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Abstract

An accurate and efficient algorithm for solving the constrained �1-norm minimization problem is highly needed and
is crucial for the success of sparse signal recovery in compressive sampling. We tackle the constrained �1-norm
minimization problem by reformulating it via an indicator function which describes the constraints. The resulting
model is solved efficiently and accurately by using an elegant proximity operator-based algorithm. Numerical
experiments show that the proposed algorithm performs well for sparse signals with magnitudes over a high dynamic
range. Furthermore, it performs significantly better than the well-known algorithm NESTA (a shorthand for Nesterov’s
algorithm) and DADM (dual alternating direction method) in terms of the quality of restored signals and the
computational complexity measured in the CPU-time consumed.
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1 Introduction
In this paper, we study the recovery of an unknown vector
u0 ∈ R

n from the observed data b ∈ R
m and the model

b = Au0 + z, (1)

where A is a known m × n measurement matrix and
z ∈ R

m is a noise term. Under an assumption that the
vector u0 of interest is sparse, the work in [1, 2] shows
that an accurate estimation of u0 is possible even when
m < n, that is, the observations are fewer than unknowns.
Recently, there is a significant body of work that focuses
on finding an approximation to u0 by solving a convex
optimization problem. In the presence of noise-free data,
i.e., z = 0, the optimization problem is

(BP) min{‖u‖1 : u ∈ R
n} s.t. b = Au,

which essentially is the basis pursuit problem proposed
early in the context of time-frequency representation [3].
Here, ‖·‖1 denotes the �1-norm of a vector in an Euclidean
space. The optimization model (BP) can be solved by
linear programming.
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In the presence of noisy data, the linear constraint b =
Au in (BP) is relaxed to an inequality constraint ‖Au −
b‖2 ≤ ε, where ‖ ·‖2 denotes the �2-norm of a vector in an
Euclidean space. As a result, the optimization model (BP)
becomes the basis pursuit denoising problem

(BPε) min{‖u‖1 : u ∈ R
n} s.t. ‖Au − b‖2 ≤ ε,

where ε2 is an estimated upper bound of the noise power.
Both problems (BP) and (BPε) are closely related to the

penalized least squares problem

(QPλ) min
{
1
2
‖Au − b‖22 + λ‖u‖1 : u ∈ R

n
}
.

A large amount of research has been done on solv-
ing problems (BP), (BPε), and (QPλ). Here, we only give
a brief and non-exhaustive review of results for these
problems. In [3], problems (BP) and (QPλ) are solved by
first reformulating them as perturbed linear programming
and then applying a primal-dual interior-point approach
[4]. Recently, many iterative shrinkage/thresholding algo-
rithms are proposed to handle problem (QPλ). These
include the proximal forward-backward splitting [5], the
gradient projection for sparse reconstruction [6], the fast
iterative shrinkage-thresholding algorithm (FISTA) [7],
the fixed-point continuation algorithm [8], the Bregman
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iterative regularization [9, 10], and the reference therein.
Problem (BPε) also frequently appears in wavelet-based
signal/image restoration [11, 12] with the matrix A asso-
ciated with some inverse transforms.
Problem (BPε) can be formulated as a second-order

cone program and solved by interior-point algorithms.
Many suggested algorithms for (BPε) are based on repeat-
edly solving (QPλ) for various values of λ. Such algo-
rithms are referred to as the homotopy method originally
proposed in [13, 14]. The homotopy method is also suc-
cessfully applied to (BP) in [15]. A common approach for
obtaining approximate solutions to (BPε) is often accom-
panied by solving (QPλ) for a decreasing sequence of
values of λ [16]. The optimization theory asserts that
problems (BPε) and (QPλ) are equivalent provided that
the parameters ε and λ satisfy certain relationship [17].
Since this relationship is hard to compute in general, solv-
ing problem (BPε) via repeatedly solving (QPλ) for various
values of λ is problematic. Recently, the NESTA [18] which
employs Nesterov’s optimal gradient method was pro-
posed for solving relaxed versions of (BP) and (BPε) via
Nesterov’s smoothing technique [19]. Clearly, the close-
ness of the solution to the relaxed version of (BP) (or the
relaxed version of (BPε)) to the solution to (BP) (or (BPε))
is determined by the level of the closeness of the smoothed
�1-norm to the �1-norm itself. Certainly, the performance
of these approaches depends on the fine tuning of the
parameter λ in (QPλ) or a parameter that controls the
degree of the closeness of the �1-norm and its smoothed
version.
In this paper, we consider solving problems (BP) and

(BPε) by a different approach.We convert the constrained
optimization problems to unified unconstrained one via
an indicator function. The corresponding objective func-
tion for the unconstrained optimization problem is the
sum of the �1-norm of the underlying signal u and the
indicator function of a set in R

m, which is {0} for (BP) or
the ε-ball for (BPε), composing with the affine transfor-
mation Au − b. Non-differentiability of both the �1-norm
and the indicator of the set imposes challenges for solving
the associated optimization problem. Fortunately enough,
their proximity operators have explicit expressions. The
solutions for the problem can be viewed as fixed-points
of a coupled equation formed in terms of these prox-
imity operators. An iterative algorithm for finding the
fixed-points is then developed. The main advantage of
this approach is that solving (QPλ) or smoothing the
�1-norm are no longer necessary. This makes the pro-
posed algorithm attractive for solving (BP) and (BPε). The
efficiency of fixed-point-based proximity algorithms has
been demonstrated in [5] and [20–22] for various image
processing models.
The rest of the paper is organized as follows: in

Section 2, we reformulate the �1-norm minimization

problems (BP) and (BPε) via an indicator function and
characterize solutions of the proposed model in terms
of fixed-point equations. We also point out the connec-
tion between the proposed model and (QPλ) through
the Moreau envelope. In Section 3, we develop an algo-
rithm for the resulting minimization problem based on
the fixed-point equations arising from the characteri-
zation of the proposed model. Numerical experiments
are presented in Section 4. We draw our conclusions in
Section 5.

2 An �1-norm optimizationmodel via an indicator
function

In this section, we consider a general optimization model
that includes models (BP) and (BPε) as its special cases
and characterize solutions to the proposed model.
We begin with introducing our notation and recalling

necessary background from convex analysis. For the usual
d-dimensional Euclidean space denoted by Rd, we define
〈x, y〉 := ∑d

i=1 xiyi, for x, y ∈ R
d, the standard inner prod-

uct in R
d . The class of all lower semicontinuous convex

functions f : Rd → (−∞,+∞] such that domf := {x ∈
R
d : f (x) < +∞} 	= ∅ is denoted by �0(Rd). The indica-

tor function of a closed convex set C in R
d is defined, at

u ∈ R
d, as

ιC(u) :=
{
0, if u ∈ C,
+∞, otherwise.

Clearly, the indicator function ιC is in �0(Rd) for any
closed nonempty convex set C. In particular, we define a
ball inR

m centered at the origin with radius ε as Bε := {v :
v ∈ R

m and ‖v‖2 ≤ ε}.
Given a matrix A ∈ R

m×n and a vector b ∈ R
m, we

consider the following optimization problem

min
{‖u‖1 + ιBε (Au − b) : u ∈ R

n} . (2)

We can easily see that if ε = 0, then model (2) reduces
to (BP), and if ε > 0, then model (2) reduces to (BPε).
In other words, both constrained optimization problems
(BP) and (BPε) can be unified as the unconstrained opti-
mization problem (2) via the indicator function ιBε .
In the following, we shall focus on characterizing solu-

tions of model (2) using fixed-point equations. To char-
acterize solutions of model (2), we first need two con-
cepts, namely, the proximity operator and subdifferential
of functions in �0(Rd). For a function f ∈ �0(Rd), the
proximity operator of f with parameter λ, denoted by
proxλf , is a mapping from R

d to itself, defined for a given
point x ∈ R

d by

proxλf (x) := argmin
{

1
2λ

‖u − x‖22 + f (u) : u ∈ R
d
}
.
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The subdifferential of a proper convex function ψ ∈
�0(Rd) at a given vector u ∈ R

d is the set defined by

∂ψ(u) :=
{
v ∈ R

d : ψ(w) ≥ ψ(u) + 〈v,w − u〉, ∀w ∈ R
d
}
.

The subdifferential and the proximity operator of the
function ψ are related in the following way (see, e.g. [21]):
for u in the domain of ψ and v ∈ R

d

v ∈ ∂ψ(u) if and only ifu = proxψ(u + v). (3)

Now, with the help of the subdifferential and the prox-
imity operator, we can characterize a solution of the
indicator function based on model (2) via fixed-point
equations.

Proposition 2.1. Let ε be a nonnegative number, let Bε

be the ball in R
m centered at the origin with radius ε, let b

be a point in R
m, and let A be an m × n matrix. If u ∈ R

n

is a solution to model (2), then for any α > 0 and β > 0,
there exists a vector v ∈ R

m such that

u = prox 1
α
‖·‖1

(
u − β

α
A
v

)
, (4)

v =
(
I − proxιBε (·−b)

)
(Au + v) . (5)

Conversely, if there exist α > 0, β > 0, u ∈ R
n, and v ∈

R
m satisfying (4) and (5), then u is a solution of model (2).

Proof. We first assume that u ∈ R
n is a solution of

model (2). Set ϕ := ιBε (· − b). Hence, Au − b must be
in the ball Bε . Therefore, both sets ∂‖ · ‖1(u) and ∂ϕ(Au)

are nonempty. By Fermat’s rule, we have that 0 ∈ ∂‖ ·
‖1(u) + A
∂ϕ(Au). Therefore, for any α > 0 and β > 0,
there exist w ∈ 1

α
∂‖ · ‖1(u) and v ∈ 1

β
∂ϕ(Au) such that

0 = αw + βA
v, i.e., w = −β
α
A
v. By using (3), inclusion

w ∈ 1
α
∂‖ · ‖1(u) implies u = prox 1

α
‖·‖1 (u + w), which is

(4). Since 1
β
ϕ = ϕ for any β > 0, inclusion v ∈ 1

β
∂ϕ(Au)

leads to Au = proxϕ(v + Au), which is equivalent to (5).
Conversely, if (4) and (5) are satisfied for some α > 0,

β > 0, u ∈ R
n, and v ∈ R

m, using (3) again, we have
that −β

α
A
v ∈ ∂

( 1
α
‖ · ‖1

)
(u) and v ∈ ∂ϕ(Au). Since

∂
( 1

α
‖ · ‖1

)
(u) = 1

α
∂‖ · ‖1(u) and ∂ϕ(Au) = β∂ϕ(Au), we

know from the above that 0 ∈ ∂‖ · ‖1(u) + A
∂ϕ(Au).
This indicates that u is a solution of model (2). The proof
is complete.

We remark that the above fixed-point characterization
can be identified as a special case of Proposition 1 in [22].
We include the proof of Proposition 2.1 here for making
the paper self-contained.
The proximity operators of the functions ‖ · ‖1 and

ιBε (·−b) involved in the characterization can be computed

efficiently. Indeed, the proximity operator prox 1
α
‖·‖1 is the

soft-thresholding operator defined for u ∈ R
n by:

(
prox 1

α
‖·‖1(u)

)
[i]= max

{
|u[i] | − 1

α
, 0

}
sign(u[i] ), (6)

for i = 1, 2, . . . , n.
The proximity operator proxιBε (·−b) is given by the fol-

lowing lemma.

Lemma 2.2. Let ε be a nonnegative number and let b be
a point in R

m. Then, for a given v ∈ R
m

proxιBε (·−b)(v) = b + min
{
1,

ε

‖v − b‖2
}

(v − b).

Proof. By the definition of the proximity operator, we
can verify directly that proxιBε (·−b) = b + proxιBε

(· − b)
and proxιBε

is the projection operator onto the ball Bε . The
result of this lemma follows immediately.

3 An algorithm and its convergence
In this section, we develop an algorithm for finding a solu-
tion of model (2) and provide a convergence analysis for
the developed algorithm.
As we already know, all solutions of model (2) should

satisfy the fixed-point equations given by (4) and (5). By
introducing an auxiliary variablew = proxιBε (·−b)(Au+v),
we have the following equivalent form of (4) and (5)

⎧⎪⎨
⎪⎩
u = prox 1

α
‖·‖1

((
I − β

α
A
A

)
u − β

α
A
(v − w)

)
,

w = proxιBε (·−b)(Au + v),
v = Au + v − w.

(7)

Based on the above fixed-point equations in terms of u,
w, and v, for arbitrary initial vectors u0 ∈ R

n, w0, v0 ∈
R
m, we generate the sequence {uk : k ∈ N0} with N0 :=

{0, 1, . . .} by the following iterative scheme

⎧⎪⎨
⎪⎩
uk+1 = prox 1

α
‖·‖1

((
I − β

α
A
A

)
uk − β

α
A
 (

vk − wk)),
wk+1 = proxιBε (·−b)

(
Auk+1 + vk

)
,

vk+1 = Auk+1 + vk − wk+1.
(8)

To show convergence of the iterative scheme (8), we
recall a result from [20].

Lemma 3.1 (Theorem 3.5 in [20]). If x is a vector in R
n,

A is an m × n matrix, ϕ is in �0(Rm), and α, β , λ are
positive numbers such that β

λα
< 1

‖A‖2 , then the sequence
{uk : k ∈ N0} generated by the following iterative scheme
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uk+1 = x + prox 1
α
‖·‖1

((
I − β

λα
A
A

)
uk

−x − β
λα

A
 (
vk − wk)) ,

wk+1 = prox 1
β
ϕ

(
Auk+1 + vk

)
,

vk+1 = Auk+1 + vk − wk+1

(9)

converges to a solution of the optimization problem

min
{
λ‖u − x‖1 + (ϕ ◦ A)(u) : u ∈ R

m}
. (10)

With the help of Lemma 3.1, the following result shows
that under appropriate conditions on parameters α and β ,
the sequence {uk : k ∈ N0} converges to a solution of
model (2).

Theorem 3.2. Let ε be a nonnegative number, let Bε be
the ball in R

m centered at the origin with radius ε, let b be
a point in R

m, and let A be an m × n matrix. If

β

α
<

1
‖A‖2 , (11)

then for arbitrary initial vectors u0 ∈ R
n, w0, v0 ∈ R

m, the
sequence {uk : k ∈ N0} generated by the iterative scheme
(8) converges to a solution of model (2).

Proof. By setting x = 0 and λ = 1 and identifying ϕ =
ιBε (· − b) in model (10), the iterative scheme (8) can be
viewed as a special case of the one given in (9). The desired
result follows immediately from Lemma 3.1.

The convergence result given by Theorem 3.2 offers a
practical way to find a solution of model (2). Since the
explicit forms of the proximity operators prox 1

α
‖·‖1 and

proxιBε (·−b) are given by (6) and Lemma 2.2, respectively,
based on Theorem 3.2, a unified approach for solving both
(BP) and (BPε) is depicted in Algorithm 1.

Algorithm 1 The iterative scheme for model (BPε) with
ε ≥ 0

Initialization: v0 ∈ R
m, w0 ∈ R

m, u0 ∈ R
n, ε > 0,

α > 0, and β > 0 with β
α

< 1
‖A‖2 .

repeat(k ≥ 0)
Step 1:

uk+1 ← prox 1
α
‖·‖1

((
I − β

α
A
A

)
uk

−β

α
A
(vk − wk)

)

Step 2: Denote pk := Auk+1 + vk − b.

wk+1 ←
{
Auk+1 + vk , if ‖pk‖2 < ε;
b + ε

pk
‖pk‖2 , otherwise.

Step 3: vk+1 ← Auk+1 + vk − wk+1

until a given stopping criteria is met

We remark that Algorithm 1 derived from the fixed-
point characterization of model (2) is closed related to
existing algorithms based on the idea of augmented direc-
tion method for model. We briefly review an alternating
directionmethod for model (2) that is equivalently written
as the following constrained optimization problem

min
{‖u‖1 + ιBε (w − b) : Au = w,u ∈ R

n,w ∈ R
m}

.
(12)

The primal and dual alternating direction methods for
solving (12) can be found in [23]. The generalized alternat-
ing direction method for (12), proposed in [24], iterates as
follows: given (u0,w0, λ0) ∈ R

n × R
m × R

m,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1 = argminu
{
‖u‖1 + 〈λk ,Au − wk〉 + β

2 ‖Au − wk‖22 + 1
2

(u − uk)P(u − uk)
}
,

wk+1 = argminw
{
ιBε (w − b) + 〈λk ,Auk+1 − w〉 + β

2

‖Auk+1 − w‖22
}
,

λk+1 = λk + β
(
Auk+1 − wk+1) ,

(13)

where the matrix P = αI − βA
A is positive definite. The
condition β

α
< 1

‖A‖2 ensures the positive definiteness of P.
The technique of introducing the term (u − uk)P(u − uk)
was used earlier in [25]. It can be easily seen that the iter-
ative scheme (13) is equivalent to (8) with λk = βvk . It is
worth pointing out that if P is the zero matrix, then the
iterative scheme (13) reduces to the conventional alter-
native direction method of multipliers (ADMM) for the
constrained optimization problem (12) (see, e.g., [26]); in
this case, the u-subproblem in (13) has no explicit solution
and must be solved by an appropriate iterative algorithm,
for example, FISTA in [7].
We further make some comments on Algorithm 1. Step

1 of computing uk+1 is from the first equation in (8); step 2
of computing wk+1 is from the second equation in (8) and
Lemma 2.2; step 3 of computing vk+1 is exactly the same
as the last equation in (8). This algorithm can be presented
in amore computationally efficient way by combining step
2 and step 3 and eliminating the intermediate variable wk .
The motivation comes from the observation Auk − wk =
vk − vk−1 which is due to the third step of Algorithm 1.
Substituting Auk − wk in step 1 by vk − vk−1 yields that

uk+1 = prox 1
α
‖·‖1

(
uk − β

α
A
 (

2vk − vk−1
))

, (14)

with an assumption v−1 = v0 − (Au0 − w0) for the given
u0, w0, and v0. We can further substitute wk+1 computed
in step 2 into step 3. In this way, the intermediate vari-
able wk is no longer needed. Hence, these simplifications
yield Algorithm 2, a variant of Algorithm 1. When ε = 0,
all vectors wk+1 in Algorithm 1 are equal to the constant
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vector b for all k ≥ 0. Because of this, we would like
to set w0 = b in both Algorithms 1 and 2. Finally, it is
more efficient to update uk+1 with step 1 of Algorithm 2
than with step 1 of Algorithm 1 in each iteration since the
matrix-vector multiplication involving A is not required
in (14). However, updating uk+1 via the formulation of
step 2 in Algorithm 1 can be implemented through the use
of the component-wise Gauss-Seidel iteration which may
accelerate the rate of convergence of the algorithm and
therefore reduce the total CPU time consumed. The effi-
ciency of component-wise Gauss-Seidel iteration has been
verified in [20, 21].

Algorithm 2 A variant of Algorithm 1 for model (BPε)

Initialization: v0 ∈ R
m, u0 ∈ R

n, ε > 0, α > 0, and
β > 0 with β

α
< 1

‖A‖2 ; set v
−1 = v0 − (Au0 − d0),

repeat(k ≥ 0)
Step 1:

uk+1 ← prox 1
α
‖·‖1

(
uk − β

α
A
 (

2vk − vk−1
))

Step 2: Denote pk := Auk+1 + vk − b.

vk+1 ←
{
0, if ‖pk‖2 < ε;(
1 − ε

‖pk‖2
) (

pk
)
, otherwise.

until a given stopping criteria is met

Algorithm 2 for model (2) can be viewed as the primal-
dual algorithm proposed in [27]. To make this connection,
we need the notion of the conjugate function. The conju-
gate of f ∈ �0(Rd) is the function f ∗ ∈ �0(Rd) defined
at y ∈ R

d by f ∗(y) := sup{〈x, y〉 − f (x) : x ∈ R
d}. By the

Fenchel-Moreau theorem in convex analysis, f = f ∗∗ for
all f ∈ �0(Rd). In particular, we have that ι∗Bε

= ε‖ ·‖2 and
ιBε = ι∗∗

Bε
= sup{〈v, ·〉 − ε‖v‖2 : v ∈ R

m}. Since ιBε = βιBε

for any β > 0, we have that ιBε (p) = sup{β〈v, p〉−βε‖v‖2 :
v ∈ R

m} for p ∈ R
m and β > 0. Therefore, the saddle

point problem associated with model (2) is

min
u∈Rn

max
v∈Rm

{‖u‖1 + β〈v,Au − b〉 − βε‖v‖2} , (15)

where u is the primal variable and v is the dual variable. An
alternating iterative scheme for solving the saddle point
problem (15) proposed in [27] is as follows:
⎧⎨
⎩
uk+1 = argminu

{‖u‖1 + β〈2vk − vk−1,Au − b〉 + α
2 ‖u − uk‖22

}
,

vk+1 = argmaxv
{
β〈v,Auk+1 − b〉 − βε‖v‖2 − β

2 ‖v − vk‖22
}
.

(16)

In terms of proximity operator, the updates uk+1 and
vk+1 in (16) are identical to the update uk+1 in step 1 and
the update vk+1 in step 2 of Algorithm 2, respectively.

4 Numerical simulations
This section is devoted to showing the numerical perfor-
mance of the proposed algorithms for compressive sam-
pling. We use NESTA [18] and dual alternating direction
method (DADM) [23] as a comparison. In the compar-
isons, the NESTA with continuation in available code
NESTA_v1.1 is applied and DADM for model (BPε) is
chosen. We focus on sparse signals with various dynamic
ranges and various measurement matrices including
randomly partial discrete cosine transforms (DCTs),
randomly partial discrete Walsh-Hadamard transforms
(DWHTs), and random Gaussian matrices and evaluate
performance of algorithms in terms of various error met-
rics, speed, and robustness-to-noise. All the experiments
are performed in MATLAB 7.11 on DELL XPS 14 with
Intel Core i5, 4GB RAM onWindows 8 operating system.
We begin with a description of generating the m × n

sensing matrix A and length-n and s-sparse signals. The
sensing matrices are divided into two categories. In the
first category, the sensing matrices A satisfy AA
 = I
while in the other one condition AA
 = I is not satisfied.
In the first category, when the m × n sensing matrix A is
partial DCT or DWHT, it is generated by randomly pick-
ingm rows from the n×nDCTmatrix or DWHTmatrix;
when A is random Gaussian, it is elements are randomly
generated independently from standard normal distribu-
tion and then its rows are orthonormalized. In the second
category, elements of A are randomly generated indepen-
dently fromGaussian distribution. Sparse signals u used in
our experiments are generated according to [18]. In each
experimental trial, a length-n, s-sparse signal (a signal hav-
ing exactly s nonzero components), is generated in such a
way that non-zero components are given by

η110θη2 , (17)

where η1 = ±1 with probability 1/2 and η2 is uniformly
distributed in [ 0, 1]. The locations of the nonzero com-
ponents are randomly permuted. Clearly, the range of the
magnitude of nonzero components of an s-sparse signal
is [ 1, 10θ ] with the parameter θ controlling this dynamic
range. An observed signal (data) is collected by b = Au+z,
where z represents a Gaussian noise.
The accuracy of a solution obtained from a specific algo-

rithm is quantified by the relative �2-error, the relative
�1-error, and the absolute �∞-error defined, respectively,
as follows:

‖u − u�‖/‖u‖, |‖u‖1 − ‖u�‖1|/‖u‖1, ‖u−u�‖∞, (18)

where u is the true data and u� is the restored data. All
results reported in this section are themeans of these rela-
tive errors and CPU time consumed from simulations that
were performed 50 trials.
To use Algorithm 2, one needs to fix the parameters

α and β such that β/α < 1/‖A‖2 (see Theorem 3.2).
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From step 1 of the algorithm, the ratio β/α plays a
role of step-size of changing uk . We now investigate the
performance of Algorithm 2 with various ratio β/α =
0.999
‖A‖2 ,

0.999
2‖A‖2 ,

0.999
4‖A‖2 , and α is fixed. We consider the con-

figuration of n = 215, m = n/2, s = 0.05n, the dynamic
range parameter θ = 1 and the sensing matrix A is the
partial DCT. The observed data is free of noise. The per-
formance of Algorithm 2 in terms of the relative �2 error
against iteration with various values of β/α is shown in
Fig. 1. As it can be seen, the performance with the largest
ratio β

α
= 0.999

‖A‖2 is the best. We therefore set

β = 0.999
‖A‖2 α (19)

in our numerical experiments. In such the way, α is essen-
tially the only parameter that needs to be determined.
We now investigate the impact of the parameter α on the
performance of Algorithm 2.
To investigate the impact of varying the parameter α on

the performance of Algorithm 2, we consider the configu-
rations of n = 215,m = n/2, s = 0.05n, the dynamic range
parameter θ = 5, and the sensing matrix A is partial DCT.
The observed data is noise free. Six different values of α,
namely, 0.0025, 0.005, 0.01, 0.02, 0.04, and 0.08, are tested.
Figure 2a depicts the traces of the relative �1-error (see
(18)) against the number of iterations for each α. As it can
be seen from this figure, for α = 0.0025, the smallest value

in our test, the relative �1-error drops rapidly from 1 to
10−4, stabilizes with insignificant changes for about 1200
iterations, and then quickly drops again to the level of
10−16. When α increases from 0.0025 to 0.08, the number
of iterations required for the relative �1-error dropping
from 1 to 10−4 increases. Meanwhile, the numbers of iter-
ations for the transitions from the first sharp jump region
to the second one decrease. For example, it is about 700
for α = 0.005 and only few iterations for α = 0.08. These
observations motivate us to extend Algorithm 2 to a sce-
nario in which the parameter α can be updated during the
iteration with the goal of reducing the number of itera-
tions. The proposed approach is rather simple. It begins
with a relative small α and then increases it for every given
amount of iterations. A detailed flow of this new approach
is given in Algorithm 3.

Algorithm 3 A variant of Algorithm 1 for model (BPε)

Given: integers p > 0, τ > 1, and T > 0; ε > 0
Initialization: v0 ∈ R

m, u0 ∈ R
n, α > 0, and β > 0 with

β
α

< 1
‖A‖2 ; set v

−1 = v0 − (Au0 − d0)
repeat(k ≥ 0)

Step 1: Compute uk+1 using step 1 of Algorithm 2
Step 2: Compute vk+1 using step 2 of Algorithm 2
Step 3: If k is a multiple of p and the number of chang-

ing the parameters α and β does not exceed T, update α ←
τα, β ← τβ

until a given stopping criteria is met

0 200 400 600 800 1000
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

R
el

at
iv

e 
l 2 E

rr
or
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Fig. 2 The relative �1 error (the vertical axis with a base 10 logarithmic scale) versus the number of iterations (the horizontal axis). a Convergence of
Algorithm 2 with different values of α. b Convergence of Algorithm 3

Three new parameters introduced in Algorithm 3 are
integers p > 0, τ > 1, and T > 0. The parameter T is
the allowable maximum number of updating the parame-
ters α and β . For each update, the pair (α,β) will change
to (τα, τβ) that will keep the ratio β/α unchanged. The
parameter p is to indicate that the underlying algorithm
with a pair (α,β) will iterate p times before the algo-
rithm with the pair (τα, τβ) runs another p times. We
now demonstrate the efficiency of varying the parameters
α and β via applying Algorithm 3 for the same data used
in Fig. 2a. We set T = 6, τ = 4, and p = 20 and ini-
tialize α = m

n
20‖A‖2
‖A
b‖∞ . Again, we choose β by using (19).

The corresponding result is shown in Fig. 2b. It is clear to
see that it takes about 200 iterations to drop the relative
�1 error down below 10−14. Hence, the strategy of updat-
ing the parameters α and β as described in Algorithm 3 is
reasonable.
The rest of this section consists of two subsections.

The first subsection focuses on comparisons of proposed
algorithm to NESTA and DADM for sensing matrices A
with AA
 = I, while the second subsection only focuses
on numerical performance of proposed algorithms for
random Gaussian sensing matrices.

4.1 Numerical comparisons
This subsection consists of three parts. Part one contains
the comparisons of Algorithm 3, DADM, and NESTA for
data setting with partial DCTmeasurement matrices, part
two contains that for data setting with partial DWHT

measurement matrices, and part three contains results on
random matrices with orthonormalized rows.

4.1.1 Numerical comparisonwith partial DCT sensing
matrices

First of all, we compare the performance of Algorithm 3
with that of NESTA and that of DADM [23] for noise-free
data. The algorithm NESTA was developed by applying
a smoothing technique for the nonsmooth �1-norm and
an accelerated first-order scheme, both from Nesterov’s
work [19]. A parameter denoted by μ is used to control
how close the smoothed �1-norm to the �1-norm will be.
To obtain high accuracy of restored signal for NESTA,
μ = 10−10 is used for partial DCT sensing matrices
and various dynamic range parameters. A parameter Tol
for tolerance in NESTA varies for different values of the
smoothing parameter μ and different settings of gener-
ated data and needs to be determined. We choose the
tolerance to obtain reasonable results. We finally choose
Tol = 10−12, 10−14, 10−15, respectively, for data gen-
erated with dynamic range parameters θ = 1, 3, 5. For
DADM, two parameters γ and β have to be predeter-
mined. γ = 1.618 is chosen in all settings, while β varies in
different settings to obtain reasonable results. We choose
parameters β = ‖b‖1

m21 ,
‖b‖1
m23 ,

‖b‖1
m26 for dynamic range

parameters θ = 1, 3, 5, respectively. For Algorithm 3, we
set p = 20 and T to be the smallest integer that is greater
than log10(

n
m‖A
b‖∞). In our experiments, we notice that

T is θ or θ + 1. The stopping criterion of Algorithm 3
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and DADM is that the relative errors between the suc-
cessive iterates of the reconstructed signal should satisfy
the inequality ‖uk+1 − uk‖/‖uk‖ < Tol. We choose Tol =
10−15 for data generated by partial DCT for Algorithm 3
and DADM.
For the noise-free data, the problem (BP) is used to

recover underlying signals in experiments. The dimen-
sions n are chosen from {213, 215} for data generated
with partial DCT. The number of nonzero entries s is
set to be 0.02n, 0.01n, respectively, for the number of
measurements m = n/4, n/8. The performance of dif-
ferent algorithms are reported in Tables 1 and 2. Based
on these two tables, the performance of Algorithm 3 and
DADM is comparable in terms of accuracy of recovered
data for various values of dynamic range parameter θ

and measurement ratio m/n. But Algorithm 3 outper-
forms DADM in terms of computational cost (CUP time
or iterations) for data with high value of dynamic range
parameter (e.g., θ = 5). The performance of NESTA is

Table 1 Numerical results with partial DCT sensing matrices for
noise-free data. The number of measurementsm ism = n/4, and
the test signals are s-sparse with s = 0.02n. Each value in a cell
represents the mean over 50 trials

Method �2-error �1-error �∞-error CPU time(s) Iterations

n = 213

Algorithm 3 4.99e−15 6.77e−16 6.55e−14 1.0153 387

DADM 4.48e−15 6.45e−16 5.24e−14 1.1525 391

NESTA 8.29e−11 1.75e−10 6.10e−10 1.8168 469

n = 215

Algorithm 3 3.04e−15 3.81e−16 4.71e−14 5.1618 394

DADM 2.10e−15 2.96e−16 2.96e−14 5.6775 398

NESTA 8.48e−11 1.77e−10 6.80e−10 7.7550 477

n = 213

Algorithm 3 6.20e−15 1.07e−15 4.65e−12 1.0640 394

DADM 3.96e−15 1.20e−15 2.72e−12 1.1331 388

NESTA 1.41e−12 4.70e−12 6.34e−10 2.8384 742

n = 215

Algorithm 3 3.18e−15 5.39e−16 2.81e−12 5.3503 403

DADM 2.35e−15 3.96e−16 1.84e−12 5.7291 395

NESTA 1.48e−12 4.78e−12 6.95e−10 12.1293 748

n = 213

Algorithm 3 4.69e−15 9.25e−16 2.94e−10 1.0637 397

DADM 3.01e−15 1.46e−15 1.74e−10 1.9593 665

NESTA 2.05e−14 1.96e−14 8.12e−10 4.7221 1236

n = 215

Algorithm 3 3.04e−15 4.74e−16 2.08e−10 5.4653 404

DADM 2.05e−15 4.85e−16 1.28e−10 10.2053 691

NESTA 2.09e−14 3.04e−14 7.93e−10 19.5025 1209

Table 2 Numerical results with partial DCT sensing matrices for
noise-free data. The number of measurementsm ism = n/8, and
the test signals are s-sparse with s = 0.01n. Each value in a cell
represents the mean over 50 trials

Method �2-error �1-error �∞-error CPU time(s) Iterations

n = 213

Algorithm 3 1.24e−14 1.65e−15 1.47e−13 2.0684 776

DADM 1.11e−14 4.34e−15 1.33e−13 2.3184 803

NESTA 1.96e−10 3.89e−10 1.61e−09 2.8518 764

n = 215

Algorithm 3 5.67e−15 5.81e−16 8.02e−14 10.2525 799

DADM 4.58e−15 6.12e−16 6.15e−14 12.0084 832

NESTA 2.00e−10 3.89e−10 1.79e−09 11.9268 761

n = 213

Algorithm 3 9.65e−15 1.99e−15 6.91e−12 1.9584 758

DADM 1.04e−14 6.61e−15 7.02e−12 2.2513 791

NESTA 3.14e−12 9.96e−12 1.49e−09 4.5468 1216

n = 215

Algorithm 3 5.09e−15 6.58e−16 4.29e−12 9.7934 762

DADM 5.21e−15 6.98e−16 4.21e−12 11.5441 817

NESTA 3.18e−12 9.97e−12 1.64e−09 18.3234 1187

n = 213

Algorithm 3 1.36e−14 2.22e−15 5.62e−10 1.8825 727

DADM 7.87e−15 7.69e−15 4.09e−10 3.2409 1129

NESTA 4.68e−14 1.04e−13 2.09e−09 7.3318 1950

n = 215

Algorithm 3 5.26e−15 7.99e−16 3.39e−10 9.4868 739

DADM 4.32e−15 7.42e−16 2.59e−10 17.2200 1202

NESTA 5.19e−14 3.54e−14 2.35e−09 24.6468 1793

inferior to that of Algorithm 3 and DADM in terms of
accuracy and computational cost for various values of θ

and measurement ratio m/n. We also observe that the
relative �2-error and �1-error of the results recovered by
Algorithm 3 along with iterations consumed are quite
robust with respect to the dynamic ranges of the unknown
signals.
Next, the comparison of different algorithms for noisy

data is discussed. The underlying data is recovered by
solving problem (BPε). The settings of dimension, spar-
sity, and dynamic range of unknown signals for problem
(BPε) are the same as those for problem (BP). The only
difference is that measurements are contaminated with
noise. In our experiments, noise levels in the measure-
ments vary with the dynamic ranges of the unknown
signals.More precisely, the noise levels σ are set to be 0.05,
1.0, and 5.0 corresponding to choices 1, 3, and 5 of the
dynamic range parameter θ , respectively. It turns out that
the noise power is ε2 = mσ 2. The setting of parameters
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for Algorithm 3 remains the same. For DADM, we choose
parameters β = ‖b‖1

m21 ,
‖b‖1
m23 ,

‖b‖1
m23 for dynamic range

parameters θ = 1, 3, 5, respectively, for better perfor-
mance in terms of accuracy and computational cost. For
the smoothing parameter μ in the NESTA, we choose the
default setting μ = max{0.1σ , 0.01}. The stopping crite-
ria for our algorithm and DADM is that the relative errors
between the successive iterates of the reconstructed signal
should satisfy the inequality ‖uk+1 − uk‖/‖uk‖ < 10−5.
And the stopping criterion for NESTA is Tol < 10−5.
The performance of different algorithms are reported in
Tables 3 and 4. The accuracy of recovered data from all
three algorithms for each data setting is comparable. The
computational cost of DADM is comparable to or slightly
better than that of Algorithm 3 for data with dynamic
range parameters θ = 1, 3. Both of Algorithm 3 and
DADM outperform NESTA for data with dynamic range
parameters θ = 1, 3 in terms of computational cost. For
data with high dynamic range (e.g., θ = 5), Algorithm 3

Table 3 Numerical results with partial DCT sensing matrices for
noisy data. The number of measurementsm ism = n/4, and the
test signals are s-sparse with s = 0.02n. Each value in a cell
represents the mean over 50 trials

Method �2-error �1-error �∞-error CPU time(s) Iterations

n = 213

Algorithm 3 6.06e−2 6.28e−3 5.49e−1 0.2309 82

DADM 6.06e−2 6.23e−3 5.49e−1 0.2268 75

NESTA 7.25e−2 2.47e−2 6.68e−1 0.4006 123

n = 215

Algorithm 3 6.10e−2 6.28e−3 6.15e−1 1.0700 80

DADM 6.10e−2 6.23e−3 6.15e−1 1.0925 76

NESTA 7.23e−2 2.29e−2 7.14e−1 1.7906 123

n = 213

Algorithm 3 1.90e−2 1.76e−3 10.0453 0.2684 99

DADM 1.89e−2 1.72e−3 10.0370 0.2181 71

NESTA 2.05e−2 1.61e−2 12.0646 0.4353 132

n = 215

Algorithm 3 1.88e−2 1.60e−3 11.3331 1.5018 111

DADM 1.88e−2 1.54e−3 11.3232 1.0662 71

NESTA 2.09e−2 1.54e−2 13.0586 1.8931 132

n = 213

Algorithm 3 1.13e−3 1.03e−4 49.7915 0.2740 101

DADM 1.13e−3 5.85e−4 50.3671 0.5953 199

NESTA 1.28e−3 1.13e−3 61.2107 0.4243 125

n = 215

Algorithm 3 1.18e−3 5.73e−5 56.1854 1.3543 102

DADM 1.18e−3 5.49e−4 56.8402 2.9696 200

NESTA 1.34e−3 1.11e−3 66.0787 1.7721 126

Table 4 Numerical results with partial DCT sensing matrices for
noisy data. The number of measurementsm ism = n/8, and the
test signals are s-sparse with s = 0.01n. Each value in a cell
represents the mean over 50 trials

Method �2-error �1-error �∞-error CPU time(s) Iterations

n = 213

Algorithm 3 1.02e−1 1.94e−2 8.48e−1 0.3296 122

DADM 1.02e−1 1.94e−2 8.48e−1 0.2790 94

NESTA 1.20e−1 3.07e−2 1.0099 0.4606 145

n = 215

Algorithm 3 1.02e−1 1.83e−2 9.37e−1 1.5691 121

DADM 1.02e−1 1.82e−2 9.37e−1 1.4009 95

NESTA 1.22e−1 2.74e−2 1.1065 2.0506 149

n = 213

Algorithm 3 2.97e−2 5.30e−3 15.1517 0.2853 102

DADM 2.97e−2 5.21e−3 15.1429 0.3028 99

NESTA 3.10e−2 2.08e−2 17.2106 0.5012 160

n = 215

Algorithm 3 2.92e−2 5.89e−3 16.8347 1.5609 120

DADM 2.92e−2 5.79e−3 16.8203 1.4675 99

NESTA 3.16e−2 1.93e−2 19.4426 2.2300 160

n = 213

Algorithm 3 1.94e−3 2.87e−4 75.5390 0.3231 115

DADM 1.92e−3 3.49e−4 75.4992 0.6975 230

NESTA 1.93e−3 1.50e−3 90.2023 0.4981 157

n = 215

Algorithm 3 1.89e−3 2.00e−4 86.3350 1.5025 114

DADM 1.88e−3 2.06e−4 86.2110 3.3468 233

NESTA 2.03e−3 1.41e−3 99.4225 2.2662 158

performs the best in terms of computational cost while
DADM performs the worst.

4.1.2 Numerical comparisonwith partial DWHT sensing
matrices

The performance of the three algorithms will be discussed
in this part. The performance of the algorithms will be
presented in a different manner from the previous part
with partial DCT sensing matrices. In all of those three
algorithms, the computational cost is mainly attributed
to the matrix-vector multiplication involving A or A
.
Under the assumption that AA
 = I, the three algo-
rithms only have two such multiplications, one involving
A and the other involving A
 in each iteration. Hence,
we will only use the number of iterations to represent
the computational cost. For the accuracy, only the relative
�2− error will be selected. The setting of parameters of
the three algorithms remains almost the same except that
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Fig. 3 Numerical results with partial DWHT sensing matrices. The relative �2 errors (the vertical axis with base 10 logarithmic scale) versus the
iteration consumed (the horizontal axis) for a the noise-free case and b the noise case (the right). The colors red, blue, and yellow represent the
dynamic ranges of the tested signals with θ being 1, 3, and 5, respectively

μ = 10−8, Tol = 10−13 is used in NESTA for noise-free
data with dynamic range parameter θ = 5.
Figure 3 shows the results of Algorithm 3, DADM, and

NESTA when the dimension of the tested signals n is
2048 and the number of measurements m is n/4. The

symbols “�,” “♦,” and “∇” denote the results produced
by Algorithm 3, DADM, and NESTA, respectively. The
colors “red,” “blue,” and “yellow” represent the dynamic
ranges of the tested signals with θ being 1, 3, and 5, respec-
tively. The relative �2-error is displayed with a base 10
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Fig. 4 Numerical results with Gaussian sensing matrices whose rows are orthonormalized. The relative �2 errors (the vertical axis with base 10
logarithmic scale) versus the iteration consumed (the horizontal axis) for a the noise-free case and b the noise case. The colors red, blue, and yellows
represent the dynamic ranges of the tested signals with θ being 1, 3, and 5, respectively
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Table 5 Numerical results with Gaussian measurement matrices for noise-free data. The test signals have size n = 4096. Each value in
a cell represents the mean over 50 trials

m s θ �2-error �1-error �∞-error CPU time(s) Iterations

n/4 0.02n 1 1.64e−13 2.31e−14 2.07e−12 6.0768 844

n/8 0.01n 1 3.28e−13 4.93e−14 3.70e−12 5.1040 1305

n/4 0.02n 3 1.32e−13 3.13e−14 9.93e−11 5.7287 799

n/8 0.01n 3 3.93e−13 1.06e−13 2.61e−10 4.9531 1255

n/4 0.02n 5 1.08e−13 2.55e−14 5.76e−09 5.3643 752

n/8 0.01n 5 4.01e−13 1.25e−13 2.10e−08 4.5700 1157

logarithmic scale plot for the vertical axis. We see clearly
that performance of the three algorithms follows the simi-
lar phenomena that was seen in the numerical results with
partial DCT measurements. The same conclusions can be
drown for the results withm = n/8 as well.

4.1.3 Numerical comparisonwith orthonormal Gaussian
sensingmatrices

In this part, the comparisons of numerical results with
orthonormal Gaussian sensing matrices will be shown.
Due to the unavailability of source code of NESTA for such
sensingmatrices, only the comparison betweenAlgorithm
3 and DADM is provided. The setting of parameters of
Algorithms 3 and DADM are the same as above except
that the stopping criterion Tol = 10−14 is used for noise-
free data. The numerical result is reported in Fig. 4 in
the same manner as in previous part with DWHT sensing
matrices. For the noise-free data or noisy data, the perfor-
mance of Algorithm 3 and DADM is comparable in terms
of relative �2 error. For noise-free data, the performance
of Algorithm 3 and DADM is comparable only for data
with dynamic range parameters θ = 1, 3 in terms of com-
putational cost; while Algorithm 3 outperforms DADM
in terms of computational cost (e.g., iteration) for data
with θ = 5. For noisy data and in terms of computational
cost, performance of the two algorithms is comparable for
θ = 1; DADM performs slightly better than Algorithm
3 for θ = 3; and Algorithm 3 outperforms DADM for
θ = 5. The same conclusions can be drawn for the results
withm = n/8 as well.

4.2 Simulation with Gaussian sensing matrices
In this subsection, we only focus on the simulation of
Algorithm 3 for data generated by general Gaussian sens-
ing matrices (e.g., rows are not orthonormal), that is,
AA
 	= I. In such scenario, we do not compare Algorithm
3 with NESTA and DADM since the available source
code of NESTA does not apply, and DADM needs an
inner loop in each of iteration. The setting of parameters
for Algorithm 3 is the same as the setting for data with
orthonormal Gaussian sensing matrices. The results for
noise-free data and noisy data are reported in Tables 5 and
6, respectively. It can be seen that the underlying signal
can be recovered with high accuracy for noise-free data
and with reasonable high accuracy for noisy data.

5 Conclusions
We reformulated the �1-norm minimization problems
(BP) and (BPε) via indicator functions as unconstrained
minimization problems. The objective function for each
unconstrained problem is the sum of the �1-norm of the
underlying signal u and the indicator function of a set in
R
m, which is {0} for (BP) or the ε-ball for (BPε), com-

posing with the affine transformation Au − b. Due to
the structure of this objective function and the availabil-
ity of the explicit forms of the proximity operators for
both the �1-norm and the indicator function, an accu-
rate and efficient algorithm is developed for recovering
sparse signals based on fixed-point equation. The algo-
rithm outperforms NESTA in terms of the relative �2, the
relative �1, and the absolute �∞ error measures as well as

Table 6 Numerical results with Gaussian measurement matrices for noisy data. The test signals have size n = 4096. Each value in a cell
represents the mean over 50 trials

m s θ �2-error �1-error �∞-error CPU time(s) Iterations

n/4 0.02n 1 1.01e−3 4.08e−4 8.99e−3 2.3762 315

n/8 0.01n 1 1.65e−3 5.13e−4 1.29e−2 1.8412 455

n/4 0.02n 3 3.57e−4 1.68e−4 0.1729 1.2184 160

n/8 0.01n 3 6.10e−4 2.46e−4 0.2602 0.8990 211

n/4 0.02n 5 4.51e−05 5.52e−05 2.1526 1.0484 139

n/8 0.01n 5 6.22e−05 4.56e−05 3.1652 0.7387 165
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the computational cost for tested signals ranging from a
low dynamic range to a high dynamic range with different
sizes. For signal with high dynamic range, the proposed
algorithm also outperforms DADM in terms of compu-
tational cost but yields comparable accuracy. Further, the
proposed algorithms also solve general problems without
requiring condition AA
 = I efficiently and accurately.
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