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Abstract

Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of
applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion
classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired,
it has become apparent that efficient channel selection algorithms are needed with varying importance from one
application to another. The main purpose of the channel selection process is threefold: (i) to reduce the
computational complexity of any processing task performed on EEG signals by selecting the relevant channels and
hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to
the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup
time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and
wavelet transform have been used for feature extraction and hence for channel selection in most of channel
selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and
human-based techniques have been widely used for the evaluation of the selected subset of channels. In this
paper, we survey the recent developments in the field of EEG channel selection methods along with their
applications and classify these methods according to the evaluation approach.
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1 Review
1.1 Introduction
Digital processing of EEG signals plays an important role
in a variety of applications, e.g., seizure detection/predic-
tion, sleep state classification, and motor imagery classifi-
cation. Digital processing of EEG signals consists of
different components: signal acquisition unit, feature ex-
traction unit, and a decision algorithm as shown in Fig. 1.
The input to the system in Fig. 1 is an EEG signal acquired
from the scalp, brain surface, or brain interior. The signal
acquisition unit is represented by electrodes whether they
are invasive or non-invasive. The feature extraction unit is
a signal processing unit aiming to extract discriminative
features from channel(s). The decision unit, in brain com-
puter interface (BCI) for example, is a hybrid unit with the
purpose of classification, decision-making, and passing the
decisions to external devices outputting the intention of
the subject [1].
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As mentioned above, the interface between the brain and
the computer (or a device) could be through invasive or
non-invasive technologies. Although invasive technologies
have recently shown some promises in different applica-
tions for their large accuracy and low noise [2], non-
invasive technologies are still used extensively for safety
purposes with some additional signal processing tasks to
compensate for the noise and resolution limitations. Scalp
EEG acquisition devices are generally preferred due to their
low-cost, ease of use, portability, and high temporal reso-
lution. The scalp EEG signals can be recorded by differ-
ent modes such as unipolar and bipolar modes. In the
former mode, the voltage differences between all elec-
trodes and a reference one are recorded, where a chan-
nel is formed by an electrode-reference pair. On the
other hand, in the bipolar mode, the voltage differences
between two specified electrodes are recorded, where
each pair forms a channel. An electrode placement
scheme on scalp, known as International 10–20 system,
was recommended by the International Federation of
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Fig. 1 Processing of EEG signals
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Societies for Electroencephalography and Clinical Neuro-
physiology (IFSECN) [3]. Figure 2 shows the 10–20 EEG
electrode positions for the placement of electrodes from
the left and the top of the head. These electrodes (channels)
show the activities of different brain areas. Figure 3 shows
the brain areas.
Most of the useful information about the functional state

of a human brain lies in five major brain waves distin-
guished by their different frequency bands. These frequency
bands are delta band (0–4 Hz), theta band (3.5–7.5 Hz),
alpha band (7.5–13 Hz), beta band (13–26 Hz), and
gamma band (26–70 Hz) [4]. Delta waves are related to
the deep sleep state. Theta waves are related to the dee-
pest state of mediation (body asleep/mind awake).
Alpha waves are related to the case of dreaming and re-
laxation. Beta waves are the dominant with the waking
state with large attention. Gamma waves are highly re-
lated to the decision-making mode of the brain. When
dealing with mental illnesses states, unexpected distur-
bances of the brain waves occur leading to the need of
considerable signal processing burdens for diagnosis of
abnormal states [4].
The acquired EEG signals are generally of multi-channel

nature. To classify these signals, for example, we have two
choices: to work on a subset of channels selected based on
certain criteria or to work on all channels [5]. Figure 4
gives an illustration for the general process of EEG signal
Fig. 2 The international 10–20 system. The left image shows the left side o
head [78]
classification based on channel selection. In this signal
processing setting, reducing the number of channels is
needed because the setup process with a large number of
channels is time-consuming and causes subject inconveni-
ence. In addition, it adds to the computational complexity
of the system, which is required to be low in certain
applications.
Another example where channel reduction is of a po-

tential value is in seizure detection and prediction. In
particular, there is a great interest from the industry and
scientific community in the development of portable
medical support systems that incorporate algorithms
capable of detecting early onset of epileptic seizures or
even predicting them hours before they occur, as this
will help to alert ambulatory patients or caregivers be-
fore seizure occurs to avoid injury [6, 7]. The develop-
ment of such portable systems should be based on
computationally efficient prediction algorithms that
make use of as minimum number of channels as pos-
sible to reduce system power consumption, a necessary
step to maintain longer time of operation.
Various techniques have been investigated for channel

selection in the processing of EEG signals. This paper
presents a survey for the recent developments in this
field. Several flowcharts and tabular forms are presented
to enable the reader to explore the different channel
selection algorithms, to determine their classification
f the head, and the right image presents the view from above the



Fig. 3 The cerebrum is subdivided into four lobes: frontal, parietal,
occipital, and temporal lobe [78]
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according to the evaluation algorithms, and to bring
attention to directions of research in EEG channel se-
lection for different applications. The performance of
different methods, if available, is given in terms of clas-
sification/detection accuracy and probability of false
alarm to produce clear and informative comparisons
among the channel selection approaches. In addition,
this survey may assist designers to choose the appropri-
ate algorithms that suite intended applications. Further-
more, this work is expected to help newcomers to the
field to determine the limitations associated with the
available channel selection methods and to pave the
road for the development of new channel selection
designs.
The rest of this paper is organized as follows. Section 2

covers the selection techniques in general. Section 3 dis-
cusses channel selection for seizure detection/prediction.
Section 4 is devoted for channel selection for motor im-
agery classification. Sections 5 and 6 cover the topics of
emotion classification and mental task classification with
channel selection strategies. Section 7 discusses channel
selection for the task of sleep state analysis. Section 8 dis-
cusses the channel selection process for drug effects diag-
nosis. Finally, concluding remarks are given in Section 9.

2 Channel selection techniques
During the last decades, EEG-based processing has be-
come a highly attractive research field. The large number
of channel recordings due to the availability of low-cost
interfaces led to the evolution of channel selection algo-
rithms. The objectives of channel selection are manifold:
improving model performance, providing faster processing
Fig. 4 General process of EEG signal classification
and dimensionality reduction, and identifying brain area
that generates class-event activity.
Based on the literature, feature selection algorithms

were used for EEG channel selection [8–10]. In this
section, we show how to adapt such techniques for
channel selection. The main steps of channel selection
are illustrated in Fig. 5 for a set of EEG channels. The
subset generation step is a heuristic search process to
present a candidate for evaluation based on a search
strategy such as complete search, sequential search, or
random search. In some applications, a trained special-
ist selects a subset of channels based on his experience.
There are five main categories of candidate evaluation
strategies, namely, filtering, wrapping, embedded, hy-
brid, and human-based techniques. These techniques
are used for subset evaluation. The process of channel
subset generation and evaluation is terminated when a
stopping criterion is satisfied (search is completed or a
threshold is reached). In the last step, the selected
channel subset is validated via prior knowledge about
the data. The evaluation techniques are discussed in
the next subsections.

2.1 Filtering techniques
Filtering techniques use an independent evaluation criter-
ion such as distance measure, information measure, de-
pendency measure, and consistency measure to evaluate
the candidate channel subsets, which are generated using
a search algorithm. Filtering techniques have some advan-
tages among which are the high speed, independence from
the classifier, and scalability [10], but they suffer from the
low accuracy, since they do not consider the combinations
of different channels. Figure 6 shows a general flowchart
for the filtering techniques. In this flowchart, S0 represents
the initial subset and Sbest represents the selected best sub-
set of channels. Also, D(C0, ….., Cn-1) represents a pool of
n channels for selection, and M refers to an independent
evaluation criterion. The γ represents the value of the
evaluation criterion for each subset of channels. The
“evaluate” function refers to an evaluation process.

2.2 Wrapper techniques
In case of wrapper techniques, a classification algorithm
is used to evaluate the candidate channel subsets, which
are generated by a search algorithm as shown in Fig. 7,
in which A denotes a classifier, and γbest represents the
best value of the evaluation criterion. The evaluation of
every candidate is obtained by training and testing a



Fig. 5 Main steps of channel selection
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specific classification algorithm [10]. Consequently, they
are more computationally expensive than filtering tech-
niques and they are prone to overfitting.
2.3 Embedded techniques
In the embedded techniques, the channels are selected
based on criteria generated during the learning process of
a specific classifier because the selection is included into
the classifier construction [9]. Embedded techniques
achieve an interaction between the channel selection and
the classification. They are computationally less expensive
and less prone to overfitting. They are based on recursive
channel elimination to keep only channels with appreci-
ated magnitude.
2.4 Hybrid techniques
A hybrid technique is a combination of a filtering tech-
nique and a wrapper technique attempting to take advan-
tage of both in avoiding the pre-specification of a stopping
criterion (see Fig. 8). Generally, hybrid techniques utilize
both an independent measure and a mining algorithm for
evaluation of the available channel subsets [10]. Two
threshold values are evaluated: γbest corresponding to the
case with a classifier and θbest corresponding to the case
without a classifier. The independent measure is used to
select the best subset for a given size Cr (cardinality), and
then the mining algorithm is used to select the final best
subset across cardinalities.
2.5 Human-based techniques
In some applications, a well-trained observer evaluates the
outcome of a specific application, like seizure detection,
on the selected channels with any of the abovementioned
subset generation techniques based on his experience.
Thus, the findings of the human-based techniques can be
used in a feedback manner to refine the channel selection
process.
3 Channel selection for seizure detection/
prediction
Epilepsy is well known as the second most prevalent brain
disorder (after stroke) characterized with unexpected
occurrence of seizures. The International League Against
Epilepsy (ILAE) and the International Bureau for Epilepsy
(IBE) presented a definition for the epileptic seizure as “a
transit occurrence of signs and/or symptoms due to ab-
normal excessive or synchronous neuronal activity in the
brain” [11]. Epilepsy affects around 1 % of the world popu-
lation, and based on the seizure statistics of the Epilepsy
Foundation of America (EFA), about 200,000 cases of epi-
lepsy are diagnosed per year. The primary tool for diagno-
sis and management of epilepsy is through EEG signals.
In general, EEG recordings have different channels

for signals acquired from different spots of the human
brain. In certain applications, there is a need to select
some of these channels for EEG seizure detection/pre-
diction because the computational load required for a
seizure detection/prediction algorithm increases as a
function of the number of channels [12]. Reducing the
number of channels is of an utmost importance, for ex-
ample, in the development of portable medical support
systems for epilepsy patients, as reducing algorithmic
computational complexity will lead to faster real-time
response and lower power consumption to maintain
longer time for operation. In addition, the lower the
number of channels is, the more convenience the pa-
tient would have and the lower the setup time required
to fix gel-based EEG electrodes. Another factor that
needs to be considered carefully in seizure detection/
prediction is the overfitting effect due to the utilization
of a large number of redundant channels. Therefore,
channel selection could be used to reduce the feature
pattern size and lower the computational cost of fea-
ture extraction and classification. In what follows, we
cover some of the channel selection techniques utilized
for seizure detection/prediction and classify them ac-
cording to the channel subset evaluation techniques
given in Section 2.



Fig. 7 General wrapping techniques flowchart

Fig. 6 General filtering techniques flowchart
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3.1 Filtering techniques
For EEG seizure detection and prediction, signal statistics
such as variance and entropy can be used for channel
selection. This subsection presents four trends for channel
selection for EEG seizure detection and prediction, with a
common thread that they are all based on signal statistics.
Duun-Henriksen et al. [12] investigated different channel
selection schemes based on different statistical criteria as
follows:

3.1.1 Selection based on variance
The variance of ictal data of all available channels is esti-
mated with the equation:



Fig. 8 General hybrid techniques flowchart
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V ict cð Þ ¼ 1
k

Xk

i¼1

xc ið Þ−μcð Þ2 ð1Þ

where xc, μc,, and k are the seizure data, mean, and
number of samples of the training seizure data of channel
c, respectively. The three channels with maximum vari-
ance are selected for signal classification [12].
3.1.2 Selection based on difference in variance
The difference in variance is calculated as follows:

V diff cð Þ ¼ V ict cð Þ−V non‐ict cð Þ ð2Þ
where Vnon ‐ ict is the non-ictal (non-seizure) training

data, which represents the background variance that
would be deduced (variance of the normal state). The N
input channels are selected based on the minimum dif-
ference of variance.

3.1.3 Selection based on entropy
The entropy of an EEG channel is a measure of uncer-
tainty, where the EEG signal is considered as a random
variable. The entropy of channel c is defined as:

H cð Þ ¼ −
Xn

i¼1

p xið Þ log2p xið Þ ð3Þ

where p(xi) is the probability mass function of the
channel having n samples. The N channels with the
highest entropy are chosen as input to the automatic
seizure detector.
In the method developed by Duun-Henriksen et al.

[12], after channel selection, a feature extraction process
utilizing wavelet transform is performed on the selected
channels. A support vector machine (SVM) was used as
a classifier for seizure detection, with a non-linear radial
basis kernel having a regularization term of 0.5 and a
cost factor varying between 0.05 and 0.5. A recorded
iEEG data with 59 seizures and 1419 h from 10 patients
were used for training and testing. It was found that the
best channel selection method is based upon maximum
variance during seizure, which led to a seizure detection
sensitivity of 96 % and false detection rate of 0.14/h
using three channels. The work of Duun-Henriksen
et al. [12] falls in the class of filtering techniques, as it
used an independent measure for channel selection,
which is the variance. The authors did not use a search
strategy.
Faul [13] used another statistical measure, which is the

probability of a seizure in a channel produced by the
real-time EEG analysis for event detection (REACT) sys-
tem of Temko et al. [14] as a tool for channel selection
to change the behavior of the system aiming to reduce
the computational effort. The SVM output in this system
is treated as a probability, which is further passed
through a sigmoid function. He used a waiting time for
each channel to be incorporated in the channel selection
process, and this time is computed according to the
probability of seizure in that channel. He reported that
the computational efforts can be reduced by up to 65 %
with no effect on the seizure detection performance of
the REACT system (96 % for neonatal and 94 % for adult
databases).
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Faul and Marnane [15] developed statistics-based
dynamic EEG channel selection methods to reduce the
power consumption in seizure detection, which can be
classified as filtering techniques. In their methods, a
number predefined or primary screening channels
(PSCs) are chosen in the following approaches depend-
ing on the probability provided by the REACT system,
and then the channels are added or removed in the
next epoch. The first approach is location spread based
on some seed PSCs with their neighborhood channels.
Channels are added or excluded based on probability of
seizure. If the probability of seizure in any of the PSCs
exceeds a threshold, the nearest channel to the PSC is
added to the analysis and remains until its probability
drops below a threshold. Their results show that with
two channels {2,7}, the performance is 95.74 % with
66.76 % computational load saving, while with four
channels {2,4,6,7}, the performance is 96.55 % with
43.11 % computational cost reduction.
The second approach is idling (single/twin) based on

the two brain hemispheres. For idling, channels in the
PSCs are analyzed sequentially in alternate epochs, and
when the channel is activated, it is then analyzed continu-
ously until deactivation. Both activation and deactivation
are based on the probability of seizure. In twin idling, the
PSCs in each hemisphere are idled, separately. The per-
formance of the idling approach, without dynamic channel
selection, is 91 and 91.48 % and the computational saving
is 87.5 and 75 % for single and twin idle, respectively.
There is an increase in computational saving with single
idling of approximately 10 and 30 % with two PSC and
four PSC configurations, respectively. Location spread
with twin idling is another approach for the authors, but it
did not achieve an appreciable gain in terms of perform-
ance over the single idling approach with approximately
10 % drop in computational cost. The results of these ap-
proaches have been compared with the all-channel (eight
channels) REACT system [14] results leading to a feasibil-
ity of the suggested approaches by Faul and Marnane [15].
Atoufi et al. [16] investigated the prediction ability of

neuro-fuzzy models in different states of EEG signals:
normal, pre-ictal, and ictal. Although the main object-
ive of this study was to improve the model prediction
accuracy using information fusion, the main challenge
was selecting the channels that should be used to con-
struct the predictor. A selection algorithm was used to
select the channels with the largest amount of informa-
tion about the target (channel whose signal is to be pre-
dicted) but with the least information about each other.
This technique can be classified as a filtering technique
with a greedy sequential search strategy because it de-
pends on independent channel evaluation criteria. An
information theoretic criterion (mutual information
(MI)) was used to select a group of channels for multi-
channel prediction. The MI of two random variables X
and Y is defined as [16]:

I X;Yð Þ ¼ H Xð Þ– H X Yð Þ ¼ H Yð Þ– H Y Xð Þ
¼ H Xð Þ þ H Yð Þ– H X;Yð Þ ð4Þ

where H(X) and H(Y) are the entropies of the variables
X and Y and H(X|Y) is the conditional entropy. H(X;Y) is
the joint entropy of the two variables X and Y. The
authors evaluated their method on two patients’ data, of
Freiburg database, which is a publicly available intracra-
nial EEG database containing six channels (three focal
and three extrafocal) ECoG recordings of 21 patients
with a 256 Hz sampling rate [15]. This method achieved
60.6 and 60 % success rates in three-channel cases of
ECoG and EEG datasets, respectively. The authors
reported that the prediction accuracy using the selection
algorithm with multi-channels has been improved with a
noticeable improvement in pre-state detection over the
single channel.

3.2 Wrapper techniques
In this subsection, we try to bring together the channel
selection techniques for EEG seizure detection and predic-
tion that can be classified as wrapper techniques and show
why they fall into this category. Shih et al. [17] presented a
machine learning-based approach to construct detectors
that use fewer channels for seizure onset detection. For
selecting channels, the authors used an instance of the
wrapper approach, which is a feature selection algorithm
with backward elimination. This approach reduced the
average number of channels required to detect the seizure
onset from 18 to 4.6, while the mean fraction of seizure
detection decreases from 99 to 97 %. In addition, the aver-
age number of false events per hour decreased from 0.35
to 0.19. An increase of average detection latency from 7.8
to 11.2 s with average of 69 % of energy saving was
achieved. When this approach is combined with a patient-
specific screening detector, an additional energy saving of
16 % was achieved. Those results were compared to the
18-channel [18] results revealing the feasibility of the
channel reduction with this approach.
Glassman and Guttag [19] presented another method

that uses recursive feature elimination to design patient-
specific SVM detectors that use small numbers of elec-
trodes. The recursive feature elimination uses the SVM to
rank the contributions of each selected channel. They used
a leave-one-out cross validation principle to estimate the
performance of the detectors as illustrated in Table 1. The
main idea of the process is to find the smallest number of
channels n, such that the average cross validation per-
formance of detectors built using n channels is at least as
good as the average cross validation for the 21-channel
detector.



Table 1 Using cross validation to select channels for a patient
[19]

//“Full montage average performance evaluation”

init(All)

for s = each seizure in set of seizures S

C = 21 channels

d = Detectorsetup (C, S – {s})

Modify (All, d, s)

end

//“Subset channel selection performance evaluation”

Numchannels = 21

for n = 20 to 1

Init(Subset)

for s = each seizure in set of seizures S

S’ = S – {s}

C = RFE(n, S’) “Find n best channels”

d = Detectorsetup (C, S’)

Modify (Subset, d, s)

if Subset >= All

Numrequired = n

return Numrequired
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The Detectorsetup (C, S) is a function to build an SVM
detector using the channels in C. It uses S seizures as a
training set and REF(n, S) as a recursive feature elimin-
ation function used to find the best n channels when train-
ing on S. The function Modify(Subset, d, s) is a function
used to calculate the performance of the detector d when
used on the file S and update the average performance.
This method is based on a wrapper algorithm with a
sequential search strategy. The authors evaluated their
method using 21-channel scalp EEG recordings of 10
patients. The method achieved 7.1 average channels, 0.011
average false negative, 0.48 average false positive, and 9.54
s average latency time.
Statistical metrics have also been used for wrapper

channel selection techniques. Mirowski et al. [20] pre-
sented a method based on computing bivariate features
of EEG synchronization. These features are cross correl-
ation, non-linear independence, dynamic entrainment,
and wavelet synchrony. They computed the features on
21 patients from Frieburg dataset [21]. They used time
aggregation for features before classification. Chang
et al. [22] proposed a channel selection method to re-
duce the feature pattern size produced from Mirowski
et al. work [20] for seizure prediction. Their work can be
classified as a wrapper technique with a pre-specified
subset of channels. Their method requires computation
of features from pairs of channels of the available EEG
signal. They investigated the performances of using all
channel pair combinations with the number of channels
from two to six in the case of electrocorticography
(ECoG) dataset and 75 combinations of fixed channel
pairs in case of EEG dataset. This method aims to reduce
the computed wavelet coherence (localized correlation
coefficient in time-frequency space) values for a given
channel pair over non-overlapping 5 s and frequency
bands after decomposing the channels into sub-bands.
The features are aggregated into patterns. Then, the SVM
is used to classify the patterns into pre-ictal and inter-ictal
states as shown in Fig. 9. The authors investigated the
performance of all channel pair combinations in the ECoG
database and 75 combinations of fixed channel pairs in
the EEG database. They evaluated their method using
three datasets: Freiburg database [21], CHB-MIT database
(6 patients: 1, 3, 6, 7, 10, 22) which is a scalp EEG database
with a 256 Hz sampling rate and more than 22 channels
for most of them [23], and National Taiwan University
Hospital database (one patient) which is also a scalp EEG
database with 200 Hz sampling rate and 18 channels [24].
The method achieved 60.6 and 60 % success rate in three-
channel cases of ECoG and EEG datasets, respectively.
Also, the method achieved more than 93.73 % of compu-
tational saving compared to the full 22-channel case.
Greene et al. [25] developed another non-patient-

specific statistical method for automated neonatal
channel selection and seizure detection based on a reg-
ularized discriminant classifier. This method can be
classified as a wrapper method with a pre-specified
subset channel selection scheme. Seven features were
extracted from non-overlapping 8 s, which are spectral
entropy, Shannon entropy, spectral edge frequency,
non-linear energy, line length, wavelet energy, and root
mean square (RMS) amplitude. They compared the
effectiveness of their method on a single channel with
the training performed on multi-channel EEG. The
authors evaluated their method on 17 recordings from
17 neonates with a 251.9 total number of hours and
411 seizures with a 256 Hz sampling rate. Each record-
ing contained 7–11 EEG channels and 1 ECG channel.
They examined the performance of nine single channels,
which are C4-C3, C3-T3, C4-T4, F3-C3, F4-C4, Cz-C4,
Cz-C3, C4-02, and C3-01. Channel C3-C4 gave the best
seizure detection performance, when compared to other
single channels. It achieved a 90.77 % correct detection
and 9.43 % false detection rate, respectively, while the
multi-channels achieved an 81.03 % detection rate and a
3.82 % false detection rate.
Another statistical approach was presented by Temko

et al. [26]. They presented an online neonate seizure
detection framework based on EEG channel weighting
and moving average filtering as illustrated in Fig. 10.
The authors computed the channel weights on the fly
using patient specific history and clinically derived



Fig. 9 Seizure prediction algorithm of Chang et al. [13]
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prior channel importance. The moving average filtering
is used to smooth the SVM output which is interpreted
as probabilities. The dataset used consists of 17 new-
borns EEG recordings obtained from Cork University
Maternity Hospital database, Ireland [27]. A total of 36
channels were used for recording the data. Eight channels
were selected for further processing using channel weight-
ing. From each channel, 55 features were extracted which
are then fed to an SVM classifier. The output of the classi-
fier was then smoothed with a moving average filter and
converted to probability-like values using a Bayesian prob-
abilistic framework. These values were then compared
with a threshold in the interval [0,1], and based on this
comparison, decisions about the presence of seizures per
channel were taken. Area under the precision-recall
(PR) curve [28] was used as a metric in this work. The
authors have shown that with their proposed channel
weighting technique, the PR area has increased up to
25 % with the average increase from 81.0 to 84.42 %.
Furthermore, it was reported that the performance of
the channel weighting algorithm was proportional to
the subject observation time.

3.3 Human-based techniques
In this subsection, we explore two human-based tech-
niques for channel selection in EEG signal detection and
prediction. Zimbric et al. [29] compared a collection of 3
channels with a collection of 21 channels for the detection
of neonatal seizures and quantification of seizure burden.
Tracking were analyzed in the three-channel montage for
Fig. 10 Steps of the Temko et al. [26] method for seizure detection with ch
seizure number, duration, and quantification of seizure
burden before reanalysis with the full 21-channel neonatal
minimal placement montage. Seizures were identified
using standard definitions of EEG seizure. Analysis of the
results was performed by two independent readers, and
hence, this method can be classified as a human-based
technique with a pre-specified subset of channels. Evalu-
ation metrics such as sensitivity, specificity, and reliability
were calculated. They evaluated their method using 35
EEG recordings from 28 infants with a total of 1389 min.
The sensitivity and specificity of three-channel montage
for detecting seizures >10 s were 91 and 100 % for reader
1 and 82 and 96 % for reader 2, respectively.
Tekgual et al. [30] presented a comparison study of

reduced electrode montage (9 electrodes) with full 10/
20 electrode montage (19 electrodes) considering de-
tection and characterization of neonatal seizures and
background EEG characteristics. Three independent
readers reviewed EEG recordings for number, duration,
and topography of seizures and background features.
Hence, we can consider this approach as a human-
based approach with a pre-specified subset channel
selection. The reviewers started with reduced montage
and then the full montage. A total of 151 EEG record-
ings from 139 infants, obtained from Bio-logic System
of the Clinical Neurophysiology Laboratory, Children’s
Hospital, Boston [30], were reviewed by the reader on
both montages. The sensitivity and specificity of the
reduced montage for seizure detection were 96.8 and
100 %, respectively.
annel selection



Alotaiby et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:66 Page 10 of 21
4 Channel selection for motor imagery
classification
Motor imagery is a mental task in which the subject
imagines that he is doing an action. Motor imagery
classification is very important for certain patients. This
task can be performed with EEG signals and may
require channel selection to choose the most related
channels to the cortical activity patterns and to reduce
the computation time as well.

4.1 Filtering techniques
The common thread between the channel selection tech-
niques adopted for motor imagery classification and cate-
gorized as filtering techniques is that they are based on
EEG signal statistics. He et al. [31] presented a statistical
channel selection method for classifying motor imagery.
This method used Bhattacharyya bound of common
spatial patterns [32] as an optimal index and fast forward
search to find the optimal combination of channels. It is a
filtering method with sequential search strategy for subset
channel selection. Then, it uses Bayes algorithm [33] as a
classifier. The authors utilized four EEG recordings for
subjects a, b, d, and e of dataset 1 of BCI competition IV
to evaluate the performance of their method, each of
which contains 200 trials. A total of 59 channels were used
for the recordings. They reported that the classification
accuracies obtained by their method, which is ~95 % with
~33 average number of channels, is higher than those
obtained by all channels, but still their solution is a sub-
optimal solution.
Another statistical method was presented by Tam et al.

[34], who proposed a channel selection method for motor
imagery classification based on the sorting of common
spatial pattern (CSP) filter coefficients. Their method,
called CSP-rank, is based on a filtering approach with a
sequential search strategy for subset channel selection. It
uses two CSP filters for two classes corresponding to
motor imagery and immobilization. It firstly sorts the ab-
solute value of the filter coefficients in each filter and then
selects the electrode with the next largest coefficient in
turn from the two spatial filters. They utilized 64-channel
EEG recordings from five chronic stroke patients through
20 sessions and each session consisted of 80 trials. They
compared CSP-rank with support vector machine recur-
sive feature elimination (SVM-RFE) [35, 36] and random
selection. CSP-rank was able to maintain an average classi-
fication accuracy rate above 90 % for 8–38 electrodes. It
obtained the highest average classification accuracy rate of
91.7 % with 22 electrodes. The SVM-RFE maintained aver-
age classification accuracy rate above 90 % for 12–28 elec-
trodes and achieved the highest average classification
accuracy rate of 90.7 % with 14 electrodes. Random selec-
tion maintained an average classification accuracy rate
above 85 % for 10–50 electrodes and obtained the highest
average classification accuracy rate of 89.6 % with 32
electrodes.
Yong et al. [37] presented another statistical channel

selection method for classifying two motor imageries
based on introducing l1 norm regularization term in the
CSP algorithm which supports sparsity in the weights of
the spatial filter. This method adopts a filtering approach
with a pre-specified subset channel selection strategy
based on experience. The EEG data used for evaluating
this method was recorded from five subjects (aa, av, al,
aw, ay) using 118 channels and a 1 kHz sampling rate,
provided by Fraunhofer FIRST (Intelligent Data Analysis
Group) and University of Medicine Berlin (Neurophysics
Group) with two classes: right hand and right foot motor
imageries [38]. Each class consisted of 140 trials. The
method was able to reduce the number of channels on
average to 13 electrodes (of 118 electrodes), while the
average classification accuracy rate dropped from 77.3 to
73.5 % only. The value of the regularization parameter is
subject-specific and was selected manually. Therefore, it
needs to be chosen automatically to produce reasonable
results.
Meng et al. [39] presented an automated channel se-

lection method based on CSP in BCI systems. The CSP
algorithm is commonly used to derive spatial filters for
the multi-channel EEG signals. However, it is known
that the performance of the CSP degrades due to the
overfitting problem, when the number of channels is
large. Therefore, to reduce the number of channels, the
authors used a heuristic algorithm, namely, l1 norm, to
select the most useful channels, and then extract the
features from the selected channels using the CSP.
They initially applied the CSP to the datasets and then
scored the channels based on their l1 norm. The chan-
nels with the highest scores were selected for further
processing, while the others were excluded. Using the
CSP, features are extracted only from the selected chan-
nels and are forwarded to the classifier. This algorithm
adopted a filtering approach. It was evaluated on data-
sets provided by Fraunhofer FIRST (Intelligent Data
Analysis Group) and University of Medicine Berlin
(Neurophysics Group). A total of 118 electrodes were
placed on the scalp to record the data with a sampling
rate of 1 KHz for five subjects [38]. The algorithm was
compared with a commonly used γ2 algorithm for
channel selection [40]. It was shown that, with Meng
et al. algorithm, the classification accuracies increased
from 80.8 to 82.4, 97.5 to 98.6, 72.2 to 76.8, 93.6 to 94,
and 92.1 to 96.6 % for all the five subjects with 20
channels.
Wang et al. [41] proposed a channel reduction method

in motor imagery, in which the prominent channels in
this method were selected using the maximum of spatial
pattern vectors obtained with the CSP algorithm. Event-
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related desynchronization (ERD) and readiness potential
(RP) of the selected EEG channels were used as features.
Using these features, EEG signals were classified using a
Fisher discriminant (FD) classifier [42–44]. This method
was evaluated on a datasets provided by Fraunhofer
FIRST (Intelligent Data Analysis Group) and University
Medicine Berlin (Neurophysics Group) [38]. It was
shown that the classification accuracies with four chan-
nels were 93.45 and 91.88 % for two subjects. Increasing
the channels to eight increased the classification accur-
acies to 96.68 and 93.25 %, respectively, at the expense
of decreasing the convenience of the system user.
The effect of increasing the number of channels on

the classification accuracy of EEG-based motor imagery
has been presented by Shan et al. [45]. They adopted a
filtering approach with a sequential search strategy for
subset channel selection. They used two different data-
sets, an imagery-based cursor movement control dataset
and a motor imagery tasks dataset for comparison. In
the first dataset, 64 channels were used for recording the
data with a sampling rate of 200 Hz. Similarly, in the
second dataset, 59 channels were used for recording data
with a sampling rate of 100 Hz. A modified time-
frequency-spatial synthesized method was used for right
and left motor imagery classification. It was observed
that increasing the number of channels increases the
classification accuracy in the first dataset, while it is not
the case in the second dataset in which the optimum
accuracy is achieved at a subset of channels. Increasing
the number of channels from two to all in the first data-
set increased the training and testing classification
accuracies from 68.7 to 90.4 and 63.7 to 87.7 %, while in
the second dataset, it was observed that the classification
accuracy increased till 16 channels and then significantly
decreased from 81.3 to 68.9 % for all channels. It was
concluded that the performance of online BCI systems
increases by increasing the number of channels in con-
trast to the offline motor imagery tasks paradigm.
EEG patterns in a BCI system vary from the first session

to subsequent sessions on other days due to several sub-
jects’ preconditions. Therefore, there is a need for a robust
and stable channel selection algorithm across different
sessions. Arvaneh et al. [46] presented a robust channel
selection approach across sessions in BCI system involving
stroke patients adopting a filtering approach with pre-
specified subset channel selection based on experience.
They proposed a robust sparse common spatial pattern
(RSCSP) algorithm for optimal EEG channel selection
across different sessions, where the estimates of the
covariance matrices of EEG measurements are replaced
with the robust minimum covariance determinant (MCD)
estimates. The stability and robustness of this algorithm
were evaluated by comparison with five existing channel
selection algorithms across 12 different sessions of motor
imagery-based datasets from 11 stroke patients. A total of
27 channels were used for recording the data with a sam-
pling rate of 250 Hz. Eight channels were selected using
the RSCSP algorithm from the first session and were eval-
uated on the 11 subsequent sessions. The results showed
that the RSCSP algorithm outperformed other algorithms
like SCSP, CSP, MI, Fisher criterion (FC), and SVM by an
average accuracy of 0.88, 2.85, 2.69, 4.85, and 4.58 %,
respectively.
He et al. [47] presented a Rayleigh coefficient (RC)

maximization-based genetic algorithm (GA) for chan-
nel selection in motor-imagery BCI system adopting a
filtering approach with a random search strategy for
subset channel selection. This algorithm uses the CSP
to diagonalize the covariance matrices and maximize
the difference of variances of two classes. On the other
hand, RC maximization is performed not only for maxi-
mizing the difference of covariance of two classes but
also for minimizing the sum of these two covariance
matrices. Hence, the RC features can be more discrim-
inating than CSP. However, like CSP, the performance
of the RC maximization is deteriorated with the redun-
dant electrode channels. Therefore, the authors pro-
posed an improved GA for channel selection based on
RC maximization. Using this algorithm, Fisher ratios
for every single channel were calculated and ranked in
descending order. The first selection of the subset of
channels was made through the maximum Fisher ratios of
the channels. An improved GA based on RC
maximization was then applied on the selected channels
to get the optimum subset of channels. This algorithm
was evaluated on two datasets. In the first dataset, 118
channels were used to record the data with a sampling
rate of 100 Hz, and in the second dataset, 32 channels
were used for recording the data with a sampling date of
250 Hz. It was observed that the RC-GA achieved high
classification accuracy with lower computational cost. The
average accuracies are 88.2 and 89.38 % for the first and
second datasets, respectively. The performance of this
algorithm was also compared with other channel selection
algorithms like SVM-GA, Sequential Forward Search
(SFS), and Sequential Backward Search (SBS) algorithms.
It was shown that RC-GA provided more compact
selected channels, while acquiring higher classification ac-
curacy than the other mentioned algorithms.
Arvaneh et al. [48] proposed an SCSP algorithm for

subject-dependent channel selection in BCI systems
adopting a filtering approach with a pre-specified subset
channel selection scheme. They formulated the SCSP
algorithm as an optimization problem to select the mini-
mum number of channels within a constraint of classifi-
cation accuracy. The CSP is usually used to derive spatial
filters for the multi-channel EEG signals. However, the
weights of the CSP are very dense. The CSP algorithm is



Fig. 11 General particle swarm optimization flowchart [79]
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sparsified by adding a lp norm, 0 < p < 1, regularization
term into the optimization problem. The performance of
this algorithm was evaluated using two datasets, Dataset
IIa [49] from BCI competition IV with 22 channels (four
motor imagery tasks; left hand, right hand, feet, or tongue)
and Dataset IVa [50] from BCI competition III with 118
channels (two motor imagery tasks; right hand and foot)
recorded from 14 subjects. It was shown that the SCSP
algorithm achieved the best classification accuracy by re-
ducing the number of channels and an improvement of
10 % in classification accuracy compared to the three
channels case (C3, C4, and Cz). The average accuracy
rates for SCSP1 (maximizing the accuracy by removing
noisy and irrelevant channels) were 81.63 and 82.28 % for
Dataset IIa and Dataset IVa with average number of chan-
nels 13.22 and 22.6, respectively. The average accuracy
rates for SCSP2 (minimizing the selected channel(s)
while maintaining the accuracy comparable to all chan-
nels’ accuracy) were 79.07% with 8.55 average number
of channels and 79.28% with 7.6 average number of
channels for the first and second datasets, respectively.
It is also shown that this algorithm outperforms other
existing channel selection algorithms based on Fisher
criterion, mutual information, SVM, CSP, and RCSP, in
classification accuracy.

4.2 Wrapper techniques
Some of the adopted channel selection techniques for
motor imagery classification are categorized as wrapper
techniques. Yang et al. [51] presented a subject-specific
channel selection method based on criteria derived from
Fisher’s discriminant analysis to measure the discrimin-
ation power of time-domain parameter (TDP) features
extracted from different channels and different time seg-
ments for classification of two motor imagery tasks,
right hand and right foot. This method adopts a wrapper
approach with pre-specified subset channel selection
depending on experience. The authors utilized the data-
set IVa from BCI competition III [52], which consists of
EEG recordings from five subjects using 118 electrodes.
The subjects performed 280 trials of cue-drive motor
imagery (right hand, 140 trails; right foot, 140 trails) and
each trial lasted for 3.5 s. This method reduced the
number of channels from 118 to no more than 11 chan-
nels without a significant decrease in the accuracy rate
(78 % mean accuracy rate).
Wei and Wang [53] presented a method for channel

selection during the classification of motor imagery of
left hand, right hand, and foot based on a binary multi-
objective particle swarm optimization algorithm. This
method adopted a wrapper approach with a random
search strategy for subset channel selection. It extended
the particle swarm optimization algorithm shown in
Fig. 11 to handle two objectives: minimizing the number
of selected channels and maximizing the sum of three
mutual information metrics. The classification accuracy
rate was calculated with three different classifiers: KNN,
SVM, and back-propagation (BP) network. This method
utilized EEG recordings from five health subjects from
22 channels with 256 Hz sampling rate. The experiment
consisted of six runs separated by 5 min break, and each
run included 60 trails (120 trails for each class). The
results showed that the highest accuracy rate was around
91 % with nine channels in subject two, while the accur-
acy rate with all channels was around 92 %. Similarly,
the data set of subject 3 showed the lowest accuracy of
around 75 % with 14 channels and around 76 % with all
channels.
Zhou and Yedida [54] presented a method for the

reduction of the number of channels for the task of clas-
sifying mental states for shoulder and elbow movement
intentions for healthy and stroke patients. Their method
is based on combining the support vector channel selec-
tion with a weighted time-frequency synthesis classifica-
tion algorithm [54]. It is classified as a wrapper method
with a sequential search strategy for subset channel
selection. The authors evaluated their method using
EEG recordings from two able-bodied (healthy) and one
stroke subjects. A total of 131 channels were used, and
the sampling rate was 256 Hz. This method was able to
achieve higher than 90 % classification accuracy rate for
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the healthy subjects when the total number of channels
N was 20 <N < 131 and 50 <N < 131, for the first and
second subjects, respectively. On the other hand, the
classification accuracy rate was below 85 % for the sub-
ject with stroke.
Kamrunnahar et al. [55] presented a systematic

optimization algorithm for the optimization of the
number and locations of electrodes in BCI systems
adopting a wrapper approach with a complete search
strategy for subset channel selection. A human scalp
EEG data were recorded in response to cue-based
motor imagery tasks. A total of 19 channels were used
for recording the data with a sampling rate of 256 Hz
that was passed through a band-pass Butterworth filter
with cutoff frequencies of 0.5 and 60 Hz. To increase
the spatial resolution of the recorded data and decrease
its dependence on the reference location, the authors
used two techniques: Laplacian derivation [56–59] and
common average reference (CAR) [55]. They used a
model-based autoregressive technique to extract
the features. For selecting the optimum number of
channels, all possible combinations of channels were
calculated. Task discrimination errors were calculated
using linear discriminant analysis (LDA) [44] for each
combination. The channel combination with the lowest
discrimination error was selected as the optimal selection
for a specific subject. The average classification errors for
subject one were ~21.75 with four channels and ~28.28
with three channels for tasks one and two, respectively.
The performance of this algorithm was evaluated by com-
parison with another feature selection algorithm, namely,
forward stepwise feature selection [60, 61].
Yang et al. [62] presented an artificial neural network

and genetic algorithm approach for channel selection
and classification of EEG signals in BCI systems adopt-
ing a wrapper approach with a random search strategy
for subset channel selection. Conventional ANN-based
approaches have problems of the lack of explicit input
optimization, and their learning results are not easily
understood. Therefore, the authors proposed a generic
neural mathematic method (GNMM) for EEG channel
selection and classification problems, aiming to focus on
the issues above. The GNMM consists of three steps
[63, 64]: channel selection based on the GA, pattern
classification using multi-layer perceptron (MLP), and
rule-extraction based on mathematical programming.
The channel appearance percentage was used in the GA
to optimize the input channel selection. After channel
selection, the MLP was used for pattern classification,
and finally, regression rules were extracted so that train-
ing results can be easily implemented. This technique
was evaluated on two datasets. The first dataset contains
ECoG signals recorded using an 8 × 8 electrode grid in
touch with the brain at a sampling rate of 1000 Hz, and
the subject had to imagine movements of either the little
figure or the tongue. In the second dataset, 32 channels
were used for recording EEG signals with a sampling
rate of 256 Hz, where the participants had to execute
left-hand or right-hand button press. Using the GNMM
proposed by the authors, 10 channels were selected in
the first dataset which achieved a classification accuracy
of about 80 %. For the second dataset, six channels were
selected with which they achieved a classification accur-
acy of 86 %.
4.3 Embedded techniques
Lal et al. [40] adopted feature selection algorithms, recur-
sive feature elimination (RFE), and zero-norm optimization
based on the training of SVMs for channel selection and
demonstrated the usefulness of these operations on motor
imagery classification. Their work adopted an embedded
approach with a sequential search strategy for subset chan-
nel selection. The authors evaluated their method utilizing
39 EEG channel recordings from five subjects (A, B, C, D,
and E). A band-pass filter with cutoff frequencies 0.1 and
40 Hz was applied, and the sampling rate was 256 Hz. With
every subject, they recorded 400 trials, and each trial lasted
for 9 s tasking every subject to imagine left versus right
hand movements during each trial. They found that the
RFE and zero-norm optimization are capable of reducing
the number of channels without increasing the error. The
average error rate for 17 channels (located over or close to
the motor cortex) over the five subjects using RFE was
reported to be 23 %, while the average error rate using 12
channels was 24 %.
Schroder et al. [65] presented a robust EEG channel

selection algorithm across subjects in BCI systems
adopting an embedded approach with a sequential
search strategy for subset channel selection. They tried
to investigate whether channels selected for one sub-
ject are useful to the others as well. Data were re-
corded from eight male subjects using 17 EEG
channels with a sampling rate of 256 Hz. For each
subject, Welch’s method [66] was used to extract the
features, which were then fed to the linear SVMs for
classification. The authors used a recursive channel
elimination (RCE) method for the cross subjects chan-
nel selection. Using the RCE, the importance of the
channel is determined by its influence on the margin
of a trained SVM. After applying the RCE on the data-
sets from different subjects for cross channel selec-
tion, it was observed that it cannot only be used
successfully for channel selection in individual sub-
jects but also proved helpful in channel selection
across different subjects with low error rates. The
average error rate is 26.9 % with more than 32
channels.
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4.4 Hybrid techniques
Li et al. [67] proposed a method for selecting suitable
channels for classification of two motor imagery tasks:
right hand and right foot based on a common spatial
pattern algorithm as shown in Fig. 12. This method is
based on a wrapper approach with a complete search
strategy for subset channel selection. The l1 norms of
common spatial pattern features are used to compute
the contribution scores Di

footscore and Di
handscore for the ith

channel. The channels with larger values of Di
footscore and

Di
handscore are used to obtain channel rankings A and B,

where A is the channel ranking under right-hand motor
imagery task and B is the channel ranking under foot
imagery task. The first m ≤ 59 channels are selected
from A and removed from B to obtain channel ranking
C. After that, the first n (n ≤ 118 −m) channels of C are
selected. The channel combination is obtained by
Fig. 12 Flowchart of Li et al. algorithm [67]
combining both m and n. Finally, the optimal combin-
ation of channels is selected by comparing the classifica-
tion accuracy rates using an SVM with all combinations.
The authors evaluated their method on the datasets of
two subjects: “aa” and “a1” from the dataset IVa from
BCI competition III using 118 electrodes [52].
For the dataset “aa,” the highest classification accuracy

rate was 92.34 % using seven channels, while the classifi-
cation accuracy rate with all channels was 90.54 %,
respectively. Similarly, for the data set “a1,” the highest
classification rate was 94.63 % using eight channels,
while it was 90.82 % with all channels.

5 Channel selection for emotion classification
Human emotions are thought to be discrete in nature
with distinguishable EEG signals. The process of emo-
tion classification based on EEG signals may require
some sort of channel selection to save computation time.
In addition, there is a certain area in the brain that is
concerned with emotions, which makes channels from
other areas unrelated to emotion classification. Channel
selection approaches adopted for emotion classification
can be categorized to filtering and wrapper techniques.
Rizon et al. [68] proposed an asymmetric ratio (AR)

(asymmetric variance ratio and amplitude asymmetric
ratio) based channel selection method for human emo-
tion recognition from EEG signals as illustrated in
Figs. 13 and 14 and Table 2. The ratio of variances
between hemisphere channels was used as an indicator
for assessing the region of the brain and the channels
associated with emotion detection. The spectral power
ratios between hemisphere channels are used to pre-
cisely estimate the electrical activity. The asymmetric
variance ratio (AVR) is defined as [68]:

AVR ¼ V ið Þ−V jð Þ
V ið Þ þ V jð Þ ð5Þ

where V(i) is the variance of left hemisphere channel,
V(j) is the variance of the right hemisphere channel, i =
0, 1, 2…….N, j = 0, 1, 2…..N, and N is the number of
homogeneously distributed electrodes on left and right
hemispheres.
The amplitude asymmetric ratio (AAR) is given by

[68]:

AAR ¼ P ið Þ−P jð Þ
P ið Þ þ P jð Þ ð6Þ

where P(i) is the spectral power of left hemisphere chan-
nel, P(j) is the spectral power of right hemisphere chan-
nel, i = 0, 1, 2…….N, j = 0, 1, 2…..N, and N is the
number of electrodes on left and right hemispheres.
The method of Rizon’s et al. is a filtering approach

with a pre-specified subset of channels selected by a



Fig. 13 Channel selection with asymmetric ratio calculation
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human expert. It was evaluated using 63 channel EEG
recordings (28 pairs, seven center electrodes) from five
healthy subjects with a 256 Hz sampling rate and a
band-pass filter between 0.05 and 70 Hz with five
different classes of emotions (disgust, happy, surprise,
sad, and fear). In this method, features are extracted
from the wavelet domain using Daubechies 4 (db4)
wavelet transform. The results show that this method
reduced the 28 pairs of channels to 2. For validating
the method, the authors employed a fuzzy C-Means
clustering algorithm to classify the emotions [68]. Its
results support their findings.
Jatupaiboon et al. [69] proposed a method to classify

two emotions based on EEG signals, which are positive
and negative emotions elicited by pictures. They ex-
tracted the power spectrum from five bands and used
SVM as a classifier in a wrapper channel selection
evaluation approach. In their experiment, they used a
manual approach for reducing the number of channels.
They utilized EEG recordings from 11 participants,
whom have been shown 100 pictures (50 positives and
50 negatives) from Geneva Affective Picture Database
(GAPED) [70]. The authors used EMOTIVE headset
with 14 channels [71] for recording with 4-s epochs
and 50 % overlapping. They achieved an 85.41 % accur-
acy rate with seven pairs (14 channels: full) and 84.18
% accuracy rate with five pairs, respectively. The au-
thors found also that frontal pairs of channels and
high-frequency bands give higher accuracy than other
pairs of channels and lower frequency bands.

6 Channel selection for mental task classification
Mental task classification is a new and challenging
trend in EEG signal processing. The main objective of
Fig. 14 Feature extraction in Rizon’s method
this classification process is enabling a patient to com-
municate with the outside world without physical
movement. This classification process may require
channel selection as a pre-processing step to reduce the
computation time.
6.1 Filtering techniques
Lan et al. [72] presented an ambulatory cognitive state
classification system to assess the user’s mental load
based on EEG measurements. Their work focused par-
ticularly on dimensionality reduction (channel selection
and feature projection) utilizing mutual information
techniques as shown in Fig. 15. This work is based on a
filtering approach with a sequential search strategy for
subset channel selection. In order to select an effective
subset of the available channels after pre-processing by
artifact removal and band-pass filtering, the authors
used a forward incremental method. Three classifiers,
Gaussian mixtures model (GMM), K-nearest neighbor
(KNN), and Parzen, were used to classify the feature
vector based on majority voting in a fusion filtering
process. The authors used 32 channels of EEG record-
ings from three subjects performing two mental tasks
(n-back, Larson) at two difficulty levels (low, high) with
256 Hz sampling rate to evaluate the method. The n-
back task is a continuous performance task used to
measure a part of working memory. The Larson task
requires the subjects to maintain a mental count
according to the presented configuration of images on
the monitor. For performance evaluation, the data was
divided into five sets and each set was saved for testing
and the other four were used for training. The average
classification accuracy was around 80 % for all subjects



Table 2 Rizon’s channel selection algorithm for emotion
classification [68]

1. The raw EEG signals from five subjects over five discrete emotions are
collected using 63 electrodes which are placed through standard
International 10/20 system on the scalp.

2. The signals are pre-processed by mean removal and variance
normalization.

3. The signals are filtered using 5th order band-pass filter at a cutoff
frequency of 0.05 Hz – 45 Hz.

4. The signals are divided into five different EEG frequency bands using
5th order Butterworth filter.

5. Alpha band is used for channel selection.

6. From the 63-channel EEG signals, only 28 homogeneous channel-
pairs are separated out for calculating the asymmetric ratio for
channel selection.

7. For each subject, the values of AVR and AAR are calculated for all the
28 homogeneous pairs of electrodes using the equations (6) and (7).

8. If all values of AR are positive or negative for five emotions this leads
to a rank of 5, for four emotions this leads to a rank of 4, etc.

9. The channel pairs of higher ranks of AAR and APR are sorted as the
dominant channels for emotion recognition.
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when the number of channels was 7, 10, or 7 channels
selected based on literature suggestions.
Fig. 15 Flow diagram of Lan et al. method [72]
6.2 Wrapper techniques
Chai et al. [73] presented a method for EEG mental
task classification using a genetic algorithm-based
neural network classifier. The method of Chai et al. is a
wrapper-based method with a pre-specified subset of
channels. They used six non-imagery tasks which are
arithmetic (math) by imagining and solving simple
multiplication, letter composing by mentally composing
simple words, Rubik’s cube rolling by imaging a Rubik’s
cube rolled forward, visual counting by mentally count-
ing numbers from one to nine, ringtone by imagining a
familiar mobile ringtone, and spatial navigation by
moving around and scanning the surroundings in a
familiar location in mind. Two methods of feature ex-
traction were used and compared: power spectral dens-
ity (PSD) and Hilbert Huang transform (HHT). For
recording, they used a monopolar EEG system from
Compumedic company with 256 Hz sampling rate. Five
participants were involved in this experiment with 10
sessions recording for each mental task. The accuracy
rate for classifying three mental tasks using the original
eight channels is between 76 and 85 % using PSD fea-
ture extractor. In case of two channels with PSD fea-
ture extractor, the accuracy rate was between 65 and
79 %, and with HHT feature extractor, the accuracy rate
was between 70 and 84 %.
Tavakolian et al. [74] presented a channel reduction

method for classifying three mental tasks (baseline,
multiplication, and geometric figure rotation) based on
genetic algorithms for subset generation as shown in
Fig. 16. This method is based on the wrapper approach
with random search strategy for subset channel selec-
tion. They used a feed-forward neural network as a
classifier, and its outputs were averaged and considered
as the performance function of the genetic algorithm.
The genetic algorithm was used to find the best six
channel combinations of 19 channels. The method was
evaluated using 19 channel EEG recordings from five
subjects with a 250 Hz sampling rate. In each session,
every task was repeated two times and each time lasted
for 10 s. The results showed that the classification
accuracy rates were 100, 99.6, 96.66, and 88 % for sub-
jects 1, 3, 5, 2, and 4, respectively.

7 Channel selection for sleep state classification
Sleep state classification is very important for infants as
well as adults. This classification process can be
performed with EEG signals. This field has been the
subject of interest of several neuroscience researchers.
It requires also some sort of channel selection to obtain



Fig. 16 Tavakolian et al. method [74]
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robust classification results because at least one EEG
channel combined with one electromyography (EMG)
and one electrooculography (EOG) are required for
manual scoring. Piryatinska et al. [75] presented a
channel selection method for neonate EEG sleep state
classification using a multivariate analysis approach
adopting filtering with a complete search strategy for
subset channel selection. It has two main stages: scor-
ing of sleep stages based on each combination of EEG
channels and selection of the optimal channel combin-
ation. The latter consists of three steps: producing two
rankings, one for the full term and one for the preterm
neonates, of the channel combinations; selecting the
channels that appear most often in the top channel
combinations; and validating these selections with a
cross validation methodology. They used EEG sleep sig-
nals from 36 neonates (20 full term and 16 preterm) re-
corded from 14 channels at a sampling rate 64 Hz. This
method achieved 87.20 % a mean agreement percentage
(MAP) with five channels (compared to physician’s
scores) and 87.41 % MPA with four channels for full
term and preterm, respectively.
8 Channel selection for drug effect classification
Ong et al. [76] presented a channel selection algorithm
for visual evoked potentials (VEP) based on principle
component analysis (PCA). The VEP is a small elec-
trical potential originating from the brain in response
to a visual stimulus. This algorithm was used to classify
alcoholic and non-alcoholic subjects. PCA transforms
the dataset into a new set of variables called principle
components to be ranked from the highest to the low-
est bases. The first few principle components usually
contain most of the variation present in the original
dataset. The performance of this algorithm was evalu-
ated on a VEP dataset recorded from 20 subjects: 10
are alcoholic and 10 are non-alcoholic. A total of 61
channels (variables) were used with a signal being sam-
pled at 256 Hz. The authors selected 16 optimal chan-
nels, since they contributed 98.563 % of the total
variance. Gamma band powers of the selected channels
were used as features for classification. An MLP neural
network was used as a classifier to classify the alcoholic
and non-alcoholic subjects. The gamma band power
was used as an input feature to the neural network. It
was concluded that the classification performance using
all the channels was 95.83 % and using 16 channels was
94.06 %, which are very close.
9 Conclusion and future research directions
This paper explored some EEG channel selection tech-
niques for different applications taking into consideration
the different criteria developed in the literature for chan-
nel selection evaluation and search strategy. The paper
introduced the basic notations and procedures of the
channel selection process. It presents a description of
channel selection approaches for a variety of applications.
The comprehensive study in this paper has revealed that
it is possible, without much loss in the performance of
the classification/detection tasks, to make use of a small
set of EEG channels ranging from 10 to 30 % of the avail-
able channels. This will in turn reduce the processing
complexity with less setup time and maintain the subject’s
convenience by having less electrodes. In some applica-
tions, such as sleep state classification, there are dominant
channels responsible for the activity of concern and need
to be determined. In some other applications, such as
seizure detection and prediction, the use of all channels
may lead to an overfitting effect during the classification
process. Table 3 summarizes the channel selection tech-
niques surveyed in Sections 3–8 as contrasted to each
application. These techniques have been tested using dif-
ferent databases. Therefore, an extensive study is needed
to determine the channel selection technique that gives
the highest performance score, when all techniques
belonging to a specific application are applied to a unified
database. Another important issue is to investigate chan-
nel selection techniques for emerging applications based
on visual and auditory-evoked potential [77]. Finally, it is
observed that channel selection algorithms are in general
based on features extracted from the EEG signals. Finding
features well representing all EEG signal states is still a
challenging task that needs further research. It is observed
from this study that channel selection has been investi-
gated intensively in motor imagery classification with a
variety of techniques. So, extending these techniques to
other applications will be useful. For wrapper, hybrid, and
embedded channel selection techniques, the performance



Table 3 Summary of channel selection methods

Technique Subset channel Evaluation
method

Performance metrics Application

Selection strategy

Duun-Henriksen et al. [12]
Statistical criteria Filtering Sensitivity, 96 %; false detection rate, 0.14/h (with three channels) Seizure

detection

Faul [13] Statistical criteria Average accuracy, 96 % on neonatal database; average accuracy,
94 % on adult database; computational effort saving, 65 %

Faul and Marnane [15] Statistical criteria Average accuracy rate, 95.74 % (location spread), 91 % (single idle),
and 91.48 % (twin idle), (with 2 channels)

Atoufi et al. [16] Sequential search Average accuracy rate, 60 % (for EEG dataset with three channels)

Shih et al. [17] Sequential search Wrapper Average accuracy rate, 97 %; average detection latency, 11.2 s
(with 4.6 average number of channels)

Glassman and Guttag [19]
Sequential search Average false negative, 0.011; average false positive, 0.48; and

average latency time, 9.54 s (with 7.1 average number of channels)

Chang et al. [22] Pre-specified Average accuracy rate,70 % (for EEG dataset with three channels);
average energy saving, 93.73 %

Greene et al. [25] Pre-specified Average accuracy rate, 90.77 % (with single channel, C3-C4)

Temko et al. [26] Channel
weighting

Average precision-recall, 84.42 (with 8 channels)

Zimbric et al. [29] Pre-specified
Human-based

Average sensitivity, 86.5 %; average specificity, 98 % (with 3 channels)

Tekgul et al. [30] Pre-specified Sensitivity, 96.8 %; specificity, 100 % (with 9 channels)

He et al. [31] Sequential search Filtering Average accuracy rate, ~95 % (with ~33 average number of channels) Motor
imagery
ClassificationTam et al. [34] Sequential search Highest average accuracy rate, 91.7 % (with 22 channels)

Yong at al. [37] Pre-specified Average accuracy rate, 73.5 % (with 13 average number of channels)

Meng et al. [39] Heuristic
algorithm

Average accuracy rate, 89.68 % (with 20 channels)

Wang et al. [41] Maximum of
spatial pattern
vectors

Average accuracy rate, 92.66 % (with 4 channels) and 94.96 %
(with 8 channels)

Shan et al. [45] Sequential search Accuracy rate, 63.7 (for first dataset with 2 channels) and 81.3 %
(for second dataset with 16 channels)

Arvaneh et al. [46] Pre-specified Average accuracy rate, 70.47 % (with eight channels)

He et al. [47] Genetic
algorithm

Average accuracy rate, 88.2 % (for first dataset) and 89.38%
(for second dataset)

Arvaneh et al. [48] Pre-specified Average accuracy rates (SCSP1), 81.63 % (for Dataset IIa with 13.22
average channels) and 82.28 % (Dataset IVa with 22.6 average number
of channels)

Average accuracy rates (SCSP2), 79.07 % (for Dataset IIa with 8.55
average channels) and 79.28 % (for Dataset IVa with 7.6 average
channels)

Yang et al. [51] Pre-specified Wrapper Average accuracy rate, 78 % (with 11 channels)

Wei and Wang [53] Random search Accuracy rate, 83 % (for S1 with 8 channels), 91 % (for S2 with 9
channels), 75 % (for S3 with 14 channels), 86 % (for S4 with 8
channels), and 87 % (for S5 with 7 channels)

Zhou and Yedida [54]
Sequential search

Average accuracy rate for healthy subjects >90 % (with 90 channels),
accuracy rate for stroke subject <85 % (with 110 channels)

Kamrunnahar et al. [55] Complete search Average classification errors, ~21.75 and 28.28 % (for subject 1 with 4
and 3 channels for tasks 1 and 2)

Yang et al. [62] Genetic
algorithm

Average accuracy rate, 80 % (for 10 channels with the first dataset)
and 86 % (for 6 channels with the second dataset)

Lal et al. [40] Sequential search Embedded Average error rate, 23 % (for 17 channels) and 24 % (12 channels)

Schroder et al. [65] Sequential search Average error rate, 26.9 % (with ≥32 channels)

Li et al. [67] Complete search Hybrid
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Table 3 Summary of channel selection methods (Continued)

Average accuracy rate, 92.34 % (7 channels with dataset “aa”)
and 94.63 % (8 channels with dataset “a1”)

Rizon et al. [68] Pre-specified Filtering Minimum values of FPI = 0.150051, PME = 0.154724,
and SD = 0.328312 (with 4 channels)

Emotion
classification

Jatupaiboon et al. [69] Pre-specified Wrapper Accuracy rate, 84.18 % (with 5 pairs) and 85.41 % (with 7 pairs)

Lan et al. [72] Sequential search Filtering Average accuracy rate, ~80 % (with 7, 10 channels) Mental task
classification

Chai et al. [73] Pre-specified Wrapper Accuracy rate, 65–79 % (2 channels with PSD) and 70–84 % (2
channels with HHT)

Tavakolian et al. [74] Genetic
algorithms

Average accuracy, 96.85 (best 6 channels’ combinations)

Piryatinska et al. [75] Complete search Filtering Mean agreement percentage, 87.41 % (with 4 channels) and 87.2 %
(with 5 channels)

Sleep state
classification

Ong et al. [76] Principal
component
analysis

Filtering Average accuracy, 94.06 % (16 channels), 86.01 % (8 channels), and
75.13 % (4 channels)

Drug effect
classification
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sensitivity should be studied with different types of classi-
fiers. With channel selection, we may still work on a
multi-channel basis, so the development of a framework
containing channel selection and decision fusion is an
open area for further investigation.
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