa-
tion burden to reach the atom components and to find
the best dictionary for the application. We believe that this
new area has several possibilities for research and develop-
ment of new solutions for smart grid.

4 Real-time resampling technique
Harmonic and interharmonic measurements are widely
used in power quality (PQ) monitoring for characteriz-
ing the quality of energy and for troubleshooting. The
FFT is the main signal processing tool used to characterize
the magnitude spectrum of the input signal (voltage or
current). However, that nonparametric tool, used for
spectrum analysis, has well-known problems when the
sampling rate is not synchronous with the fundamental
component or when the signal is distorted by the interhar-
monic component [28—-31]. Both can lead to misinterpret-
ation of the spectrum content.

The asynchronous sampling rate leads to the spectral
leakage that introduces spurious peaks into the computed
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spectrum that can be misunderstood as interharmonics.
The spectrum leakage can be reduced if an appropriate
window is used in the substitution of the rectangular win-
dow, or it can be eliminated by synchronization of the
sampling rate.

The interharmonic causes the picket fence effects if the
frequency falls between two adjacent bin components.
The bin is the smallest resolution in the spectral analysis
which is determined by the window length. The picket
fence effect results in spectral leakage as well.

The International Electrotechnical Commission ad-
dresses the harmonic and interharmonic measurement
in the IEC 61000-4-7 [32]. The standard defines the FFT
as the digital signal processing tool applied to a data
buffer obtained by synchronous sampling of the signal
multiplied by a rectangular window. The buffer size must
be such that it contains 10 integer cycles of the fundamen-
tal component for a 50-Hz system or 12 integer cycles for
a 60-Hz system. This window length defines 5 Hz of fre-
quency resolution. Furthermore, the maximum harmonic
to be measured is defined to be the 50th harmonic.

A variety of methods have been developed in the area
of harmonic and interharmonic analysis in the last decade.
Some of them address the IEC standard and propose some
kind of modification, such as the use of the Hanning
window, Kalman filter, etc. [33-35]. However, the
synchronization of the sampling rate is the main point
to guarantee accuracy in the estimation of the har-
monics and interharmonics.

The synchronization requires a frequency estimation
algorithm. For this purpose, there are a lot of frequency
estimation algorithms [36—41]. All of them work appro-
priately in a normal situation, which means in stationary
or quasi-stationary signals; however, they are inaccurate
in some situations such as the following: (i) the inter-
harmonics (subharmonic) are close to the fundamental
frequency and (ii) during sag or transient disturbs. In
those cases, there are large deviations between the
estimated frequency and the actual frequency, which
compromise the accuracy of other parameters whose
estimators are frequency dependent. While the IEC
standard places a flag in the case of disturbance, warn-
ing the user that the processed information cannot be
valid, there is no indication in the case of frequency de-
viation due the subharmonic presence. This deviation is
seldom noticed in literature; however, with the growing
of the renewable generation, the voltage fluctuation is
expected to increase as well, and a new frequency esti-
mation algorithm robust to voltage fluctuation must be
investigated.

If the frequency estimation is available accurately, then
synchronization can be performed by adapting the sam-
pling time at the hardware level or by keeping the sam-
pling time fixed and performing a resampling technique
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or time interpolation. The last approach is generally
preferred by designers, since modification resides at the
software level. Resampling or interpolation techniques can
be performed using batch processing or sample by sample.
In both cases, real-time processing and no-fractional re-
sampling may be required. No-fractional resampling or
interpolation means that the rate of interpolation is not an
integer and in a more general case neither rational. For in-
teger or fractional interpolation, there are good algorithm
using an interpolator and decimator structure [42, 43];
however, as the system frequency varies continuously, the
concept of arbitrary sampling rate interpolation (ASRI)
should be used [44-51].

Figure 7 illustrates the original samples x[n] and the
new samples that need to be estimated, y[#], using the
new sampling time T;. The example shown in Fig. 7 il-
lustrates the interpolated sample y[m] requiring the ori-
ginal samples x[n — 1] to x[n + 3]. Note that m has been
used as the index of the interpolated sequence y[m] and
n as the index of the original sequence x[#n].

The ASRI of signal x[#n], originally sampled with a sam-
pling frequency F;, consists of the following steps:

i) Estimation of the fundamental frequency f; from the
samples of the input signal x[#]

ii) Calculation of the resampling moments a

iii) Resampling of the signal x[#] at the moments 2 + «
using interpolation in time domain, giving rise to the
output signal y[#]

Figure 8 shows a block diagram for dynamic resam-
pling. After parameter initialization, the actual system
frequency is estimated and the new sampling frequency
is obtained; then, the relationship between the new sam-
pling frequency and the ideal sampling frequency (60 or
50 Hz) is calculated, generating the factor A. From this
factor, the a is found and then the interpolation of the
new sample is carried out. Figure 8 shows a practical im-
plementation of the ASRI. This structure is known as
the Farrow structure [42], and the filters H,(z), i = 0, 1,
2, and 3, depend on the type of interpolation function
used, for example, for the third Lagrange polynomial,
the filters are [51, 52]

Ho(z) = —%z'z +%z'1—%+%z
Hi(z) =—z’1—1+1z
2 2 (1)
Hj(2) = —%z’z 7! +%+§z
H;(z) =1

and for the third-order spline function, the filters are
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Holz) = 1 4 11 +1 5 expected at the knot points. To reduce these errors,
o\z)==¢*% 2 27767 the B-spline least square [47] and the B-spline
Hy(z) = 1 711+ 1 z inverse function [53, 54] are used.
2 1 12 (2) e If the sampling frequency is much higher than the
Hy(z) = - iz_l + 57 maximum frequency present in the signal that will
15, 2711 be interpolated. The Lagrange interpolator leads to
H;3(z) = 67 + 3 + 67 better results with smaller computational effort;

Figure 9 shows a feedback branch controlled by the
value of a. While the value of @ < 1, the interpolated
output is computed without change in the filter’s mem-
ory. The value of a is modified in each step that a new
output is generated. If a > 1, the a value is modified as
presented in Fig. 9 and the filter’s memories are updated.
The algorithm continues indefinitely.

The main points to be considered in choosing the
interpolation function are as follows:

e Spline interpolation does not pass through the knot
points; this means that some small errors are

Initialization
T.
Ti=T, = A=z
a=20

Calculate
«—a=a+A T
Yes
Calculate
ylm]
>la=a—1 Update buffer  |—

Fig. 8 Block diagram of arbitrary rate interpolation

otherwise, the spline interpolator should be preferred.

In order to compare the errors produced by ASRI, con-
sider the case where the fundamental frequency is time-
varying frequency, varying from 60 to 61 Hz in 1 s (ramp
variation). Figure 10 compares the error in the harmonic
groups of the IEC 61000-4-7 [55], without interpolation,
after interpolation using a third-order B-spline (B-spline),
third-order Lagrange polynomial (Lagrange), and using
offline B-spline interpolation (offline interpolation). In this
last interpolation method, the average frequency of the
window was taken as constant. The harmonic component
orders present at the signal were & = [3, 7, 10, 11, 13, 15,
19-21, 27, 31, 37, 45, 50], and the amplitude of the har-
monics was all 0.2 pu. The sampling frequency was
128*60 Hz and a signal to noise rate (SNR) of 40 dB was
added to the signal. As can be observed from these results,
the B-spline LS presented an error lower than 0.5 % for all
groups, while the Lagrange reaches an error higher than
3 % and the offline B-spline considering the average
frequency reaches about 12 %. The worst case is when
noninterpolation is considered; in this situation, error
approaches 90 %. These results show that ASRI pro-
duces better results than considering the fundamental
frequency fixed inside the window.

4.1 Where to go on real-time resampling

Multirate systems require different sampling rates for ad-
equate signal processing. As a consequence, sampling al-
teration becomes a necessity as the different techniques
are used to analyze the same signal. This section discussed
the arbitrary sampling alteration, a very important point
when the frequency varies continuously. As the electrical
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signal of the future smart grid becomes highly time vary-
ing and a variety of analyses will have to be done on the
same signal, the adequate sampling rate for the different
parameters being extracted becomes an important aspect
of the overall signal processing analysis. Again, a good fre-
quency estimator is the key for the successes of the
interpolation techniques.

5 Time-frequency applied to power fluctuations
caused by intermittent renewable generation and
load variations

A time-frequency method, such as the wavelet trans-
form (WT), is an appropriate tool for the analysis of
nonstationary signals. Unlike conventional frequency
analysis methods, wavelets give information about the
range of frequency components of a signal as a function
of time. The first time that WT was suggested to be ap-
plied in the power system area was in the IEEE Working
Group on Harmonic Modeling Simulation in 1993 and
subsequently published in 1994 [56]. After that, several
works have been published addressing power system

application with emphasis on the following areas: power
quality analysis and monitoring, power system protec-
tion [57], wind power forecasting [58, 59], and, more
recently, fluctuation identification caused by renewable
energy sources (RES) [52, 60]. This section explores the
application of WT in generation and load profiles.
Through the analysis of relevant signals, the variations
in the signals of different frequency ranges can be char-
acterized. In this section, the power fluctuations in a
small 10-kV distribution network (acting as a microgrid)
are analyzed using WT.

For a signal P(f), the wavelet representation can be
written as [52]

P(t)=Y"

k

S Powr (k.m0 (3)

where the factors Ppyr(k, 1) are the wavelet coefficients
that indicate the presence of transformed wavelet com-
ponents at different scaling factors in the original signal
at different time shifts. For all signals here mentioned,
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Fig. 10 Errors in the harmonic group estimation after interpolation
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the signal is normalized using Eq. 4 to be within [0,1]
and the Meyer wavelet is used as the mother wavelet.

P(t)- min[P(t)]
max|[P(¢)]- min[P(¢)]

Prorm () = (4)

The maximum scaling factor L for the wavelet decom-
position follows from the lowest frequency to be ana-
lyzed and its sampling frequency F,. These can be found
in Eq. 5:

Fy F
2k+1’?

= k=12, ..
Fs ) )y
(O,F),k:l/

Fy ,L-1 (5)

where F; indicates the frequency band related with the
wavelet coefficient in the scale, or level, k.

From all wavelet components Ppywr(k, 1) that represent
a certain frequency range, a number of components are
selected that contribute most to the original signal P(¢) as
follows from Eq. 3. The selection of these components is
based on the root mean square (RMS) value of each indi-
vidual component.

The components considered to contribute most are the
ones with the highest RMS values, as derived with Eq. 6.
As such, the most relevant scaling factors of Ppwr(k, 1)
can be used to approximate the original signal. This is
based on the superposition of the most relevant scaling
factors as, indicated in Eq. 3. These relevant scaling factors
can be investigated as well, as each component holds the
information of the original signal within a certain fre-
quency bandwidth; the signal reconstruct in this way is
named here as synthetic signal. When the individual rele-
vant scaling factors are determined, they reveal additional
information about fluctuations in the original signal at
specific time periods. From now on, the wavelet coeffi-
cients Ppyr(k, n) will be renamed Ay, for the sake of
simplification, then
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Ak rms =

where N is the number of samples in each scale.

5.1 A smart microgrid example
In order to illustrate the use of wavelet for identification
of power fluctuations, a small grid is used as an example.
The microgrid in this study consists of a number of loads
connected to a small 10-kV radial distribution network
containing a 2-MW wind turbine (W) and a conventional
generator (G). The microgrid is to be operated in island
mode, and therefore, the conventional generator needs
to be able to deal with the aggregated fluctuations of
load and wind turbine. The network topology is illus-
trated in Fig. 11.

The power Pg(f) that the conventional generator G
needs to produce is given by Eq. 7:

PG (t) = Zpload(t) + Zplosses(t)_Pwind(t) (7)

where Pj,.q4(¢) is the power of each load, Pyg.s(£) are the
network losses, and P,;,q(f) is the power generated by
the wind turbine.

After completing the load flow simulations and nor-
malizing the power profile using Eq. 4, the power to be
generated by generator G was investigated using the
wavelet methodology to determine its characteristic fluc-
tuations to be managed by generator G. The load flow
simulations were done for each minute during a month,
so the sampling period (1/F;) of Pg(t) is 1 min. Using
Eq. 5, the maximum scaling factor was decided to be 14.
The three components of Ay, with the highest RMS
values, obtained from Eq. 6, were chosen to be the most
relevant. They were the components Ajg,, A1, and
A1, .- Note, in Fig. 12, that the reconstructed (synthetic)
signal using only these three components is close to the
actual signal.
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Fig. 12 Original and synthesized power profiles of generator G during 1 month
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The power profile for generator G can be summarized
from Fig. 13. In this figure, the components Aiq,, A1,
and Aj,, together with the moving average component,
Aprn are shown. Note that Apq, presents higher fre-
quency and significant energy, so the generator must fol-
low this profile. The period of this component can be
found as follows.

The time sampling T, of the center of each level k
can be determined from Eq. 5 as

Tox = (27 /Fg + 28 /F,) /2 = 2°(1,5/F) (8)

For the present example, 1/F; = 60 s, so

Tox = 90 x 2s

©)

From Fig. 13, it can be concluded that Aq, is the
component with a daily profile (T,, = 2'°90 s =
1.07 days) and has the largest share in the original sig-
nal. Generator G must therefore be able to ramp up and
down within this period. If generator G is able to follow
the fluctuations within a 1-day period, it will be able to
produce the synthetic profile as shown in Fig. 13. To
provide the difference in power between the synthesized
and the original profiles, an electricity storage device
can be added to the microgrid under study. As shown in

this example, the wavelet analysis can be used to
characterize both the generator G and the required elec-
tricity storage device.

5.2 Where to go on wavelet application on smart grid
The increasing complexity of the electric grid requires
new signal processing techniques which can be used to
analyze power systems. It is proposed, for example, that
wavelet analysis can be applied to determine fluctuation
patterns in generation and load profiles. This is achieved
by the filtering of its wavelet components based on their
RMS values, and it is possible to identify the most rele-
vant scaling factors from the analysis.

The application of wavelet analysis, as described in this
section, may prove useful both for the characterization
of possible electricity storage devices and the determin-
ation of the required balancing capacities. It can also aid
energy companies to make improved bids in energy mar-
kets by having specific information on the characteristic
fluctuations of its renewable generation, and it provides
them with the ability to counteract these by using con-
ventional generation and electricity storage. In the fu-
ture, the application of wavelets to analyze generation
and load signals may prove very useful for agents re-
sponsible for the operation and control of the network.

- 0.6k
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Fig.

13 Most relevant wavelet components for the microgrid simulation during T month and the moving average component [52]
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These agents could use wavelet analysis to improve their
response performance. Moreover, wavelet analysis can be
applied to analyze price signals in these time-dependent
energy markets.

6 Conclusions

This paper presented some advantageous application of
signal processing in the context of smart grid. With the
growing complexity of power system network character-
ized by the proliferation of disperse, distributed, and re-
newable generation and the introduction of new nonlinear
generation and loads, some common tasks tend to be so
multifaceted that traditional techniques will not be able to
deal with them appropriately. Advanced signal processing
techniques will be essential to support the tasks of protec-
tion, operation, monitoring, and expansion, among others.
Thus, one of the skills that a new professional in the
power system field must have is the ability to use inter-
changeably a number of advanced signal processing tech-
niques already available.
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