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Abstract

packet loss ratios (over the same noisy channel).

Video multicast is becoming more and more popular in wireless multimedia applications, in which one major
challenge is to offer heterogeneous users with a graceful degradation against varying packet loss ratios and channel
noise. In this paper, we propose a multi-scale compressed sensing-based wireless video multicast scheme,
abbreviated as MCS-cast. The encoder of MCS-cast decomposes each video frame through a discrete wavelet
transform (DWT) and explores an optimized compressed sensing (CS) rate to sample/measure each DWT level. The CS
measurements are then packed in such a way that all packets are made as equally important as possible, while each
packet includes different percentages of different DWT levels. Finally, the packets are transmitted via an analog-like
modulator with mapping of the measurements into a very dense constellation. We demonstrate that because of
larger percentages of more important DWT levels in each packet, packet loss leads to a much reduced influence on
the reconstruction quality. Experimental results show that our MCS-cast preserves the property of graceful
degradation for heterogeneous users and can outperform the state-of-the-art SoftCast by up to 3 dB in PSNR at high

Keywords: Multi-scale; Compressed sensing; Video multicast; Discrete wavelet transform

1 Introduction

Multicasting of video signal has recently become a pop-
ular application in wireless networks, such as mobile TV,
media sharing, live broadcasting of sport events, and lec-
turing. Because of channel heterogeneity among multiple
users (e.g., the channel bandwidth they are connected and
the channel error they are suffering), one big challenge
imposed to video multicast is to simultaneously guar-
antee the best possible video quality for different users
according to their individual channel characteristics.

In conventional wireless video multicast, a video bit-
stream coded at a specific bit rate is transmitted over the
wireless network. For example, the digital video broad-
casting (DVB) scheme [1] transmits the bitstream com-
pressed by the traditional video coding standard over
a wireless channel. However, this fixed bit rate usually
incurs “unfairness” to users in a multicast group: if the
rate accords with a low-quality receiver, users with bet-
ter channel characteristics only obtain a low-quality video;
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alternatively, if the rate is selected for a high-quality user,
the low-quality users cannot decode the bitstream at all.
On the other hand, the conventional wireless video trans-
mission schemes have another disadvantage: they are not
resilient to channel errors or noise, thus leading to a sharp
decrease of reconstructed video quality (the so-called cliff
effect) when the channel is corrupted by noise (it is very
common in practice), and the reconstructed video qual-
ity will not improve even when the signal-to-noise ratio
(SNR) becomes larger [2]. The emergence of the layered
digital scheme alleviates the cliff effect through the com-
bination of a layered video coding and a layered video
transmission. Typically, scalable video coding (SVC) [3] is
utilized as the layered video coding technique, and hier-
archical modulation (h-mod) [4] is adopted as the layered
transmission scheme. However, the layered digital scheme
does not solve the cliff effect completely due to the limited
number of layers, which actually generates the staircase
effect.

Recently, SoftCast [2] has been proposed as a new
framework to deal with the aforementioned problems,
particularly the cliff effect. SoftCast sends real numbers
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instead of a digital bitstream by using a very dense constel-
lation, and thus it is called an analog transmission. Specif-
ically, by discarding entropy coding and channel cod-
ing, SoftCast consists of three steps: block-wise discrete
cosine transform (DCT), power allocation, and whitening.
Firstly, DCT removes the spatial correlation within each
video frame; secondly, power allocation generates a com-
pact and resilient representation of DCT coefficients; and
finally, whitening generates the equal-importance packets
that will be transmitted directly over a wireless channel. In
SoftCast, reconstruction quality at each user only depends
on its channel characteristic (including packet loss rate
and channel SNR) so that receivers with a good channel
condition can obtain better video quality, while users with
a bad channel condition can still watch a lower quality.
Experimental results showed that SoftCast is more robust
to channel noise and achieves a smooth degradation of
quality.

Several approaches have been proposed to improve the
performance of SoftCast in the past few years, such as
D-cast [5] and Wave-cast [6], by making use of the inter-
frame correlation of video signals to remove the tem-
poral correlation. Furthermore, Hybrid-Cast [7] utilizes
a hybrid transmission that combines the digital trans-
mission of important information (such as the motion
vector and scalar factor) and SoftCast’s analog transmis-
sion of the other information (including the DCT coeffi-
cients). However, since the packets in Hybrid-Cast are not
equally important, the performance may not be as good
as expected when the important packets are lost. Mean-
while, there are several works appearing in the area of soft
video transmission. For instance, the bandwidth expan-
sion problem of soft video coding is solved by layered
coset coding [8]; a gradient-based framework is proposed
in [9] for wireless soft video broadcast; the compressive
sensing (CS) is integrated into multiple-input multiple-
output (MIMO) transmission to make sure that the recon-
structed image/video quality is commensurate with the
channel SNR and the MIMO dimension [10, 11]; the mul-
tipath case of the SoftCast is investigated in [12] in which
high-energy DCT coefficients are assigned to a “good”
subcarrier; and a real soft video broadcast system has been
implemented and some PHY layer issues have been solved
in [13].

The CS technique seems very suitable for wireless trans-
mission (with random packet loss) due to its random
measurement. One simple wireless video multicast frame-
work based on CS has been presented in [14], which
explores the random measurement to generate equal-
importance packets, consequently eliminating the cliff
effect and obtaining a graceful degradation. As for the CS
technique, a few algorithms have been widely applied for
image and video coding, such as the structurally random
matrices (SRMs) and block-based compressed sensing
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(BCS) [15, 16]. BCS is specially tailored to maintain a low
computational burden. However, BCS is not efficient in
compression because it wrecks the global random mea-
surement. Then, MS-BCS-SPL [17] (multi-scale BCS with
smooth projection Landweber) explores BCS for different
levels of a wavelet-decomposed image and consequently
improves the performance of BCS greatly, while retaining
the low computational burden.

In this paper, we extend the state-of-the-art MS-BCS-
SPL to the case of multiple users and propose a multi-
scale CS-based wireless video multicast scheme: MCS-
cast. Specifically, each video frame is decomposed by a
multi-scale discrete wavelet transform (DWT). Then, the
optimally determined CS rates are allocated to differ-
ent DWT levels with an attempt of sampling the more
important DWT levels with higher measurement rates.
All achieved measurements are packed in such a way that
all packets are equally important and each packet includes
different percentages of different DWT levels. Finally, the
packets are transmitted through a physical technique like
SoftCast, mapping the measurements into a very dense
constellation. We will demonstrate that (1) the cliff effect
is avoided naturally because of application of the equal-
importance packing strategy and (2) packet loss results in
a (much) reduced influence on the reconstruction qual-
ity because of larger percentages of more important levels
in each packet. At the same time, the linear least square
estimator (LLSE) is incorporated to eliminate channel
noise, thus leading to a further improved performance in
reconstruction quality.

2 Related works

Our work is strongly related to the theory of CS. There-
fore, we first review it briefly and then discuss two
extended versions of it: BCS-SPL and MS-BCS-SPL.

2.1 Conventional CS
Suppose that a signal x with length N can be represented
via a known basis W € RN*N (the inverse transform), i.e.,

N
x=) it = WO (1)
i=1

where ® € RN is the coefficient vector with K significant
values in the transform domain, K < N. Then, we project
x onto an M-dimensional space using a measurement
matrix ® € RN*N:

y=dx =PUO (2)

where y is called measurements, and the CS sampling
rate is M/N, M = O(Klog(N/K). Since M « N,
recovering x € RN from y € RM is an ill-posed prob-
lem. Nevertheless, provided that x is sparse enough, the
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CS theory can solve it by an /y-constrained optimization
problem:

6 = arg min [0, st y=dx 3)

In practice, such a /p-constrained optimization is suffer-
ing from its computational infeasibility. Then, CS turns to
solve an /1-based convex optimization, and the recovery is
implemented directly by exploiting linear programming.
Once © is obtained, we can obtain x as % = W0.

2.2 BCS-SPL

In BCS-SPL, an original image with N pixels and need-
ing M measurements is first divided into blocks of size
B x B. Then, each block is CS-sampled using the same
matrix ®p:

yj = Pp-x = Pp- (V5 0)) (4)

where ©; and y; are, respectively, the transform coeffi-
cients and measurement vector of the j-th block; y; is
with size Mg x 1; Mg = |M B%|; Wp e RB2xB2; gnd
&g € RMs xB? Here, @3 is chosen to be orthonormal, i.e.,
dp - CI>17-5,w = 1. The equivalent measurement matrix ® for
the entire image is a block-wise diagonal one:

dp
Dp

Since BCS-SPL is based on block-wise image acquisi-
tion, only the measurement matrix ®p needs to be stored,
which greatly saves the storage space and improves the
reconstruction speed. In addition, BCS-SPL combines a
Wiener filter to the SPL algorithm, thus offering a much
smoothed reconstruction. Afterwards, some state-of-the-
art block-based CS reconstructions for images and videos,
e.g. [18] and [19], were designed, and they have shown
improvement over the BCS-SPL.

2.3 MS-BCS-SPL

In MS-BCS-SPL, the sampling operator ® is divided into
two parts, a multi-scale wavelet transform matrix ¥ and a
multi-scale block-wise measurement matrix ® such that
® =o'V, and Eq. (2) now becomes

y = Ok (6)

Suppose that v’ generates L level wavelet decompo-
sition. Then, the measurement matrix @, composed of
L different block-wise sampling operators, is adopted to
these decompositions with one operator for each level.
Regarding © as the expression of x in the transform
domain, i.e., ® = \I//x, the sub-band s at level / of ® can be
divided into B; x B; blocks and each level will be measured
through the appropriately sized ®;. Assume that y;; is
the measurement of block i of sub-band s at level / of ©,
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with s € {H, V, D} (standing for horizontal, vertical, and
diagonal, respectively), 0 </ < L — 1, then,

Visi = POy (7)

Notice that we apply the same measurement matrix ®; to
three sub-bands (H, V, and D) at the same level /.

Next, an optimized CS rate 7; is adjusted for each level
[ in MS-BCS. Specifically, the rate of the baseband levely
(LLO sub-band) is set to be full, i.e., 7o = 1 (because of
the highest importance), and the rate for level [ (/ # 0) is
selected as r; = wlr/ so that the overall rate becomes

L-1
r= %ro—l—z%wl/ (8)
=1

If a target rate r and the weights w; on each level are
given, r can be determined by Eq. (8), leading to a set of
level-wise CS rates r;.

During the MS-BCS-SPL reconstruction, an iteration
process called the Landweber step [20, 21] lies between
the smoothing and thresholding operations in the wavelet
domain. First, the constrained optimization formulation is
replaced by an unconstrained optimization problem via a
Lagrangian multiplier with an /;-distance penalty:

© = arg min |8, + 1[5~ @6l ©
Then, © is recovered by the following successive projec-

tion and thresholding operations, assuming ®© is the
initial approximation to the wavelet coefficients ®:

1
60 =00+ ~of (y ® ®(l>) (10)
. H(@ 19 0]
@+ _ )0V, 101 =T
0 N { 0, else (1)

where r is a scaling factor, and J @ is the threshold that is
used at the i-th iteration.

3 The proposed scheme

In our work, we extend MS-BCS to wireless video multi-
cast with the aim of getting some gains over the SoftCast
scheme, while preserving the property of accommodating
heterogeneous users and graceful degradation of quality.
To this end, we should meet the following requirements as
much as possible: Firstly, a video source should be divided
into packets with an equal importance. With this require-
ment, the video quality decoded at each user becomes
independent of which packets are received; rather, it
depends only on how many packets are received (accord-
ing to its channel condition). Secondly, more important
coefficients should occupy a higher percentage in each
packet so that the reconstructed quality would still be
acceptable even with the low-quality users who only
receive a small number of packets. Thirdly, the overall
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system should consider the channel noise, and the recon-
struction quality should smoothly change proportionally
to the packet loss ratio and channel signal-to-noise ratio
(CSNR).

Our framework is shown in Fig. 1, where we have
made use of the MS-BCS-SPL scheme. Specifically, in the
encoder side, each frame is first transformed by DWT and
the resulting coefficients are measured by multiplying a
multi-scale measurement matrix @, the same as that in
Eq. (6). The measurements are packed and transmitted
through a raw orthogonal frequency division multiplexing
(OFDM) with an analog-like modulator to the decoders to
provide wireless multicasting service. At the decoder side,
the received packets at each user—the number of packets
varies among different users—are first de-noised by the
linear least square estimation (LLSE) algorithm, and then,
each user will reconstruct a frame using the de-noised
measurements.

3.1 Encoder side

Preprocessing. In our scheme, a preprocessing is per-
formed to each frame before encoding in order to keep
a low energy. In the original MS-BCS-SPL scheme, the
image is first subtracted by its mean value (denoted as Eyp)
of all pixels included. At the decoder side, the mean value
will be added back to the image after recovering. However,
in the environment of wireless video multicast, the mean
value will probably be lost during transmission over a
noisy and lossy channel, thus leading to a very in-accurate
reconstruction. To solve this problem, we propose to set
Ey to 128 (for 8-bit video frames) at the preprocessing
step. Clearly, this constant (mean) value can be compen-
sated back at the decoder side (regardless of how noisy and
lossy the involved channel is, because it is not needed to
be transmitted at all).

DWT. In our scheme, each frame is sampled and recov-
ered in the wavelet domain, following what has been done
in MS-BCS-SPL [17], where a dual-tree DWT (DDWT)
as [22] with bivariate shrinkage [23] is applied within the
DDWT domain to enforce sparsity as described in [16].
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To this end, we propose to decompose each frame (after
preprocessing) into L DWT levels (as shown in Fig. 2
where L = 4). After the DWT decomposition, it is clear
that the DWT coefficients have successively decreasing
importance at higher decomposition levels.

Measuring with different CS rates. Since the coeffi-
cients in different DWT levels have different importance
towards the reconstruction quality, we need to apply dif-
ferent CS rates (for measurement) that depend on the
importance at each DWT level. This means that the more
important the level is, the larger measurement CS rate
will be allocated to it. To this end, we first divide the
sub-bands of each DWT level into blocks. We choose
different sizes at different levels: the size becomes increas-
ingly larger from level; to levels. Then, we will measure
the sub-bands at different DWT levels with different mea-
surement matrices corresponding to the block size in each
level. For example, if four DWT levels are used (the same
as in Fig. 2) and the block sizes 4 x 4, 8 x 8, and 16 x 16
are adopted, respectively, for level; ~ levels, we may select
the corresponding measurement matrices to be of sizes
32 x 16, 96 x 64, and 176 x 256, respectively, i.e., &1 €
R32x16 4 Jevel;, @y € RI%%% gt levely, and d3 € R176%256
at levelz. Such arrangement means measurement rates of
200, 150, and 68.75 %, respectively. The over-measured CS
data seem completely redundant at this moment (the cor-
responding measurement rate at levelp will be even larger;
see discussions in the next sub-section). Nevertheless, it
will be pointed out later that they are necessary when
packing these CS data into packets.

Packing with optimized CS rate allocation. Packing of
the CS measurements (in the DWT domain) is performed
in our work in such a way that all packets have an equal
importance. As a result, the reconstruction quality at
each user in the multicast group depends only on how
many packets are received, regardless of what packets
are received. On the other hand, since the measurements
from different DWT levels have different importance
toward the reconstruction quality, we select different per-
centages for them in each packet.

Eo
|
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A
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Fig. 1 The framework of our scheme
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Fig. 2 Four-level DWT

Suppose that (i) the width and height of each frame are
W and H, respectively; (ii) the total number of packets
is k; and (iii) the overall rate for all measurements over
each frame is set at full (100 %). In our scheme, we first
arrange the whole baseband levely into each packet (as
shown in Fig. 3 where L = 4), because it has the highest
importance and losing it would lead to a sharply degraded
reconstruction quality. Clearly, this repetition produces
an over-sampling (by k times); nevertheless, it guarantees
a minimum quality even when a user receives only one
packet. On the other hand, the remaining levels need to
use some well-determined CS rates so as to achieve the
overall rate at 100 %.

Suppose that the CS rate for level; is r;, with [ =
0,...,L —1,and r; > r;;1 . To guarantee the full overall
rate, we have

L-1
W x H W x H
=1
which can be simplified as
L-1
1 1
——k+> 3 —n=1 (13)
-1 -1
4L pa 4L
} level
Repeat
E E level |
T B S
O H level »
[ B Sz
level 3
S;

DWT coefficients

Packet 1 Packet 2 Packet k

Fig. 3 lllustration of packing DWT coefficients into k packets evenly
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Notice that Eq. (13) may not always be met exactly. In this
case, we will choose r; properly to make Eq. (13) hold as
much as possible.

Once all r/’s are obtained (with 7y being always set at
1), each frame within a group of pictures (GOP) will
be CS-sampled at the determined CS rates in the corre-
sponding DWT levels. We perform the packing process
on all frames within each GOP to generate a total number
of k packets: the baseband levely is put into each packet,
whereas the measurements for level; (the total number
is B‘Zﬁfl ry) is evenly put into k packets, i.e., 3 ‘Xﬁ{{ r/k
CS data are put into each packet. Notice that because
measurements at level; are over-complete, we need to
select S%U/k CS data carefully so that they are as

independent as possible with respect to each other.

3.2 Raw OFDM channel

Before packets are transmitted over a raw OFDM chan-
nel [24], the measurements in each packet are rounded
and then directly mapped into the transmitted symbol,
whereas no FEC of any kind is employed. Figure 4 shows
the modulation adopted in our work: s[k] and Ps[kH] are
the k-th and (k + 1)-th data in the s-th packet, and such
pairs of data are directly mapped as the I and Q compo-
nents of the transmitted symbol. Finally, the PHY layer
directly transmits all symbols over OFDM channels in
which we will consider different strengths of channel noise
in our experimental results.

Figure 5 shows the overall OFDM channel structure
in which the modulation is the same as that shown in
Fig. 4. At the transmitter side, symbols obtained from
modulation are inputted into some sub-bands after the
serial-parallel conversion. Symbols in each sub-band go
through Inverse Fast Fourier Transform (IFFT), guard
interval insertion, and the parallel-serial conversion to get
the OFDM signal. Then, the OFDM signal is transmit-
ted over a wireless channel with additive white Gaussian
noise (AWGN). At the receiver side, operations that are
opposite to what have been done at the transmitter side

> 1

Fig. 4 Mapping data to I/Q components of transmitted OFDM signals
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are carried out. This whole procedure is the same as in the
SoftCast scheme.

3.3 Decoderside
LLSE. When packets are transmitted over a noisy channel,
channel noise is added to packets and thus may incur a
certain deviation from the original data, which may badly
influence the reconstruction quality. Here, we propose to
apply LLSE [25] to the received data before the MS-BCS-
SPL reconstruction.

First, assuming that all packets are received (i.e., no
packet loss) but with channel errors corrupting them, we
can rewrite the received signal as

y=y+n (14)

where 7 is the additive white Gaussian noise. Then, LLSE
estimates the original signal as

yiLsE = Ay(Ay + )71y

where y1 1 sg refers to the LLSE estimate of measurement y,
Ay is the covariance matrix of y (which will be transmitted
as metadata), and X is the covariance matrix of channel
noise n. With a high channel SNR (CSNR), we obtain an
approximation as

(15)

YLLSE X Ay(Ay) T =5 (16)

This means that the LLSE step becomes void, which is
reasonable because the measurements are trustable nearly
completely.

Next, when a receiver experiences certain packet loss,
let us define ¥, as ¥ after removing all lost packets, and
similarly 7, as the corresponding noise vector, and we still
have

Vi = Vi + My (17)
Then, the LLSE decoder becomes
YLLSE = Ay, (Ay, + T) 7" (18)

Different measurement matrices. Since different users
are connected with different bandwidths in the same mul-
ticast group, they receive different numbers of packets.
Consequently, after LLSE, each user needs to use its own
measurement matrix for each level according to the pack-
ets it receives. Suppose that the encoder uses a random

matrix ® € RM (which can be repeated exactly at the
decoder side) to generate the measurements for level / and
one user just receives M; from N; measurements, then the
corresponding measurement matrix used at the decoder
side for reconstruction can be obtained as

@f::{(¢T>Jie{L-~

where i is the row index of ® and can be obtained from
the packet index.

MS-BCS-SPL reconstruction. MS-BCS-SPL provides a
multi-scale reconstruction by deploying block-based CS
sampling within the wavelet domain, which applies the
Landweber step to each block in each sub-band at each
decomposition level independently. Hence, the recon-
struction x;; for block j of sub-band s at level / can be
expressed as

»Mi}} (19)

(20)

~ T
Xisj = %1sj + P; s — Pixis))

where ®; represents the block sampling operator of level /.

3.4 Transmission of metadata

As shown in Eq. (15), the decoder requires the covari-
ance matrix of measurement y. To this end, we transmit
the standard deviations as metadata so that the covari-
ance matrices can be calculated at the decoder from the
received standard deviations. In our MS-cast, there are
several standard deviations for each frame. For the video
sequence of 352 x 288 at 30 Hz with four-level wavelet
decomposition, we will place the measurements into sev-
eral packets (date matrix) with size 64 x 1584 (this is for the
convenience of subsequent 64-point IFFT). Then, for each
frame, there are 1 standard deviation from the vectorized
levely components of size 44 x 36 (1584) with repeated
full measurement, 6 (3 x 200 %) standard deviation from
three vectorized level; components of size 44 x 36 with
measurement rate r; = 200 %, 18 (3 x 4 x 150 %) stan-
dard deviation from three vectorized level, components
of size 88 x 72 with measurement rate r, = 150 %, and 33
(3x16x68.75 %) standard deviation from three vectorized
levels components of size 176 x 144 with measurement
rate r3 = 68.75 %. In total, there are 58 standard deviations
for 58 vectors of size 1584 that need to be transmitted as
metadata for each frame of size 352 x 288.
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The transmission of the standard deviation is through
the traditional communication scheme consisting of
entropy coding, channel coding, and modulation. The
standard deviations are quantized by a 32-bit scalar quan-
tizer and compressed by entropy coding, and then further
coded using the 1/2 convolutional code (with genera-
tor polynomials {133, 171}) and BPSK constellation. This
forms the metadata packet. Hence, the percentage of this
metadata is about 58 x 32 x 2/352/288 = 3.66 %. For this
extra percentage of metadata, we just cut the measure-
ment rate of level 3 to ensure the final equivalent rate of
each frame to be full (100 %).

4 Simulation results

We evaluate our MCS-cast under two kinds of channel
models: additive white Gaussian noise (AWGN) channel
and noiseless channel. In both cases, the measurements
are transmitted directly using the analog-like modulation
which maps measurements into a very dense constella-
tion. The packets are erased randomly with packet loss
ratio p so that the number of measurements received by
the decoder is M = (1 — p)k, and k is the total num-
ber of packets. The channel signal-to-noise ratio (CSNR)
is defined as

CSNR = |ly|3/Iln1}

Notice that although we did not consider a real multi-
cast scenario that needs to define exactly how many users
are included in the multicast group, it can be mimicked
closely by allowing different packet loss ratios and channel
noise because each ratio/noise represents a specific user.
In our experiments, the CIF (352 x 288 at 30 Hz)
video sequences of Football, Foreman, Coastguard, Hall,
and Container are used, and the full measurement rate is
assumed. After the DWT decompositions of four levels
(L = 4), except for the baseband, three remaining lev-
els of each frame undergo block-based projection like that
in MS-BCS. Following the example we discussed earlier
in the last section, the block sizes are selected as 4 x 4,
8 x 8, and 16 x 16, respectively, for level; ~ levels. Then,
we apply random measurement matrices ®; € R32*16
to level;, ®; € R%%% {0 levely, and &3 € RI76%256 ¢
levels, corresponding to r; = 200 %, r» = 150 %, and
r3 = 68.75 % CS rates, respectively. The total number of
packets in the simulation is set to k = 8. It can be veri-
fied that the overall rate is 4% + Zlg=1 %rl = %, which
exceeds 100 % a little bit. This is a very minor problem,
and we can fix it easily by, for instance, cutting the mea-
surement rate at levels to 66.67 % (corresponding to about
170 CS data, instead of 176 in the original setting). Such a
full rate (over the whole frame) has been chosen because
it is also used in the SoftCast scheme so that the com-
parison is quite fair. SoftCast and our schemes have the
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same transmitting power and use the same wireless band-
width of 1.5 MHz considering that the number of pixels
of the CIF video signal is about 3 M per second. Since we
transmit complex symbols, this should require a channel
bandwidth of about 1.5 MHz. Sixty-four subcarriers are
used for OFDM, and the prefix duration is 16. Each packet
consists of a data matrix of size 64 x 1584. After a 64-point
IFFT, each row of data matrix is assigned to a subcarrier
of OFDM randomly. Hence, the number of OFDM sym-
bols in each subcarrier is 1584/2 = 792. The packets
are separated by the indices of packets, and the index is
inserted before each packet. We did not consider the sub-
carrier for pilot data and the active carriers. These exper-
imental conditions are also conducted on the SoftCast
scheme.

Two groups of experiments are conducted. The first one
is to show the performance of LLSE in our framework.
The second compares our scheme with SoftCast under the
same CSNR and packet loss ratio.

Figure 6 shows that MCS-cast with LLSE in the decoder
consistently outperforms that without LLSE. This is
because LLSE overcomes the negative influence of chan-
nel noise to a certain degree, especially in the case of a
low packet loss ratio where the gain can be as large as 7
dB. However, as the packet loss ratio increases, the gain
obtained from LLSE becomes less but still quite noticeable
(especially when CSNR is low).

Figure 7 shows that our MCS-cast scheme consistently
works better than the state-of-the-art SoftCast (both
schemes have employed LLSE) when the packet loss ratio
is more than 0.2 (for Football, Foreman, Hall, and Con-
tainer) or 0.3 (for Coastguard). This also indicates that our
scheme has better bandwidth heterogeneity. For example,
the case of packet loss rate “p = 0” may mimic the user’s
bandwidth of 1.5 MHz, “p = 10 %” mimics bandwidth
of 1.5 MHz x90 % = 1.35 MHz, “p = 20 %” mimics
1.5 MHz x80 % = 1.2 MHz, and so on. It is because our
scheme considers the different importance of decomposi-
tion levels and takes more measurements from these more
important decomposition levels. More specifically, MCS-
cast will preserve the baseband as long as one packet is
received (which is nearly always true in practice), whereas
other relatively more important information (e.g., at level;
and levels) are also likely to be received due to 200 and
150 % CS rates used in our scheme. On the other hand, in
the case of no packet loss, the repeated baseband into all
packets brings redundancy to our scheme, thus resulting
in a lower efficiency than the referenced SoftCast.

Finally, Fig. 8 shows the visual result comparison
of MCS-cast with SoftCast for frame #70 of five test
sequences at a CSNR of 25 dB, from which we can observe
clearly that the visual results of our MS-cast scheme are
better than those of SoftCast when the packet loss ratio
increases above a certain level.
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Fig. 6 Performance comparison of MCS-cast without LLSE (red circle) and with LLSE (magenta diamond) using a Football, b Foreman, and
c Coastguard as test sequences at different CSNRs and different packet loss ratios

One remark is necessary before we conclude the paper:  multicast groups, where each individual user receives a
although we did not consider a real multicast scenario number of noise-corrupted packets (depending on its
that needs to define exactly how many users are included  channel conditions) and then runs its own reconstruction
in the multicast group, it has been mimicked closely by  independently.
allowing different packet loss ratios and channel noise lev-
els, because each ratio/noise combination truly represents 5 Conclusions
a specific user. As these combinations can be many, our In this paper, we proposed a multi-scale compressed
MCS-cast becomes fully scalable in serving an arbitrary  sensing-based wireless video multicast: MCS-cast. The
number of users in a multicast group or even multiple reconstruction quality of MCS-cast depends only on the
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different noise strengths and different packet loss ratios. a Football, b Foreman, ¢ Coastguard, and d Hall




Wang et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:74 Page 10 of 11

MCS-cast SoftCast

PSNR 29. 82dB

(a) Football
MCS—cast SoftCast

(b) Foreman

Fig. 8 Visual result comparison of MCS-cast with SoftCast for Frame #70 of the two test sequences at CSNR = 25 dB. a Football. b Foreman
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number of packets received by each user. We further
proposed a novel packing strategy such that all packets
are equally important and each packet includes differ-
ent percentages of measurements from different wavelet
decomposition levels. Due to the equal-importance fea-
ture in various packets and the direct transmission (with-
out entropy coding and channel coding), MCS-cast does
not suffer from the cliff effect and the reconstruction
quality is only degraded gracefully when channel noise
and/or packet loss is considered. Meanwhile, larger CS
rates used at more important DWT levels guarantee that
these important coefficients are still likely to be received
at a user’s side even with a large packet loss ratio so
that the reconstruction quality remains quite acceptable.
These advantages have been clearly demonstrated in our
experiments. As a future work, we will be focusing on how
to utilize the correlation among adjacent frames in our
MCS-cast scheme so as to make a further improvement.
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