
Jabbarian-Jahromi and Kahaei EURASIP Journal on Advances in Signal Processing
 (2015) 2015:69 
DOI 10.1186/s13634-015-0254-6
RESEARCH Open Access
Two-dimensional SLIM with application to
pulse Doppler MIMO radars

Mohammad Jabbarian-Jahromi* and Mohammad Hossein Kahaei
Abstract

A two-dimensional (2D) sparse signal model is developed for pulse Doppler MIMO radars. Using this model, we
develop the 2D sparse learning via iterative minimization (2D SLIM) algorithm. Simulation results show that the 2D
SLIM compared to the 1D SLIM drastically reduces the computational burden while both of them have the same
performance. Also, for estimation of range-angle-Doppler parameters, the 2D SLIM outperforms the matched filter
(MF), smoothed L0-norm (SL0), iterative adaptive approach (IAA), and spectral projected gradient for l1-norm
minimization (SPGL1) algorithms.

Keywords: Pulse Doppler MIMO radar; Sparse learning via iterative minimization; Two-dimensional sparse signal
model
1 Introduction
Multiple-input multiple-output (MIMO) radars by exploit-
ing multiple transmitters and receivers have recently been
introduced [1–3]. It is well known that in this structure
due to making use of orthogonal (or highly uncorrelated)
transmit signals, the received signals can easily be sepa-
rated. MIMO radars are often divided into two categories
based on antenna placement. In the first one, the transmit
and receive antennas are widely separated, and thus, the
targets are observed from different directions dealing with
target fluctuation fading [4–7]. In the second category,
however, antennas are collocated so that the different
phases from received signals can be extracted by the re-
ceivers. In this case, due to the waveforms diversity, a
higher spatial resolution is achieved compared to the trad-
itional radars. Also, in MIMO radars, target detection
and parameter estimation are improved by suitably de-
signing transmit beam-pattern [8–13]. Here, we consider
the second structure.
From a sparsity perspective, in most radar applica-

tions, the number of targets located in the radar surveil-
lance area is much smaller than the whole number of
range-angle-Doppler bins. Thus, a sparse model can be
derived for the received signal, and accordingly sparse
signal recovery algorithms can be used for estimating
* Correspondence: jabbarian@iust.ac.ir
Signal & System Modeling Lab., School of Electrical Engineering, Iran
University of Science and Technology, Tehran 16846-13114, Iran

© 2015 Jabbarian-Jahromi and Kahaei. This is a
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
the target parameters including range, Doppler fre-
quency, and angle [14–18]. The aim of using sparse so-
lution in a radar system is to more accurately estimate
the target parameters compared to the traditional
methods such as matched filters (MF).
Compressed sensing (CS), which is rooted on the princi-

ples of sparsity theory, has recently received considerable
attention in MIMO radars [19–21]. Although, the main
goal of the CS problem is to reduce the sampling rate
lower than the Nyquist criterion, here we mainly focused
on achieving accurate estimates for target parameters with
much lower computations. For this purpose, an efficient
technique is the sparse learning via iterative minimization
(SLIM) algorithm which is computationally simple com-
pared to the iterative adaptive approach (IAA) and focal
underdetermined system solver (FOCUSS) algorithms due
to the use of the conjugate gradient least squares (CGLS)
algorithm [22]. This algorithm, which is a 1D algorithm
(or namely 1D SLIM), is a maximum a posteriori (MAP)
estimator which maximizes a posteriori Bayesian model.
An important characteristic of 1D SLIM is incorporation
of lq-norm optimization (0 < q ≤ 1) in comparison with the
l1-norm in order to reach sparser solutions and more ac-
curate estimates. In [22], the 1D SLIM has been developed
for MIMO radars by using only one pulse. Based on [22],
this algorithm estimates a sparser vector compared to the
l1-norm algorithm. On the other hand, the smoothed L0
(SL0) algorithm has been presented for two-dimensional
n Open Access article distributed under the terms of the Creative Commons
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Table 1 List of notations

‖. ‖2 l2-norm

‖. ‖F Frobenius norm of matrix

⊙ Hadamard (element-wise) matrix product

⊗ Kronecker product

(⋅)T Transpose of a vector or matrix

(⋅)H Conjugate transpose of a vector or matrix

(⋅)* Conjugate of a vector or matrix

⊘ Element-wise matrix division

⋅ð Þci ith column of a matrix

⋅ð Þri ith row of a matrix

vec(⋅) Stacking the columns of a matrix on top of each other
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(2D) sparse problems [23]. In this algorithm, a discontinu-
ous l0-norm function is approximated by a continuous
one and then a sparse solution is reached using the stee-
pest ascent algorithm followed by a projection onto a feas-
ible set [24–27]. In [28], this algorithm has been applied to
pulse Doppler radars with a lot of advantages such as tar-
get velocity extraction and pulse integration. However, this
algorithm has been presented by using an approximated
l0-norm function for which we will later show that it
achieves a lower performance in sparse signal recovery at
low signal-to-noise ratios (SNRs) or for a small number of
pulses compared to the SLIM algorithm. Also, the 2D IAA
which is a nonparametric algorithm is presented in [29]
for a general sparse solution. However, as it will be shown
in the simulation section, its performance is poor at low
SNRs and also for a small number of pulses.
In [30], a low-complexity CS approach is developed by

decoupling the range, Doppler frequency, and angle pa-
rameters. It is assumed that the estimates of azimuth an-
gles are obtained from one pulse by discretizing the
angle space. Then, the Doppler estimates are extracted
by combining the data of multiple pulses and using the
initial estimated angles. Based on angle-Doppler esti-
mates, the range is then estimated using frequency-
varying received pulses. However, two problems are still
of concern. First, the number of targets within the radar
surveillance area is, in practice, so large that the angle
space will not be sparse enough to apply the CS theory.
In addition, a huge number of antennas are needed in a
MIMO radar to discriminate among a large number of
targets in the angle space with an acceptable resolution.
Secondly, the SNR of one pulse is not sufficient for esti-
mation of targets’ angles.
In this paper, we develop a 2D sparse model for pulse

Doppler MIMO radar signals and find its relation with the
Kronecker product factorization in the 1D model. To
solve the 2D sparse signal equation, it can be converted to
a 1D model and be recovered using 1D sparse recovery al-
gorithms. However, this leads to a very large number of
computations for which we will introduce here a new sim-
pler technique. Therefore, a 2D SLIM algorithm is pro-
posed for direct solution of a 2D sparse signal equation. In
this approach, the Kronecker factorization is used to sep-
arate a large-dimension matrix into two smaller matrices.
This procedure leads to reducing the number of products
and therefore decreasing the computation cost and re-
quired memories.
Moreover, we develop the 2D version of the well-known

1D matched filter (1D MF) for comparison with the pro-
posed 2D SLIM. Moreover, we compare the 2D SLIM al-
gorithm with spectral projected gradient for l1-norm
minimization (SPGL1) algorithm which is appropriate for
large-scale sparse recovery problems and complex-valued
data [31].
The paper is organized as follows. In Section 2, in a
common scenario for aircraft surveillance MIMO radar
in which the intra-pulse Doppler shift is negligible, a
2D-sparse model is developed. To solve this 2D sparse
signal equation, in Section 3, the 2D SLIM and 2D MF
algorithms are derived. The computational complexities
of 1D and 2D SLIM algorithms are discussed in Sec-
tion 4. Using simulation results in Section 5, computa-
tional complexities and the performances of different
algorithms are compared, and Section 6 concludes the
paper. The list of notations used in this work is shown
in Table 1.
2 Signal model for pulse Doppler MIMO radars
Figure 1a shows a typical radio frequency (RF) transmit
pulse train of a pulse Doppler radar in which τ is the pulse
width. For the received signals, two different scenarios
may be considered for extraction of the Doppler shift/fre-
quency, fd [32, 33]. In a general scenario shown in Fig. 1b,
τ and fd are large enough to have fdτ > 1, for which at least
one period of fd lies within the receive pulse width. How-
ever, in the second scenario shown in Fig. 1c, we have fdτ
< 1 (usually fdτ < < 1), in which case several pulses are re-
quired to extract fd. This scenario; which we have consid-
ered in this work, is commonly encountered in aircraft
surveillance radars [32]. In this scenario, the effect of the
Doppler frequency on each pulse is negligible and may be
viewed as the sampling of the Doppler signal by the radar
pulse repetition frequency (PRF), fr.
The data model and problem formulation for Fig. 1c

are presented as follows. As shown in Fig. 2, the trans-
mit signal is a train of NP probing pulses each of which
containing Ns sub-pulses with the bandwidth B. We as-
sume that the targets are located behind the maximum
unambiguous ranges with no ambiguity in the Doppler

frequency interval of interest −f r
2 ; f r2

h �
. This interval is di-

vided into ND Doppler bins as



(a)

(b)

(c)
Fig. 1 a A typical RF transmit pulse train of a pulse Doppler radar; b and c received signals in baseband for fdτ > 1 (general scenario) and fdτ < 1
(common scenario for aircraft-surveillance radar), respectively [32]
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f d ¼ −
f r
2
þ f r d−1ð Þ

ND
; d ¼ 1; 2;⋯;ND: ð1Þ

Now, we calculate the amount of phase shift over one
sub-pulse caused by the Doppler phenomenon. Thus,
for the dth Doppler bin, the Doppler phase shift over
one sub-pulse can defined as

ωd ¼ 2πf d
B

; d ¼ 1; 2;⋯;ND: ð2Þ

By considering the waveform for sub-pulses si ∈ ℂ1�Ns ;
i = 1,…,Mt as the code sequence of the ith transmit
antenna, transmit signals are defined by an Mt ×Ns

matrix as

S ¼ sT1 sT2 ⋯ sTMt

h iT
: ð3Þ

Also, the range dimension of surveillance area is di-
vided into NR bins. Accordingly, the largest possible
delay between the transmit and receive pulses is NR − 1.
Fig. 2 Schematic demonstration of pulse train and sub-pulses
Then, the transmitted pulse waveforms can be arranged
into the matrix ~S ; so that

~S ¼ S 0Mt� NR−1ð Þ
� � ð4Þ

where 0Mt� NR−1ð Þ is an Mt × (NR − 1) matrix of zeros, and

we have ~S ∈ ℂMt� NsþNR−1ð Þ . Also, we assume that the an-
gular interval of interest θa is divided into NA angular
bins (a = 1,⋯,NA ). Then, in a uniform linear array, the
steering vectors of Mt transmit and Mr receive antennas
are respectively denoted by

aa ¼
1 e

−
j2πΔt sin θað Þ

λ0 ⋯ e
−
j2π Mt−1ð ÞΔt sin θað Þ

λ0

" #T
ð5Þ

and
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ba ¼
1 e

−
j2πΔr sin θað Þ

λ0 ⋯ e
−
j2π Mr−1ð ÞΔr sin θað Þ

λ0

" #T
ð6Þ

where λ0 is the radar carrier wavelength and Δt and Δr

show the distances between two adjacent transmit and
receive antennas, respectively. Therefore, the pth re-

ceived pulse matrix Y p∈ℂMr� NsþNR−1ð Þ can be written as

Y p ¼
XNR

r¼1

XNA

a¼1

XND

d¼1

αr;a;de
jTR p−1ð Þωdbaa

T
a
~SJ r þ Ep ð7Þ

where Εp is the additive white Gaussian noise matrix for
the pth pulse (p = 1, 2,⋯,NP), TR is the ratio of pulse
repetition interval (PRI) over the single sub-pulse dur-
ation, and

J r ¼
0 ::::::0
zfflfflffl}|fflfflffl{r−1

1 … 0
⋱

1
0 0

2
66664

3
77775 ð8Þ

is an (Ns +NR − 1) × (Ns +NR − 1) shift matrix for the rth
range bin. Also, αr,a,d for r = 1,⋯,NR, a = 1,⋯,NA, and
d = 1,⋯,ND denote the return complex reflection coeffi-
cients of targets corresponding to the radar cross-section.
In this scenario, since the number of range-angle-Doppler
bins, in which actual targets are detected, is much
smaller than the total number of radar bins, most of
reflection coefficients are zero, and thus, the radar sig-
nal model can be assumed sparse. We assume that
complex reflection coefficients during pulse repetitions
are constant.
We will show that (7) can be converted to a 2D sparse

from in which the unknown parameters αr,a,d are pre-
sented in matrix form. By defining and using

vr;a ¼ vec baa
T
a
~SJ r

� �
; ð9Þ

A ¼ v1;1 v1;2 ⋯ vNR;NA

� �
; ð10Þ

and

xd ¼ α1;1;d α1;2;d ⋯ αNR;NA;d½ �T ; d ¼ 1;⋯;ND;

ð11Þ
in (7), we obtain

yp ¼ vec Y p
� � ¼XND

d¼1

ejTR p−1ð ÞωdAxd þ ep ð12Þ

where ep = vec(Ep) is a complex Gaussian noise vector
with zero mean and covariance matrix I. Equivalently, in
a more compact form, we get
yp ¼ AXθp þ ep ð13Þ

where X ¼ x1 ⋯ xND½ � contains the complex reflec-
tion coefficients corresponding to the radar cross-

section, and θp ¼ ejTR p−1ð Þω1 ⋯ ejTR p−1ð ÞωND

� �T
:

Next, by defining yp, p = 1, 2,⋯,NP as the columns of
matrix Y, we have

Y ¼ y1 ⋯ yNP

� � ¼ AXΘþ Ε ð14Þ
where E ¼ e1 ⋯ eNP½ � and Θ ¼ θ1 ⋯ θNP½ �.
Equation (14) presents a 2D sparse signal model for

pulse Doppler MIMO radars where Y ∈ ℂMr NsþNR−1ð Þ�NP ;

A ∈ ℂMr NsþNR−1ð Þ½ �� NRNA½ �; Θ∈ ℂND�NP ; and X ∈ ℂNRNA�ND .
Due to the underdetermined nature of (14) for a sparse
model (i.e., Mr(Ns +NR − 1) <NRNA and NP <ND), it has
no unique solution. Our goal is to find the sparsest
matrix for X in which we have as many zero elements as
possible.
The 2D sparse signal model given by (14) can be con-

verted to a 1D model by using the following property [34]:

vec AXΘð Þ ¼ ðΘT⊗AÞvec Xð Þ:
ð15Þ

Therefore, we have

y ¼ Φxþ e; ð16Þ
where x = vec(X), y = vec(Y), e = vec(E), and Φ =ΘT⊗A.
Although x can be computed using 1D sparse recovery
algorithms such as IAA [35] and SLIM [22], due to the

large dimension of Φ ∈ ℂ NPMr NsþNR−1ð Þ½ �� NRNAND½ �; 1D so-
lutions are computationally extremely expensive. Ac-
cordingly, due to the smaller number of products
appeared in (14) compared to (16), developing the 2D al-
gorithm for direct solution of (14) leads to an extreme
reduction of computational load compared to 1D one.

3 2D sparse signal recovery
In this section, at first, we give an overview of 1D SLIM
algorithm. Then, a 2D SLIM algorithm is proposed for
pulse Doppler MIMO radars by direct solution of (14),
which leads to a lower computational cost compared to
the 1D algorithms. In addition, for comparison purposes,
the 2D SLIM is compared with the 2D SL0 [23] and 2D
IAA [29] algorithms recently introduced for 2D sparse
recovery problems. Moreover, we develop the 2D MF for
comparison purposes.

3.1 Overview on 1D SLIM algorithm
In the 1D SLIM algorithm which is based on a MAP ap-
proach, the unknown complex reflection coefficients are
considered as random variables with the following prior
distribution



Table 2 2D CGLS Algorithm

Initialization:

U0 = 0, G0 = 0, T0 = − η1/2Y, R0 = − Y, P0 = Y

1 Wl = Σ⊙ (AHPlΘ
H)

2 Vl = η1/2Pl

3 αl ¼ Rlk k2F= W lk k2Fþ V lk k2F
� �

4 Ul + 1 = Ul + αlPl

5 Gl + 1 = Gl + αlWl

6 Tl + 1 = Tl + αlVl

7 Rl + 1 = A(Σ⊙ Gl + 1)Θ + η1/2Tl + 1

8 βl ¼ Rlþ1k k2F= Rlk k2F
9 Pl + 1 = − Rl + 1 + βlPl

Go to Step 1 until 1K A Γ⊙ AHUΘH
� �� �

Θþ ηU−Y
		 		

F
< ε

Final result U = Ul + 1
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f xð Þ ¼
YN
n¼1

e−
2
q xnj jq−1ð Þ ð17Þ

where q is a free parameter between 0 < q ≤ 1, xn is the nth
component of vector x, and N =NRNAND. The above prior
can lead to a more accurate estimation of the sparse vec-
tor x. When q→ 0, this prior will have a sharper peak at 0
and thus causes sparser estimates in the Bayesian infer-
ence. For q = 1, this prior will be similar to the Laplace
prior f xð Þ ∝ e− xk k1 with finite peaks at 0. By assuming an
independent and complex Gaussian distribution with zero
mean and variance ηI for additive noise e, the conditional
distribution for measurement data vector y can be defined
as f yjx; ηð Þ ¼ CN Ax; ηIð Þ . By assuming a uniform prior
for η as f(η) ∝ 1, the cost function for the SLIM based on
the MAP approach is defined as

max
x;η

f yjx; ηð Þf xð Þf ηð Þ ¼ max
x;η

1

πηð ÞK e−
1
η y−Axk k22

YN
n¼1

e−
2
q xnj jq−1ð Þ

 !

ð18Þ
where K =MrNP(Ns +NR − 1). By taking the negative of
logarithm of (18), the cost function will be equivalent to

J x; ηð Þ ¼ K logηþ 1
η

y−Axk k22þ
XN
n¼1

2
q

xnj jq−1ð Þ ð19Þ

By minimizing (19) with respect to x and η and using
a heuristic approach, an iterative solution is obtained for
the 1D SLIM in two steps [22]:

1. Iterative estimation of sparse vector x,

x tþ1ð Þ ¼ Π tð ÞΦH ΦΠ tð ÞΦH þ η tð ÞI
� �−1

y ð20Þ

where the superscript t shows the iteration number,
Π = diag{ϑ}, and ϑn = |xn|

2 − q, n = 1,⋯, NRNAND, ϑn is
the nth component of vector ϑ.

2. Iterative estimation of noise power η,

η tþ1ð Þ ¼ 1
K

y−Φx tþ1ð Þ		 		2
2
: ð21Þ

3.2 2D SLIM
Our aim in this subsection is to develop the 2D version
of (20) and (21) using Φ =ΘT⊗A and (14) and follow-
ing Hadamard matrix property:

diag vec Að Þf gvec Bð Þ ¼ vec A⊙Bð Þ: ð22Þ
Since matrix inversion in (20) has an extreme computa-

tional load, we propose to use the conjugate gradient least
square (CGLS) algorithm [36] to solve (14) with
lower computations. To do so, by defining the vector
u = (ΦΠΦH + ηI)− 1y, the 2D CGLS is derived in the
Appendix as summarized in Table 2. Note that the
superscript t has been suppressed for simplicity and the
components of matrix Σ are Σij = Γij

1/2 where

Γij ¼ Xij



 

2−q i ¼ 1;⋯;NRNA; j ¼ 1;⋯;ND: ð23Þ

To derive the 2D SLIM, the relationship between Π
and Γ can be presented as

Π ¼ diag vec Γð Þf g ð24Þ
where the elements of Γ are given by (23). By substitut-
ing (24) and Φ =ΘT⊗A in (20), we obtain

x ¼ diag vec Γð Þf gðΘT ⊗AÞHu:

ð25Þ
Then, by using the Kronecker product property [37]

Θ⊗Að ÞH ¼ ΘH⊗AH ð26Þ
and using (15) and (22), (25) is shown as

x ¼ vec Γ⊙ AHUΘH
� �� � ð27Þ

where U ∈ℂMr NsþNR−1ð Þ�NP is obtained by the 2D CGLS
algorithm as presented in Table 2 and u = vec(U). Note
that X = Γ⊙ (AHUΘH), and thus for the (t + 1)th iter-
ation of step 1 of the 2D SLIM, we have

X tþ1ð Þ ¼ Γ tð Þ⊙ AHU tð ÞΘH
� �

: ð28Þ

Also, from (14) and (16), we can easily express step 2
of the 2D SLIM as
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Fig. 3 BIC values versus q for NP = 5
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η tþ1ð Þ ¼ 1
K

Y−AX tþ1ð ÞΘ
		 		2

F ð29Þ

For initialization of the 2D SLIM, i.e., X(0), we
make use of minimum l2-norm solution using the
economy-size QR decomposition [28] by incorpor-
ation of a hard threshold operator in order to spar-
sify X(0). The required criterion for stopping the 2D
SLIM recursion is developed based on the 1D ver-
sion [22] as
(a)

(c)

(e)

-20 0 20

-500

0

500

Angle (deg)

D
o

p
p

le
r 

(H
z)

MF Algorithm

-30

-20

-10

0

10

-20 0 20

-500

0

500

Angle (deg)

D
o

p
p

le
r 

(H
z)

SPGL1 Algorithm

-30

-20

-10

0

10

-20

-500

0

500

Ang

D
o

p
p

le
r 

(H
z)

SLIM A

Fig. 4 MIMO radar Doppler-angle estimates for targets that fall on grid poi
(circles show the targets’ true locations and color-coded rectangles correspo
X tð Þ−X tþ1ð Þ		 		
F

X tð Þ		 		
F

< Δ ð30Þ

where Δ is a small positive constant.
The parameter q plays an important role in sparse sig-

nals recovery using the SLIM. For q→ 0, it achieves a
sparser solution compared to the case when q→ 1; how-
ever, it is hard to determine the sparsity level. To cope
with this problem, q can be estimated appropriately by
the Bayesian information criterion (BIC) [22] given by

BICq ¼ 2MrNP NS þ Nr−1ð Þ log Y−AX^Θ
		 		2

F

þ5h qð Þ ln 2MrNP NS þ Nr−1ð Þð Þ ð31Þ

where h(q) is the number of selected peaks in the output
of the SLIM algorithm that is executed for a particular
value of q. To explain how we choose the number of se-
lected peaks (h(q)), at first, the absolute value of the SLIM
algorithm output defined as |X| is sorted in a descending
order. Then, the largest peak is selected and the other
values of matrix X are set to zero to form the matrix X^.
Using (28), the BIC is computed for X^ and h(q) = 1. In the
(b)

(d)
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round, the two largest peaks are selected and the other
values of X are set to zero, and the related BIC is com-
puted for X^ and h(q) = 2 and so on. The value of h(q) is
the number of the selected peaks that yields the lowest
BIC. After running the 2D SLIM for a selected set of q
and computing h(q), we choose that q which minimizes
the BIC. The factor 5 in (28) shows the number of un-
known parameters including range, angle, Doppler fre-
quency, and the complex reflection coefficients of targets.

3.3 2D MF
The 1D MF output has already been derived for MIMO
radars as [22]

xn ¼ Φð Þcn
� �H

y= Φð Þcn
		 		2

2; n ¼ 1; 2;…;NRNAND:

ð32Þ

Noting that the columns of Φ are defined by the vec-
tors Φð Þcn ; n ¼ 1; 2;…;NRNAND and using Φ =ΘT⊗A
and (26), the numerator of (32) is obtained as
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Fig. 5 MIMO radar Doppler-range estimates for targets that fall on grid po
(circles show the targets’ true locations and color-coded rectangles correspo
ΦHy ¼ vec AHYΘH
� �

: ð33Þ
Next, the denominator of (32) is shown by using the

Kronecker product properties as

Φð Þcn
		 		2

2¼ Að Þci
		 		2

2 Θð Þrj
			 			2

2

def��Λij ð34Þ

where n = (j − 1)NRNA + i, i = 1,⋯,NRNA, and j = 1,⋯,
ND. By substituting (33) and (34) in (32) and converting
to the 2D form, we obtain the 2D MF as

X ¼ AHYΘH
� �

⊘Λ ð35Þ

where the elements of Λ ∈ ℂNRNA�ND are defined by Λij

and ⊘ is the element-wise matrix division.

4 Computational complexity of 1D and 2D SLIM
In the 1D SLIM, the main computational cost in each it-
eration belongs to the product of Φ and a vector like x.
For the 2D SLIM, this product is converted to a 2D form
as AXΘ using the Kronecker factorization Φ =ΘT⊗A.
The main difference between the 1D and 2D forms from

a computational point of view is in the number of flops
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for calculating Φx and AXΘ. The complexities of Φx and
AXΘ are O(NPMr(Ns +NR − 1)NRNAND) and O(Mr(Ns +
NR − 1)NRNAND) +O(NPMr(Ns +NR − 1)ND), respectively.
We have assumed that the product matrix AX is com-
puted first, and then the result is multiplied by Θ. By com-
paring these two computational complexities, it is
demonstrated that the ratio of the 2D processing load over
that of its equivalent 1D is 1

NP
þ 1

NRNA
. If it is assumed

NP≪NRNA, then this ratio is equal to 1
NP
.

In addition, the Kronecker factorization can take ad-
vantage of multi-core processors [38] by which the 2D
SLIM algorithm can be parallelized and solved. Then,
the speed of this algorithm compared to the 1D one is
approximately increased by a factor proportional to the
number of processing cores.

5 Numerical examples
To show the computational efficiency of the 2D SLIM,
which is the main goal of this work, we compare the run-
ning time of the 1D version of SLIM, IAA, SL0, and MF
algorithms with their 2D versions. To make a fair compari-
son between 1D and 2D SLIM algorithms, we use the
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Fig. 6 Doppler-angle estimates for the targets that fall off the grid points (
show the targets’ true locations and color-coded rectangles correspond to t
CGLS in the 1D SLIM to reduce the computational cost of
matrix inversion. Moreover, we express the product of the
diagonal matrix Π and the vector ΦHu by the Hadamard
product as x =ΠΦHu = ϑ⊙ (ΦHu) and do a similar proced-
ure for the CGLS steps.
Also, the performance of the above algorithms for

estimation of range-angle-Doppler parameters in pulse
Doppler MIMO radars is compared to that of the SPGL1,
which is an l1-based approach. Note that since the per-
formance analysis of 1D and 2D algorithms is similar, in
the related figures, we will ignore repeating 1D or 2D
terms. The noise vectors ep, p = 1,⋯,NP are mutually in-
dependent and each vector consists of zero mean complex
white Gaussian noise with covariance matrix σ2I. The
signal-to-noise ratio (SNR) is defined for each target lo-
cated at the (r,a,d)th range-angle-Doppler bin as

SNR ¼ 10 log10 αr;a;d


 

2=σ2� �

: ð36Þ

The number of targets is Nt = 40 and the SNR of each
target is 10 dB. We consider the transmit signal with a
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cyclic approach [39] with Ns = 32. The transmit and re-
ceive antennas are uniform linear arrays with Δt = 2.5λ0,
Δr = 0.5λ0, and Mt =Mr = 5. The carrier frequency, sub-
pulses bandwidth, and the PRF are respectively fc = 1
GHz, B = 10 MHz, and fr = 2 kHz. The surveillance field is
divided into NR = 20 range bins, NA = 31 angular bins be-
tween − 30° to 30° with 2° angular resolution, and ND = 40
Doppler bins with the resolution of 50 Hz. The lower and
upper thresholds for limiting the amplitude of output sig-
nals are − 30 and 10 dB, respectively.
The SL0, IAA, and SLIM algorithms are initialized

based on an l2-norm solution with incorporating a hard
threshold set to − 20 dB. It means that when the abso-
lute value of each component of initial X(0) is lower
than − 20 dB, it is set to 0. The free parameters for 1D and
2D SL0 are μ = 1, ε = 0.002, σ0 = 0.05, ρ = 0.5, and K = 10,
and for the 1D and 2D SLIM, we have Δ = 0.01. Also, the
stopping parameter for the CGLS is set to ε = 0.05. BIC
values versus q are shown in Fig. 3 for NP = 5. As seen,
q = 0.1 can be chosen for this scenario.
We consider two different scenarios in which the targets

may fall onto or off the grid points. In Figs. 4 and 5 where
the targets fall onto the grid points, the targets’ true loca-
tions are shown with circles and color-coded rectangles
which correspond to the estimated amplitudes in dB. As
seen in Figs. 4a and 5a, the MF approach suffers from ac-
curate estimation of the targets’ angle-range-Doppler pa-
rameters due to appearing large side lobe levels. Also, in
Figs. 4b and 5b, the SL0 does not perform acceptable re-
sults when the number of pulses is small. Instead, the
SLIM, IAA, and SPGL1 have mostly estimated the range,
Fig. 7 MSE of target scene recovery and Peak-to-Ripple Ratio (PPR) versus
number of targets (NP = 5, SNR = 10 dB), and c and f the SNR (NP = 8, Nt = 5
angle, Doppler frequency parameters; however, the former
algorithm is more accurate. This is due to the fact that the
fewer the number of pulses are, the more underdeter-
mined (16) will be. To cope with such cases, then, a more
effective sparse recovery algorithm is required.
The second scenario, in which the targets do not fall onto

the grid points, is more practical. In this scenario, we
choose the targets randomly from all possible bins and for
each target, a random number proportional to the angle
resolution and a random number proportional to the
Doppler resolution are added to the angle and Doppler of
the target. In this case, the targets will fall off the grid
points. In this simulation, we consider Nt = 20 and SNR =
0 dB. Figure 6 demonstrates that the SLIM, IAA, and
SPGL1 have mostly captured the targets that fall out of grid
points, while the MF and SL0 have failed. Also, the SLIM
algorithm has better performance compared to other ones.
In the next experiment, using Monte Carlo simula-

tions, we compare the mean squared error (MSE) and
peak-to-ripple ratio (PRR) of different algorithms. The
MSE of target scene recovery is defined as MSE ¼
X^−X
		 		2

F=N ; where N =NRNAND. Also, for Nt targets lo-
cated at the angle-Doppler- range bins {(ki, li), i = 1,
…, Nt}, the PRR is given by

PRR ¼
XNt

i¼1

X^ki;li




 


2= X^
		 		2

F−
XNt

i¼1

X^ki;li




 


2
 !

: ð37Þ

The results are presented based on 1000 independent tri-
als. The MSEs and PRRs are respectively shown versus the
a and d the number of pulses (Nt = 50, SNR = 10 dB), b and e the
0)



Table 3 Runtime of different algorithms for NP = 20

SLIM IAA SL0 MF SPGL1

1D 74.5 264.02 456.70 5.19 147.5

2D 0.62 0.64 0.67 0.13 N/A

N/A not applicable
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number of pulses in Fig. 7a, d for Nt = 50 and SNR = 10 dB,
versus the number of targets in Fig. 7b, e for NP = 5 and
SNR = 10 dB, and versus the SNR in Fig. 7c, f for NP = 8
and Nt = 50. By comparing the above results, one can
clearly see that the SLIM algorithm achieves a lower MSE
and a larger PRR in estimation of range-angle-Doppler
parameters.
Also, we calculate the receiver operating characteristic

(ROC) for different algorithms in order to compare their
detection performance. To obtain the ROC curve, we se-
lect a threshold τi. Any local maximum of the absolute
value of X that is larger than τi will be considered as a
target. The threshold τi is then varied within an interval
[τL τH] and for each τi, the number of detected actual or
false targets is recorded. By repeating 1000 trials of the
experiment, we calculate the probability of detection Pd
of actual targets, and the probability of false alarm Pf of
false targets for different values of τi as

Pd ¼ the number of actual detected targets
1000 Nt

ð38Þ

Pf ¼ the number of false detected targets
1000 NRNAND−Ntð Þ ð39Þ

In Fig. 8, we compare the ROC of different algorithms
for NP = 8, Nt = 200, and SNR = 10 dB. As seen, in all
cases the probability of detection of the SLIM is better
than that of the other ones.
The running times of different algorithms are pre-

sented in Table 3 for NP = 20 by averaging over 100 in-
dependent trials of the experiments. We run our
MATLAB 8.1 files on a PC with an Intel Core i5/
3.4 GHz with 4 GB memory.
Obviously, in all cases, the 2D versions are much more

efficient than 1D ones. Correspondingly, in Fig. 9, the run-
ning times are depicted as a function of NP. One can see
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Fig. 8 ROC curves of different algorithms for a pulse Doppler
MIMO radar
that by increasing the number of pulses, the running times
of 2D algorithms remain almost constant. In other words,
the computational costs of the latter algorithms are less
sensitive to the number of pulses, NP. The reason is that
the computational complexity of 2D SLIM does not de-
pend on NP as explained in Section 4. As a result, accord-
ing to Fig. 7a, d, in order to increase the performance of
2D algorithms in estimation of radar parameters, we can
easily use a larger NP, while for 1D algorithms, this leads
to a large increase in the running time. Moreover, it is
seen from Fig. 9 that the running times of 1D algorithms
are much longer than those of the 2D ones, revealing their
higher computational complexities. Note that although
the 2D MF has the least running time, it also generates
the lowest detection and recovery performance as already
depicted in Figs. 7 and 8.

6 Conclusions
We derived the 1D and 2D sparse signal models for
pulse Doppler MIMO radars. The 2D SLIM algorithm
was derived by direction solution of the 2D sparse
model. Due to using a lower number of products in the
corresponding relationships, the computational cost of
2D SLIM compared to that of the 1D one was extremely
reduced. Also, simulation results showed that the 2D
SLIM outperforms the other algorithms in accurate esti-
mation of range, angle, and Doppler parameters.
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7 Appendix
Developing 2d CGLS
We can convert the inversing term appeared in u to a

least squares (LS) form as

u ¼ ΦΠΦH þ ηI
� �−1

y ¼ BHB
� �−1

BHz ð40Þ

where B ¼ Π1=2ΦH

η1=2I

� �
and z ¼ 0

η−1=2y

� �
.

The solution of u is equivalent to minimization of the

LS cost function Bu−zk k22 with respect to u, and it can
be solved using the CGLS algorithm with the following
steps [36]:

1. αl ¼ rHl rl= pHl B
H

� �
Bplð Þ� �

2. ul + 1 = ul + αlpl
3. sl + 1 = sl + αlBpl
4. rl + 1 = BHsl + 1

5. βl ¼ rHlþ1rlþ1= rHl rl
� �

6. pl + 1 = − rl + 1 + βlpl

where initializations are u0 = 0, s0 = − z, r0 = BHs0, and
p0 =− r0. The stopping condition for CGLS is 1

Nz
Bu − zk k2

< ε, where Nz is the number of elements of z.
To derive the 2D CGLS, we first present Bpl as

Bpl ¼ vec W lð Þ
vec V lð Þ

� �
ð41Þ

where vec(Wl) =Π1/2ΦHpl with Π1/2 = diag{vec(Σ)} and
the elements of Σ are defined in (23) as Σij = Γij

1/2. By
using Φ =ΘT⊗A in vec(Wl), we obtain

vec W lð Þ ¼ diag vec Σð Þf g ΘT⊗A
� �H

pl:

ð42Þ

By incorporation of (15) and (22) in (42), we get
vec(Wl) = vec(Γ⊙ (AHPlΘ

H)) where

W l ¼ Σ⊙ AHPlΘ
H

� �
: ð43Þ

Furthermore, Vl in (41) is presented by Vl = η1/2Pl

where pl = vec(Pl).
Next, the term BHsl + 1 of the CGLS is demonstrated

using the Kroneker and Hadamard products properties
shown in (15) and (22), and Φ =ΘT⊗A as
BHslþ1 ¼ ΦΠ1=2g l þ η1=2t l

¼ Φdiag vec Σð Þf gvec Glð Þ þ η1=2t l

¼ Φ vec Σð Þ⊙vec Glð Þð Þ þ η1=2t l

¼ ΘT⊗A
� �

vec Σ⊙Glð Þ þ η1=2t l

¼ vec A Σ⊙Glð ÞΘð Þ þ vec η1=2T l

� �
¼ vec A Σ⊙Glð ÞΘþ η1=2T l

� �
ð44Þ

where sl ¼ g l
t l

� �
with gl = vec(Gl) and tl = vec(Tl). By
substituting the above results in the third and fourth steps
of the CGLS and also presenting the vectors ul and rl in
2D forms as ul = vec(Ul) and rl = vec(Rl), respectively, the
2D CGLS is derived as summarized in Table 2. After some
mathematical manipulations using the Hadamard and
Kronecker product properties, the stopping condition for
the 2D CGLS is obtained by extending 1

Nz
Bu−zk k2 < ε as

1
K

A Γ⊙ AHUΘH
� �� �

Θþ ηU−Y
		 		

F < ε: ð45Þ
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