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Abstract

This paper proposes a general model of superdirectivity to provide analytical and closed-form solutions for arbitrary
sensor arrays. Based on the equivalence between the maximum directivity factor and the maximum array gain in
the isotropic noise field, Gram-Schmidt orthogonalization is introduced and recursively transformed into a matrix
form to conduct pre-whitening and matching operations that result in superdirectivity solutions. A Gram-Schmidt
mode-beam decomposition and synthesis method is then presented to formally implement these solutions.
Illustrative examples for different arrays are provided to demonstrate the feasibility of this method, and a reduced
rank technique is used to deal with the practical array design for robust beamforming and acceptable high-order
superdirectivity. Experimental results that are provided for a linear array consisting of nine hydrophones show the
good performance of the technique. A superdirective beampattern with a beamwidth of 48.05° in the endfire
direction is typically achieved when the inter-sensor spacing is only 0.09λ (λ is the wavelength), and the directivity
index is up to 12 dB, which outperforms that of the conventional delay-and-sum counterpart by 6 dB.

Keywords: Gram-Schmidt orthogonalization; High-order superdirectivity; Mode-beam decomposition and synthesis;
Optimal beamforming; Sonar signal processing
1 Introduction
Sensor array signal processing has played a significant role
in many diverse application areas, including sonar, radar,
audio engineering, and wireless communication [1]. As an
important topic in sensor array signal processing, super-
directivity has received considerable attention for decades
[2–6], because it can provide a significant potential for
sensor arrays to enhance their performance, such as in
terms of angular resolution, bearing estimation accuracy,
noise suppression ability, and reduction of array aperture.
A wideband constant beamwidth and shortened near-field
zone can also be conveniently obtained. However, open
problems concerning superdirectivity exist in error sensi-
tivity or performance robustness. Although the robustness
problem is inevitable for superdirective arrays, this re-
quires an in-depth study to determine a mechanism to de-
crease the effect of errors as much as possible.
Different researchers have investigated this problem in

different aspects and correspondingly proposed many
approaches. The classical optimal method was constrained
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to improve robustness by implementing the diagonal load-
ing [7] and white noise gain constraint techniques [8].
Although they are widely used, the associated parame-
ters in these techniques are not easily determined.
Actually, the above-mentioned two techniques belong
to the class of regularization-based techniques that can
make trade-offs between directivity and robustness by
adding a proper regularization parameter to all the
diagonal elements of the noise covariance matrix. A
detailed study of the regularization-based techniques
was presented in [9], and several criteria were proposed
for selecting regularization parameters. However, this
approach demands a pre-specified distribution of errors
that may not be available in practice. Broadband
beamformers with superdirectivity robust against gain
and phase errors in the microphone array characteris-
tics were designed in [10] in which several properly
formulated cost functions were used. An alternative sim-
plified procedure based on the similar principle was pre-
sented in [11] to design robust superdirective broadband
beamformers for equally spaced linear arrays. Moreover,
an optimum superdirective beamformer was designed in
[12] by maximizing the generalized directivity that was
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computed using the probability density functions of the
array errors. These methods provide good insights into
superdirectivity, but they also require a priori knowledge of
errors. This problem also exists in the superdirective
method proposed in [13]. Many other analyses on the
robustness problem were presented in [14–16]. As for
the general model of superdirectivity, a model for
generalized acoustic sensors of arbitrary order was
formulated in [17]. However, this model was based on
Taylor series approximation aside from a closed-form
solution. Vector sensor array theory also suffers from
this limitation of Taylor series approximation [18–20].
These achievements are valuable for us to obtain an
improved understanding on how to solve this problem.
However, a general model that provides an analytical and
closed-form solution is still lacking to accurately calculate
a superdirective beamformer and allow the decomposition
of the beampattern into components with different error
sensitivities for robust implementation.
Answers were provided in [21, 22] for the above-

mentioned problem in which an eigen-beam decompos-
ition and synthesis (EBDS) model was formulated.
However, the array shapes were restricted to a circular
form. The eigen-beam decomposition becomes feasible
because of the circulant property of the data covariance
matrix of circular arrays. This condition is not the case
for sensor arrays with other geometries, and a new
model that can be generally applicable to arbitrarily
shaped arrays is therefore required. This study presents
proof that a Gram-Schmidt mode-beam decomposition
and synthesis (GSMDS) method can work as a general
model for the problem at hand.
The newly developed model is intended to be used in

designing a linear array. This type of linear array is
particularly important because among all array geom-
etries, it is best suited for superdirectivity for the given
array size and number of sensors when the beam is
steered toward the endfire direction [23]. Several illus-
trative examples will be provided in which this model
will be applied not only to linear arrays but also to other
types of arrays. An important property that is similar to
the circular array case will be shown in which low-order
mode-beams are robust, whereas high-order ones become
sensitive to configuration and channel response errors.
Therefore, a reduced-rank technique can be readily used
to obtain a robust design, which truncates unsatisfactory
high-order mode-beams and retains robust low-order
ones. Experiments for a linear array will be conducted to
verify the theoretical results.
The rest of this paper is organized as follows. The

“Background” section provides a brief description of
optimal beamforming theory. The “Gram-Schmidt mode-
beam decomposition and synthesis” section presents the
principles of superdirectivity based on the GSMD and
derives the solutions of the optimal weighting vector, beam-
pattern synthesis equation, directivity synthesis equation,
and robustness parameter. The “Design examples” section
presents illustrative design examples for different arrays,
and the “Comparisons with the DAS and MVDR methods”
and “Comparisons with the regularization-based methods”
sections compare the proposed method with other related
methods. The “Experimental results” section provides
the experimental results for a linear array. Finally, the
“Conclusions” section presents the conclusions.

2 Background
Consider an N-sensor array with an arbitrary geometry,
and assume all of the sensors are omnidirectional. A
unit-magnitude plane wave impinges from direction
(θ, ϕ), where θ and ϕ denote elevation and azimuth
angles, respectively. The pressure received by the nth
sensor is as follows [1]:

an θ;ϕð Þ ¼ e−ik
Trn ; ð1Þ

where i ¼ ffiffiffiffiffiffi
−1

p
and rn is the position vector of the nth

sensor. The wave-vector is k = − k[sin θ cos ϕ, sin θ sin ϕ,
cos θ]T, where k = 2π/λ, the symbol λ indicates the wave-
length, and the superscript T indicates the transpose.
The manifold vector is

a θ;ϕð Þ ¼ a0 θ;ϕð Þ; a1 θ;ϕð Þ;⋯; aN−1 θ;ϕð Þ½ �T: ð2Þ
The beampattern is defined as

B θ0;ϕ0; θ;ϕð Þ ¼ wH θ0;ϕ0ð Þa θ;ϕð Þ; ð3Þ
where the superscript H indicates the Hermitian trans-
pose, the vector w is the weighting vector, and (θ0, ϕ0) is
the preset steering direction.
The concept of superdirectivity is introduced in [24],

which states that a small sensor array can outperform its
delay-and-sum (DAS) counterpart and provide high
directivity. After the development of optimal sensor array
theory, the maximum directivity factor (DF) of a sensor
array is equivalent to the maximum array gain (AG) when
the array is used in an isotropic noise field [25]. This rela-
tionship can be expressed as [21]

DFmax ¼ AGmax isotropic noise;j ð4Þ

where AG is defined as Eq. (5) [1, 21]:

AG ¼ SNRo

SNRi
¼ wH θ0;ϕ0ð Þa θ;ϕð Þj j2

wHRnnw
: ð5Þ

Note that the logarithmic version of DF (10log DF) is
defined as the directivity index (DI). The symbols SNRo
and SNRi in Eq. (5) are the output and input signal-to-noise
ratios, respectively. The matrix Rnn is the normalized noise
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covariance matrix composed of noise correlation coeffi-
cients, which is defined as

Rnn ¼
ρ00 ρ01 ⋯ ρ0;N−1
ρ10 ρ11 ⋯ ρ1;N−1
⋮ ⋮ ⋮ ⋮

ρN−1;0 ρN−1;1 ⋯ ρN−1;N−1

2
664

3
775: ð6Þ

The optimal weighting vector for the maximum
AG is [1]

wopt ¼ R−1
nna θ0;ϕ0ð Þ: ð7Þ

If the sensor array is placed in an isotropic noise field,
and the inter-sensor spacing is equal to or much larger
than a half-wavelength, its conventional DAS beamfor-
mer will be optimal in AG because the noise covariance
matrix is an identity matrix in this case. The optimization
of AG in the isotropic noise field will result in superdirec-
tivity when the spacing becomes small in wavelength.
Therefore, superdirectivity can be formulated in the
context of AG optimization under the assumptions that
the spacing is small and the noise field is isotropic.
The problem is how to determine a general model to

accurately solve the weighting vector of superdirectiv-
ity. Accuracy is desirable because superdirectivity is
error sensitive, and calculation errors can destroy the
superdirective property. As an alternative, a two-step
approach can help us determine the general model
with analytical and closed-form expressions, as shown
in the following.

3 Gram-Schmidt mode-beam decomposition and
synthesis
As a useful algorithm, GS orthogonalization has been
widely used in array signal processing. Specifically, the GS
orthogonalization technique has been proved to be suit-
able for least-squares estimation because of its good ro-
bustness [26], and this technique has also shown superior
performance in arithmetic efficiency, stability, and conver-
gence times over other adaptive algorithms for adaptive
cancelation [27, 28]. Moreover, the GS-based algorithm
was used to synthesize desired beampattern for different
arrays [29], and an optimizing approach based on the
GS orthogonalization was applied in [30] to optimize
loudspeaker and microphone configurations for sound
reproduction systems.
It is clear that applying the GS orthogonalization in

array signal processing is not novel, but this technique
has not yet been used to develop a general model of
superdirectivity for arbitrary sensor arrays. In this study,
the solutions of superdirectivity will be accurately
expressed in full closed-form based on the GS orthogo-
nalization, and the derived Gram-Schmidt mode-beam
decomposition and synthesis (GSMDS) superdirectivity
model will facilitate the implementation of high-order
superdirectivity in practice. See more details in the fol-
lowing sections.

3.1 Matrix form of the optimal weighting vector
The mechanism of AG optimization was explained in
[31]. An optimal array processor can be implemented in
two steps: pre-whitening and matching. Initially, the
received data vector will be sent to a pre-whitening pro-
cessor that pre-whitens its contained noise data vector
so that the noise power can be largely decreased. The
larger correlation between channels, the more will be
the reduction of the noise power. A matching operation
follows, which matches the data output modified by the
pre-whitening processor to a signal steering vector, and
then the received signals impinging from the desired
direction are added coherently, whereas the noises are
added incoherently. Therefore, the output signal-to-
noise ratio can be greatly improved and the processing
gain is much higher than the simple DAS method that
does not pre-whiten the noises. This process is shown in
Fig. 1 in which the received data vector X contains the
signal vector S and noise vector U. The vector V is the
pre-whitened output noise vector, and ε is the normal-
ized version of V. The entries of both U and V are sup-
posed to be narrow band complex analytic functions, the
matrix C performs the orthogonal transform, and the
relation V =CU holds. Therefore, Vj can be expressed as
a linear combination of the j terms of Uh (h = 0, 1,....., j),
i.e.,

V j ¼ cj0U0 þ cj1U1 þ ⋅⋅⋅⋅þ cjjUj ¼
Xj
h¼0

cjhUh: ð8Þ

The pre-whitening process can be performed with the
GS orthogonal transform, and V can be recursively
derived from U:

Vk ¼ Uk−
Xk−1
j¼0

Uk ;V j
� �
V j;V j
� � V j;

εk ¼ Vk

V kj j k ¼ 0; 1;⋯;N−1ð Þ;

ð9Þ

where V is viewed as an orthogonal basis for the N × 1
complex space CN formed by the noise data vector U.
The modulus of the vector component Vk is Vkj j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vk ;Vkh ip
, where 〈⋅, ⋅ 〉 indicates the inner product that

expresses the cross correlation between the related vec-
tor components.
Substituting Eq. (8) into Eq. (9) and using some

mathematical derivations yield



Fig. 1 Block diagram of the optimal array processing expressed as pre-whitening and matching
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cki ¼

1 if i ¼ k;

−
Xk−1
j¼i

cji
χ j

Xj
h¼0

cjhρkh

 !( )
if 1≤ k ≤N−1 and h; i; j ≤ k−1ð Þ;

0 otherwise;

8>>><
>>>:

ð10Þ

where

χ j ¼
Xj
h¼0

cjhUh

 !
;
Xj
m¼0

cjmUm

 !* +

¼
Xj
h¼0

Xj
m¼0

cjhcjm Uh;Umh i

¼
Xj
h¼0

Xj
m¼0

cjhcjmρhm ð11Þ

and ρij = 〈Ui,Uj〉 are the correlation coefficients. These
equations are similar to the results presented in [29] in
which array synthesis is the main focus.
Utilizing the recursive deduction for cki provides the

matrix C as

C ¼ C0 C1 ⋯ Ck ⋯ CN−1½ �T ð12Þ

with Ck = [ck0 ck1 ⋯ ckk 0 ⋯ 0]T. Each entry
of this lower triangular matrix will be completely de-
termined by the noise correlation coefficients. For the
isotropic noise field, the correlation coefficients are

ρij ¼
sin 2πdij=λ
� �
2πdij=λ

; ð13Þ

where dij is the spacing between the ith and jth sensors.
Because the vector V is pre-whitened, the following is
obtained:

V;VT
� � ¼ D2; ð14Þ

where D = diag{|V0|, |V1|,⋯, |VN − 1|}, D2 =D ⋅D, and
diag{⋅} indicate a square matrix with the elements of its
arguments on the diagonal.
Substituting the relation V =CU into Eq. (14) yields

C U;UT
� �

CT ¼ CRnnCT ¼ D2; ð15Þ

which then obtains

R−1
nn ¼ CTD−2C: ð16Þ

It is now clear that the inverse of matrix Rnn can be
calculated analytically based on the GS orthogonaliza-
tion. Actually, the inverse of matrix Rnn can also be
calculated using the eigen-decomposition, as was the
case for circular arrays in [21, 22], but the eigenvalues
and eigenvectors in relation to other array geometries
cannot be expressed in closed-form and computed
analytically. Therefore, the GS-based decomposition is
more advantageous than the eigen-decomposition for
computing the inverse of the normalized noise covari-
ance matrix.
The optimal weighting vector in Eq. (7) can be modi-

fied to

wopt ¼ CTD−2C⋅a θ0;ϕ0ð Þ; ð17Þ

where the matrix D− 2 performs the normalization of the
noise input. The matching vector is
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wmatch ¼ Ca θ0;ϕ0ð Þ: ð18Þ
The elements of this vector are strictly marched with

the data output modified by the pre-whitening processor,
which can make the signals to be added coherently. The
beampattern and other array performance parameters,
such as AG, can be directly deduced from this solution.
The general model of superdirectivity will be devel-

oped based on the above results in the following section.

3.2 Mode-beam decomposition and synthesis
Substituting Eq. (17) into Eq. (3) gives the superdirective
beampattern as

B ϕ0; θ0;ϕ; θð Þ ¼ wH
opta θ;ϕð Þ

¼ C⋅a θ0;ϕ0ð Þ½ �H⋅D−2⋅ C⋅a θ;ϕð Þ½ �

¼
XN−1

k¼0

bk θ0;ϕ0; θ;ϕð Þ:
ð19Þ

The kth-order mode-beam in the above equation is

bk θ0;ϕ0; θ;ϕð Þ ¼ 1
λk

⋅Ek
� θ0;ϕ0ð ÞEk θ;ϕð Þ; ð20Þ

where

Ek θ;ϕð Þ ¼ CT
k a θ;ϕð Þ; ð21Þ

and

λk ¼ Vkj j2 ¼ Vk ;Vkh i
¼ CT

k RnnCk k ¼ 0; 1;⋯;N−1ð Þ; ð22Þ

and the superscript asterisk indicates complex conjuga-
tion. The DF (or the AG because they are equal in this
case) is derived as

DF ¼ C⋅a θ0;ϕ0ð Þ½ �HD−2 C⋅a θ0;ϕ0ð Þ½ �

¼
XN−1

k¼0

Ek θ0;ϕ0ð Þj j2=λk

¼
XN−1

k¼0

Qk

ð23Þ

with

Qk ¼ Ek θ0;ϕ0ð Þj j2=λk ð24Þ
with the use of Eqs. (5), (16), and (17). The symbol Qk is
the AG or DF of the kth-order mode-beam.
The sensitivity function (SF) is always used to measure

the robustness of beamformers. A large SF corresponds
to poor robustness, implying that the errors that can be
tolerated are small. The SF is defined as follows [1]:

T ¼ wk k2; ð25Þ
where ‖ ⋅ ‖ indicates the Euclidean norm. Substitution of
Eq. (17) into Eq. (25) yields the total SF:
SF ¼ EH θ0;ϕ0ð ÞD−2ĈD−2E θ0;ϕ0ð Þ

¼
XN−1

k¼0

XN−1

k′¼0

1
λkλk′

E�
k θ0;ϕ0ð ÞEk′ θ0;ϕ0ð ÞĈT

k′Ĉk

¼
XN−1

k¼0|{z}1

λ2k
Ek θ0;ϕ0ð Þj j2ĈT

k Ĉk

Tk

þ
XN−1

k¼0

XN−1

k′¼0;k≠k′

1
λkλk′

E�
k θ0;ϕ0ð ÞEk′ θ0;ϕ0ð ÞĈT

k′Ĉk ;

ð26Þ

where E(θ0, ϕ0) = [E0(θ0, ϕ0) E1(θ0, ϕ0) ⋯ EN − 1(θ0,
ϕ0)]

T, Ĉ = CCT = [Ĉ0 Ĉ1 ⋯ Ĉk ⋯ ĈN − 1]
T. The

SF of the kth-order mode-beam is Tk ¼ λ−2k Ek θ0;ϕ0ð Þj j2⋅
ĈT

k Ĉk , which is obtained by combining Eqs. (20) and (25).
It is observed that λk is directly related to the total SF
and the SF of each mode-beam, which can be used to
measure the robustness. The larger the value of λk, the
lesser is the SF of the kth-order mode-beam, meaning
the smaller is the sensitivity to errors. However, the total
SF is not equal to the sum of the SFs of mode-beams
because the matrix Ĉ is not an orthogonal matrix, which
is different from that of the EBDS model. Since the
expression of total SF is somewhat complex and no super-
position property similar to that of the EBDS model exists,
the parameter λk will be used in this paper to measure the
robustness instead of the SF.
From Eqs. (19) and (23), it is clear that the overall

beampattern and DF of an N-sensor superdirective
array can be decomposed into N mode-beams and
their associated DFs, respectively. These properties
of the GSMDS method are similar to those of the
EBDS method. The value of λk in the low-frequency
range for specific arrays (e.g., linear arrays) will be
proved to decrease with an increase in its order,
which means that the error sensitivity of this mode-
beam increases. Therefore, a reduced-rank treatment
that requires truncation of unsatisfactory high-order
mode-beams and retention of robust low-order ones
can be straightforwardly used to synthesize robust
superdirective beampatterns. The maximum order of
the required mode-beams in Eqs. (19) and (23), which
will be denoted as K in the following, should then be
smaller than or equal to N−1. Mode-beam extraction
for a practical case of error distribution can be con-
ducted through experimental measurements or com-
puter simulations.
It is noteworthy that the optimal solution that

provides maximum processing gain in different noise
fields can also be derived using the above-mentioned



Fig. 2 Coordinates of a four-sensor uniform linear array
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procedure. However, the noise correlation coefficients
between array elements cannot be always determined
analytically, and sometimes, they should be estimated
using in situ measurements. In other words, the general
solution of the optimal array signal processing can be
expressed analytically or adjusted adaptively. Because the
superdirectivity is an important topic as mentioned previ-
ously, this study is only focused on the isotropic noise
field, and the analytical and close-form solutions are dir-
ectly derived.
For the purpose of clearly showing the performance of

the GSMDS model, it is necessary to study the actual
DF in the presence of errors.
In actual systems, sensor mismatches will affect the

manifold and corrupt the beampattern. For simplicity,
the present study takes into account just the gain and
phase errors.
The gain and phase errors of the kth sensor are

assumed to be gk and ψk, respectively, and the actual
received pressure will be
Fig. 3 DFs and levels of robustness of the 0th- to 3rd-order mode-beams f
~ak θ;ϕð Þ ¼ Akak θ;ϕð Þ
¼ 1þ gk
� �

e−iψk ak θ;ϕð Þ: ð27Þ

Then, the beampattern in Eq. (3) changes to

~B θ;ϕð Þ ¼ wH Aa θ;ϕð Þ½ �: ð28Þ

In the presence of sensor gain and phase errors, the
directivity of the array will inevitably degrade. From
the above discussion, the actual DF of the kth-order
mode-beam can be defined as

~Qk ¼
~bk θ0;ϕ0ð Þ�� ��2

1
4π

Z 2π

0

Z π

0

~bk θ;ϕð Þ�� ��2 sinθdθdϕ
¼

1
λk

E�
k θ0;ϕ0ð Þ~Ek θ0;ϕ0ð Þ

����
����2

1

λ2k
Ek θ0;ϕ0ð Þj j2 1

4π

Z 2π

0

Z π

0

~Ek θ;ϕð Þ~E�
k θ;ϕð Þ sinθdθdϕ

� 	

¼
~Ek θ0;ϕ0ð Þ�� ��2
CH

k
~RnnCk

;

ð29Þ

where ~Rnn denotes the practical noise covariance matrix,
which is

~Rnn ¼ 1
4π

Z 2π

0

Z π

0
~a θ;ϕð Þ⋅~aH θ;ϕð Þ sinθdθdϕ

¼ ARnnA: ð30Þ

If there are no errors, Eq. (29) will be equal to Eq. (24).
The average of the actual DF of the kth-order mode-beam
is defined as
or the four-sensor uniform linear array. a DFs. b Levels of robustness



Fig. 4 The 0th- to 3rd-order mode-beams of the four-sensor uniform linear array at d/λ = 0.1. a Real parts. b Imaginary parts
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�Qk ¼ Ε
~Ek θ0;ϕ0ð Þ�� ��2
CH
k
~RnnCk

( )
: ð31Þ

Actually, the sensor errors also increase the signal
gain, which will enhance the DF. However, this add-
itional benefit can be neglected in view of the degrad-
ation caused by errors [3]. Thus, for obtaining a
conservative estimate, the average of the actual DF will
be defined as

�Qk≈
Ek θ0;ϕ0ð Þj j2
CH
k
�RnnCk

; ð32Þ

where the derivation of �Rnn ¼ Ε ~Rnn

 �

and its calculation
Fig. 5 Synthesized beampatterns of the four-sensor uniform linear array wi
b d/λ = 0.3
method can be found in [13]. The average DFs of other
beamforming methods can be similarly defined as

DF
−

¼ Ε
wH~p θ0;ϕ0ð Þj j2
wH ~Rnnw

( )
≈

wHp θ0;ϕ0ð Þj j2
wH�Rnnw

: ð33Þ

4 Design examples
Some design examples for different arrays are provided
in this section to demonstrate the feasibility of the
GSMDS model.

4.1 Linear arrays
Linear arrays for superdirectivity have been extensively
investigated [11, 24, 32–36]. An endfire linear array has
th the use of different models at d/λ = 0.1 and 0.3. a d/λ = 0.1.



Fig. 6 Coordinates of a six-sensor uniform circular array
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been proven to possess the highest superdirectivity for a
given number of sensors, and its DI approaches 20logN
(dB) when the inter-sensor spacing becomes infinitely
small [2, 23], where N is the number of sensors. For this
particular array, a difference approximation (DA) model
exists [35]. It provides promising calculation accuracy
when the spacing and overall length of the array are
small. However, this model is difficult to implement in
practice because it is highly error sensitive, which is why
only first-order (vector sensor) or second-order linear
arrays (at most) exist thus far. The newly developed gen-
eral model should be tested if it can significantly relax
restrictions on the spacing and overall size (and thus the
sensor number N).
Consider an equally spaced linear array of four sen-

sors, as shown in Fig. 2. From the above procedure, Ck
Fig. 7 DFs and levels of robustness of the 0th- to 3rd-order modified mod
of robustness
and λk for this four-sensor uniform linear array can be
easily derived as

C0 ¼
1
0
0
0

2
664
3
775;C1 ¼

−ρ1
1
0
0

2
664

3
775;C2 ¼

ρ21−ρ2
1−ρ21

ρ1ρ2−ρ1
1−ρ21
1
0

2
666664

3
777775;

C3 ¼

−ρ31 þ ρ21ρ3 þ 2ρ1ρ2−ρ1ρ
2
2−ρ3

−2ρ21 þ 2ρ21ρ2−ρ
2
2 þ 1

−ρ21−ρ1ρ3 þ ρ22 þ ρ2
2ρ21−ρ2−1

ρ31−ρ
2
1ρ3−ρ1 þ ρ1ρ2−ρ1ρ

2
2 þ ρ2ρ3

−2ρ21 þ 2ρ21ρ2−ρ
2
2 þ 1

1

2
666666664

3
777777775
;

ð34Þ

where ρ|i − j| = ρij = ρji and ρ0 = 1. The expressions of λk
are

λ0 ¼ 1;
λ1 ¼ 1−ρ21;

λ2 ¼ −2ρ21 þ 2ρ21ρ2−ρ
2
2 þ 1

1−ρ21
;

λ3 ¼ ρ41−2ρ
3
1ρ3−2ρ

2
1ρ

2
2 þ 4ρ21ρ2−3ρ

2
1

−2ρ21 þ 2ρ21ρ2−ρ
2
2 þ 1

þ ρ21ρ
2
3−2ρ1ρ

2
2ρ3 þ 4ρ1ρ2ρ3 þ ρ42−2ρ

2
2−ρ

2
3 þ 1

−2ρ21 þ 2ρ21ρ2−ρ
2
2 þ 1

:

ð35Þ

Equations (34) and (35) appear to be complex, espe-
cially when the order number is large. However, they are
all in closed-form and can be directly calculated with the
recursive formulas as ρi are given. This approach pro-
vides a practical way to obtain an accurate solution for
superdirectivity. The expressions of Ck and λk with
e-beams for the six-sensor uniform circular array. a DFs. b Levels



Fig. 8 The 0th- to 3rd-order modified mode-beams of the six-sensor uniform circular array at a/λ = 0.1. a Real parts. b Imaginary parts
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orders larger than 3 can be similarly derived but are not
listed here for brevity.
The calculated DFs and levels of robustness

(10logλk) of the mode-beams are shown in Fig. 3a, b,
respectively, in which (θ0, ϕ0) = (0, 0). When d/λ < 0.5,
both the DF and the error sensitivity increase with an
increase in the order number k and decrease with in-
creasing d/λ. As d/λ reaches 0, the DF of the kth-order
mode-beam approaches (2 k + 1), and the total DF ob-
tained by summation of the 0th- to (N−1)th-order
mode-beams is N2. This property is consistent with
Fig. 9 Synthesized superdirective beampattern (DI = 10.75 dB) of the
six-sensor uniform circular array compared with the conventional
DAS beampattern (DI = 1.39 dB) at a/λ = 0.1
the conclusions presented in [2] and shows significant
potential in directivity improvement for linear arrays.
However, the levels of robustness have no limit values
and become infinite as d/λ decreases to 0. When d/λ
is larger than 0.5, the DFs and levels of robustness of
different mode-beams tend to be equal, and their vari-
ances versus d/λ are unclear. Note that the DF and
level of robustness of the 0th-order mode-beam are
constant in the entire frequency band, and the values
are kept at 1 and 0 dB, respectively.
Figure 4 shows the mode-beams with orders ran-

ging from 0 to 3. With the geometrical symmetry
considered, calculations are only performed in the
xOz plane and d/λ = 0.1. The synthesized overall
beampatterns are shown in Fig. 5 in which the results
of different models are compared, and inter-sensor
spacing is differently set. It is clear that the DA [35]
and GSMDS models provide the similar main lobe
width, and both of them outperform the conventional
beamforming (CBF, i.e., DAS beamforming) model.
However, the sidelobes of the DA model, especially
the opposite beampatterns, are higher than those of
the GSMDS model because the DA model involves
theoretical approximations. This type of distortions
increases with the increasing frequency (c.f. Fig. 5a,
b). Specifically, as shown in Fig. 5b, the beampattern
produced by the DA model is largely modified when
d/λ = 0.3, and the opposite beampattern particularly
becomes enormous. By contrast, the GSMDS model
still works well.

4.2 Circular arrays
Circular arrays are desired in many circumstances
because they have simple configurations, do not have
left-right ambiguities, and can provide uniform beams
along with 360° azimuthal directions [4, 21, 22, 37]. A
six-sensor uniform circular array with radius a is



Fig. 10 Coordinates of a seven-sensor V-shaped array
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considered, and its coordinates are shown in Fig. 6. The
origin is deliberately not located at the center of the
circle for the convenience provided in the decompos-
ition and synthesis procedure. The numbers adjacent to
the sensors in Fig. 6 indicate the processing order of
GS transformation. The DFs and levels of robustness of
all mode-beams can then be readily calculated with the
use of Eqs. (23) and (22). However, an additional
process is needed to clearly show the regularity of the
GSMDS model for circular arrays. When N is even, the
mode-beams, DFs, and robustness parameters can be
modified with the use of Eqs. (36) to (38):

b̂k ¼
bk k ¼ 0ð Þ;
b2k−1 þ b2k k ¼ 1; 2; ⋯; N=2−1ð Þ;
b2k−1 k ¼ N=2ð Þ;

8<
:

ð36Þ
Fig. 11 DFs and levels of robustness of the 0th- to 3rd-order modified mo
of robustness
Q̂k ¼
Qk k ¼ 0ð Þ;
Q2k−1 þ Q2k k ¼ 1; 2; ⋯; N=2−1ð Þ;
Q2k−1 k ¼ N=2ð Þ;

8<
:

ð37Þ

ηk ¼
λk k ¼ 0ð Þ;
λ2k−1 þ λ2kð Þ=2 k ¼ 1; 2; ⋯; N=2−1ð Þ;
λ2k−1 k ¼ N=2ð Þ;

8<
:

ð38Þ
and when N is odd, the following equations are
obtained:

b̂k ¼ bk k ¼ 0ð Þ;
b2k−1 þ b2k k ¼ 1; 2; ⋯; N−1ð Þ=2ð Þ;

�
ð39Þ

Q̂k ¼ Qk k ¼ 0ð Þ;
Q2k−1 þ Q2k k ¼ 1; 2; ⋯; N−1ð Þ=2ð Þ;

�
ð40Þ

ηk ¼
λk k ¼ 0ð Þ;
λ2k−1 þ λ2kð Þ=2 k ¼ 1; 2; ⋯; N−1ð Þ=2ð Þ:

�
ð41Þ

These equations are reasonable because of the sym-
metry between the (2 k−1)th and (2 k)th sensors, which
is also utilized in [21]. Therefore, the total number of
mode-beams will decrease to (N/2 + 1) (for even N) or
(N + 1)/2 (for odd N) from N. The final synthesized
beampattern and the total DF are unaffected by this
modification, but the levels of robustness should be
properly evaluated to keep them meaningful. The values
of λ2k − 1 and λ2k have the same order of magnitude, and
this means that the (2 k−1)th- and (2 k)th-order mode-
beams have similar robustness. At this point, their
de-beams for the seven-sensor V-shaped array. a DFs. b Levels



Fig. 12 The 0th- to 3rd-order modified mode-beams of the seven-sensor V-shaped array at d/λ = 0.1. a Real parts. b Imaginary parts
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average value ηk is selected to measure the robustness of
the kth-order modified mode-beam.
The DFs and levels of robustness of the modified

mode-beams are shown in Fig. 7a, b, respectively, and
they depict the same behavior as that of linear arrays
when a/λ is small. Specifically, the larger the order num-
ber, the higher is the DF of this mode-beam, and the
worse is the robustness. As a/λ decreases, the DF also
increases, and the mode-beam becomes error sensitive.
When a/λ is large, the levels of robustness almost
overlap with one another, but the DFs become irregular.
Fig. 13 Synthesized superdirective beampattern (DI = 10.39 dB) of
the seven-sensor V-shaped array compared with the conventional
DAS beampattern (DI = 2.18 dB) at d/λ = 0.1
The 0th-order modified mode-beam still has a constant
DF and robustness in the entire frequency band.
The 0th- to 3rd-order modified mode-beams for this

six-sensor uniform circular array at a/λ = 0.1 are shown
in Fig. 8. Unlike the eigen-beams shown in [21], the
imaginary parts of these mode-beams cannot be ignored
(see Fig. 8b). As shown in Fig. 9, the synthesized final
superdirective beampattern using all mode-beams is ac-
tually the same as the final result using all eigen-beams
in [21], which shows apparent performance improve-
ment compared with the conventional DAS beampat-
tern. Note that the EBDS model appears to be simpler
for circular arrays than the GSMDS model, but it cannot
be applied to other arrays. The superiority of the
GSMDS model over the EBDS one is clear.
4.3 “V”-shaped arrays
The V-shaped arrays have good potential to be used in
practical applications, such as in underwater acoustic
communication and navigation systems for small au-
tonomous vehicles. They can also effectively show the
advantages of the GSMDS model. A seven-sensor V-
shaped array is shown in Fig. 10. It consists of two four-
sensor uniform linear arrays with a common sensor.
These two linear arrays are axisymmetric with respect to
the x-axis. The opening angle α is set to 60°.
The DFs and levels of robustness shown in Fig. 11a, b,

respectively, were modified with the use of Eqs. (40) and
(41), respectively, and the number of mode-beams was
changed to four. Note that the DFs do not regularly
change with d/λ or the order number, but the levels of
robustness still show the same behavior as those of the
linear and circular arrays. Figure 12 shows the 0th- to
3rd-order modified mode-beams for the seven-sensor V-
shaped array at d/λ = 0.1. The synthesized superdirective
beampattern using these mode-beams is compared with



Fig. 14 Theoretical (solid line) and average (dotted line) DFs of
mode-beams for the nine-sensor linear array

Fig. 16 Average DIs of different methods for the nine-sensor linear
array
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the conventional DAS beampattern in Fig. 13. The per-
formance enhancement is also clear.
These analyses indicate that the GSMDS model can

accurately decompose the optimal solutions of superdir-
ectivity into different sub-solutions for arrays of different
shapes. When it is applied to the above three array types
(not limited to these arrays), the robustness property of
the mode-beams with high orders clearly becomes error
sensitive. Therefore, the reduced-rank technique can be
readily used to synthesize robust high-order superdirec-
tive beampatterns.

5 Comparisons with the DAS and MVDR methods
Some detailed comparisons between the GSMDS method
and some widely used methods are presented in the fol-
lowing simulations, so that the advantages of the proposed
method will be clearer.
We regard a nine-sensor linear array as an example.

The sensor gain and phase errors, termed g and ψ,
Fig. 15 DIs of different methods for the nine-sensor linear array
respectively, are assumed to be statistically independent,
zero mean, Gaussian random variables, and their vari-
ances are set to σ2g ¼ σ2ψ ¼ 10−6.

The average values of actual DFs of the mode-beams
calculated using Eq. (32) are shown in Fig. 14 (dotted
lines), in which the different mode-beams show differ-
ent sensitivities to errors at this level of errors. Specif-
ically, the mode-beams with orders lower than 3 are
all sufficiently robust. Their average DFs show no
changes in the given frequency band, whereas the
average DFs of the 3th- to 8th-order mode-beams de-
crease at some frequencies, called “critical frequen-
cies”. The smaller the order, the lower is the critical
frequency. This is because the lower-order mode-
beams correspond to smaller frequencies when the re-
quired robustness level is the same, as shown in
Fig. 3b. It is clear that the high-order mode-beams in
Fig. 14 do not contribute to the total DF in some fre-
quency ranges, and these mode-beams can be trun-
cated, leading to the improved robustness. If better
superdirectivity is required to be obtained in practice,
the maximum order of the retained mode-beams is
unnecessarily selected to be large.
Fig. 17 Experimental uniform linear array of nine omnidirectional
hydrophones



Fig. 18 Theoretical and practical mode-beams at f = 1350 Hz. a k = 2. b k = 3. c k = 4. d k = 5
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Fig. 19 Synthesized experimental superdirective beampatterns for the nine-hydrophone linear array compared with conventional DAS
beampatterns. a f = 1350 Hz (d/λ = 0.09), K = 3. b f = 3000 Hz (d/λ = 0.2), K = 6. c f = 5000 Hz (d/λ = 0.33), K = 8

Wang et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:68 Page 14 of 16
The average DIs of this array achieved using differ-
ent methods are shown in Fig. 15 by considering the
same level of errors ( σ2

g ¼ σ2ψ ¼ 10−6 ). The DAS

method is the most robust method, but its directivity
is the lowest. By contrast, the minimum variance dis-
tortionless response (MVDR) method can provide the
highest directivity, but its robustness is the worst. The
average DI of the MVDR method degrades at approxi-
mately d/λ = 0.26 and is even less than that of the
DAS method when d/λ < 0.19.The theoretical DI of the
GSMDS method without any errors, which is obtained
by summing the theoretical DFs of mode-beams shown
in Fig. 14, is equal to that of the MVDR method. Fur-
thermore, at d/λ = 0.26, the average DI of the GSMDS
method, which is achieved by summing the average
DFs of mode-beams in Fig. 14, starts to decrease but
with a slower velocity. Compared with the MVDR
method, the achieved average DI of the GSMDS
method can reach 16.3 dB at d/λ = 0.19, which is also
Table 1 Performance measures of practical beampatterns

Method DI (dB) HPBW (°) SL (dB)

f = 1350 Hz (d/λ = 0.09)

DAS 5.80 118.74 −12.46

GSMDS (K = 3) 11.92 48.05 −12.98

f = 3000 Hz (d/λ = 0.2)

DAS 8.63 80.70 −9.99

GSMDS (K = 6) 15.01 31.41 −14.00

f = 5000 Hz (d/λ = 0.33)

DAS 11.07 59.50 −11.65

GSMDS (K = 8) 15.57 28.68 −14.16
higher than that of the DAS method. When the fre-
quency is lower, the DI of the GSMDS method is still
larger than that of the DAS and MVDR methods
owing to the contribution of the robust lower-order
mode-beams.

6 Comparisons with the regularization-based
methods
As presented previously, the type of regularization-
based methods, specifically the DL method, is exten-
sively used in practice and can be selected as a typical
example to compare with the proposed method. The
average DIs obtained using these two methods are
shown in Fig. 16.
It is observed that the average DI of the DL method is

larger than that of the MVDR method in the low-frequency
band, which indicates that adding a regularization param-
eter (i.e., DL value) effectively improves robustness. How-
ever, if the selected regularization parameter is large,
then the beamformer is over-robust and the DI is theor-
etically low. If the regularization parameter selected is
small, then robustness is not sufficiently good to lead to
an exceedingly low actual DI. In Fig. 16, the average DIs
of DL = 10− 2 (large) and DL = 10− 8 (small) in the low-
frequency range are lower than those of the GSMDS
method, whereas the obtained DI for DL = 10− 6 is larger
than that of the GSMDS method. It is clear that the
regularization-based methods will perform better than
the GSMDS method when the regularization parameter
is appropriately selected (e.g., DL = 10− 6 in this ex-
ample), but the appropriate parameter is not easily de-
termined in many practical applications because the
level of actual errors is always unknown so that the final
results will be always degraded in some frequency
bands. By contrast, the performance of the GSMDS
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method is determined when the actual level of errors
is given, and it will not change with other parameters.
In other words, although the regularization-based
methods can work better than the GSMDS method,
they also have the great possibility to give worse re-
sults in some frequency ranges over the proposed
method in practical applications. For a conservative
purpose, the GSMDS method will be preferred to be
applied in practice because it has the determined per-
formance and takes no risks of giving worse results in
comparison with the regularization-based methods.

7 Experimental results
An experimental uniform linear array consisting of nine
omnidirectional hydrophones was prepared. This array
is shown in Fig. 17, and the inter-sensor spacing is
10 cm. The data acquired in an anechoic water tank
were used for experimental verification. The signals
employed in the experiment were rectangular-window-
modulated single-frequency continuous-wave pulses,
and their frequencies were 5000, 3000, and 1350 Hz.
Figure 18 shows the theoretical and practical mode-
beams with orders ranging from 2 to 5 at a frequency of
1350 Hz (d/λ = 0.09). The mode-beams with orders
smaller than 4 clearly agree well with the corresponding
theoretical ones. Because of the errors from hydrophone
gain and phase mismatches, sensor position perturba-
tions, and structural scattering, all the high-order mode-
beams are corrupted, and distortions increase with an
increase in the order number. This condition is consist-
ent with the above-presented analyses on λk. Although
the 0th- and 1st-order mode-beams, as well as the 6th-
to 8th-order ones, are not shown here, their properties
are self-evident. The mode-beams at 3000 Hz (d/λ = 0.2)
and 5000 Hz (d/λ = 0.33) also exhibit similar behavior,
but they are not shown here for brevity.
The above analyses indicate that the overall practical

beampatterns at these three frequencies can be easily
synthesized. Figure 19 shows these superdirective beam-
patterns, and Table 1 lists their performance measures,
including DIs, half-power beamwidths (HPBWs), and
sidelobe levels (SLs). The DI values were calculated with
the assumptions that the beampatterns had rotational
symmetry, and the noise field was isotropic. The SL was
defined as the maximum level of sidelobes. The fre-
quency is 1350 Hz, so the practical mode-beams with
orders larger than 3 are unusable because of their error
sensitivities. Therefore, a reduced-rank beampattern is
synthesized with the use of only the 0th- to 3rd-order
mode-beams (K = 3). The measured SL is almost the
same as the conventional DAS beampattern, but the
HPBW decreases to 48.05° unlike the conventional DAS
beamwidth at approximately 118.74°. Because the main
lobe is pointed toward the endfire direction, the DF is
improved by approximately a factor of four in this par-
ticular case and 6 dB for the DI. For high frequencies,
e.g., 3000 Hz, the 4th- to 6th-order mode-beams (K = 6)
are also usable, and the DI of the final superdirective
beampattern is improved by approximately 6 dB over its
conventional DAS counterpart. When the frequency
increases to 5000 Hz, all mode-beams (K = 8) are ro-
bust against errors and can be used to synthesize the
superdirective beampattern. However, the DI enhance-
ment is approximately 4.5 dB, which is smaller than
those in the two above cases. Both the superdirective
beampatterns have lower SLs and narrower HPBWs
than the conventional DAS beampatterns when the
frequencies are 3000 and 5000 Hz, a result indicating
better performance over the DAS method.
It is found that the effect of actual errors on mode-beams

for this experimental linear array is similar to that shown in
Fig. 14, although the actual errors of the experimental linear
array are not only from the sensor gain and phase. Accord-
ing to the analyses in the “Comparisons with the DAS and
MVDR methods” section, the average DFs of mode-beams
with orders smaller than 4 show good performance at
1350 Hz (d/λ = 0.09), meaning the appropriate maximum
order is 3 at this level of errors. From Fig. 14, it is also in-
ferred that the appropriate maximum order will be 5 and 8
when the frequencies are 3000 Hz (d/λ = 0.2) and 5000 Hz
(d/λ = 0.33), respectively, if the actual errors are inde-
pendent of the frequency. The conclusions for the
cases at 1350 Hz (d/λ = 0.09) and 5000 Hz (d/λ = 0.33)
are approximately right, whereas the case at 3000 Hz
(d/λ = 0.2) shows some deviations in experimental re-
sults because of effects of other errors.
As presented previously, the highest order of satisfac-

tory mode-beams has to be selected with special atten-
tion, and this selection deserves a final consideration. If
the level of actual errors of a practical array can be
precisely estimated, then the highest order can be easily
determined with the use of computer simulations, and
the truncation of unsatisfactory high-order mode-beams
can be conveniently conducted. When the information
of actual errors cannot be known, an ad hoc experimen-
tal measurement is required to determine the highest
order, which can also be effectively used during trunca-
tion, as is the case in this study.

8 Conclusions
This study presents a general superdirectivity model for
arbitrary sensor arrays. Because the noise correlation co-
efficients between sensors can be easily determined in
the isotropic noise field, all the solutions of superdirec-
tivity have been accurately expressed in full closed-form
based on the GS orthogonalization scheme with the use
of the frequency and array geometric parameters. The
results indicate that theoretical approximations are not
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involved in this model, meaning this model provides an
effective mechanism to achieve high-order superdirectiv-
ity. The beamforming process is simplified by decom-
position of the optimal beampattern and maximum DF
into mode-beams and their associated DFs to signifi-
cantly facilitate the implementation of superdirectivity.
All of these results are directly derived from the optimal
solutions of superdirectivity, so the GSMDS method can
be applied to sensor arrays with arbitrary geometries,
and no a priori knowledge of errors are required. Design
examples for three different arrays show that as the
order number increases, the robustness of mode-beams
decreases. Therefore, robust superdirective beampatterns
should be synthesized with the use of a reduced-rank
treatment. The performance of this technique is demon-
strated with simulations and real-data experiments. Fur-
ther work can focus on the error control for high-order
mode-beams to further improve the practically achiev-
able superdirectivity. An in-depth study of applying this
model to other complex arrays, such as volumetric ar-
rays, will also be a main topic in the further.
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