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Abstract

We introduce an ensemble learning method for temporal data that uses a mixture of hidden Markov models (HMM).
We hypothesize that the data are generated by K models, each of which reflects a particular trend in the data. The
proposed approach, called ensemble HMM (eHMM), is based on clustering within the log-likelihood space and has
two main steps. First, one HMM is fit to each of the N individual training sequences. For each fitted model, we evaluate
the log-likelihood of each sequence. This results in an N-by-N log-likelihood distance matrix that will be partitioned
into K groups using a relational clustering algorithm. In the second step, we learn the parameters of one HMM per
cluster. We propose using and optimizing various training approaches for the different K groups depending on their
size and homogeneity. In particular, we investigate the maximum likelihood (ML), the minimum classification error
(MCE), and the variational Bayesian (VB) training approaches. Finally, to test a new sequence, its likelihood is computed
in all the models and a final confidence value is assigned by combining the models’ outputs using an artificial neural
network. We propose both discrete and continuous versions of the eHMM.
Our approach was evaluated on a real-world application for landmine detection using ground-penetrating radar
(GPR). Results show that both the continuous and discrete eHMM can identify meaningful and coherent HMMmixture
components that describe different properties of the data. Each HMMmixture component models a group of data
that share common attributes. These attributes are reflected in the mixture model’s parameters. The results indicate
that the proposed method outperforms the baseline HMM that uses one model for each class in the data.
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1 Introduction
Detection and removal of buried landmines is a worldwide
humanitarian and military problem. The latest statistics
[1] show that in 2012, a total of 3618 casualties frommines
were recorded in 62 countries, the vast majority (78 %) of
casualties were civilians. Detection and removal of land-
mines is therefore a significant problem and in recent
years has attracted several researchers. One challenge in
landmine detection lies in plastic or low metal mines
that are difficult to detect by traditional metal detectors.
Varieties of sensors have been proposed or are under
investigation for landmine detection. Ground-penetrating
radar (GPR) offers the promise of detecting landmines
with little or no metal content. Unfortunately, landmine
detection via GPR has proven to be a difficult problem
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[2, 3]. Although systems can achieve high detection rates,
they have done so at the expense of high false alarm rates.
The key challenge to mine detection technology lies in
achieving a high rate of mine detection while maintaining
a low false alarm rate. The performance of a mine detec-
tion system is therefore commonly measured by a receiver
operating characteristics (ROC) curve that specifies the
rate of true detection versus the rate of false alarm.
To improve the overall ROC of the landmine detection

system, several algorithms have been introduced in the
last decade. These algorithms use methods such as fuzzy
logic [4], hidden Markov models [5–7], nearest neighbor
classifiers [8, 9], support vector machines [10], or random
forest [11] to assign a confidence that a mine is present at
a point.
In [5, 6], hidden Markov modeling was proposed for

detecting both metal and nonmetal mine types using
data collected by a moving vehicle-mounted GPR sys-
tem. These initial applications have proved that HMM
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techniques are feasible and effective for landmine detec-
tion. The initial work relied on simple gradient edge
features. Subsequent work used an edge histogram
descriptor (EHD) approach to extract features from the
original GPR signatures. The baseline HMM classifier
consists of two HMM models, one for mine and one for
background. The mine (background) model captures the
characteristics of the mine (background) signatures. The
model initialization and subsequent training are based on
global averaging over the training data corresponding to
each class.
Most subsequent published works in the area of land-

mine detection using HMMs focused on feature-level
fusion [12] and/or model-level fusion [13–15]. All of these
methods still use a single model for each class. In this
paper, we argue that a single model is not sufficient to
capture the intra-class variability. In the context of land-
mine detection, variations in the class of mines may be
caused by the different mine types, burial depth, soil
type, and moisture. Similarly, background signatures may
exhibit large variations due to different soil conditions and
data preprocessing techniques. To generalize the HMM
approach, we identify the variations within each class in an
unsupervised manner and use multiple models to account
for the intra-class variations.
The proposed approach consists of the construction of

a mixture of HMMs to cover the diversity of the training
data. This approach, called ensemble of hidden Markov
models (eHMM), has four main components: similarity
matrix computation, relational clustering, adaptive train-
ing scheme, and decision level fusion. These components
are summarized by the block diagram in Fig. 1 and will be
described in section 4.
The remainder of this paper is organized as fol-

lows. Section 2 provides background material on hidden
Markov models. Section 3 highlights the motivations for
adopting multiple models in our approach. Section 4 out-
lines the eHMM architecture and describes its different
components. Section 5 reports the experimental results of
our eHMM approach on large GPR collections and com-
pare them to those of the baseline HMM detector. Finally,
conclusions are provided in Section 6.

2 Background
2.1 Hidden Markov models
An HMM is a model of a doubly stochastic process that
produces a sequence of random observation vectors at
discrete times according to an underlying Markov chain.
At each observation time, theMarkov chain may be in one
ofN states {s1, . . . , sN } and, given that the chain is in a cer-
tain state, there are probabilities of moving to other states.
These probabilities are called transition probabilities. Let
T be the length of the observation sequence (i.e., number
of time steps), let O = {O1, . . . ,OT } be the observation

sequence, and let Q = {q1, . . . , qT } be the state sequence.
The compact notation

λ = (A,B,π) (1)

is generally used to indicate the complete parameter set of
the HMM model. In (1), A = [ aij] is the state transition
probability matrix, where aij = Pr(qt = j|qt−1 = i) for
i, j = 1, . . . ,N ; π =[πi], where πi = Pr(q1 = si) are
the initial state probabilities; and B = bi(Ot), i = 1, . . . ,N ,
where bi(Ot) = Pr(Ot|qt = i) is the observation
probability distribution in state i.
An HMM is called continuous if the observation prob-

ability density functions are continuous and discrete oth-
erwise. In the case of the discrete HMM, the observation
vectors are commonly quantized into a finite set of sym-
bols, {v1, v2, . . . , vM}, called the codebook. Each state is
represented by a discrete probability density function and
each symbol has an associated probability of occurring
given that the system is in a given state. In other words, B
becomes a simple set of fixed probabilities for each state.
That is, bi(Ot) = bi(k) = Pr(vk|qt = i), where vk is the
nearest codebook symbol to Ot .
Given the form of the hidden Markov model defined in

(1), Rabiner [16] defines three key problems of interest
that must be solved for the model to be useful in real-
world applications: (i) the classification problem; (ii) the
problem of finding an optimal state sequence; and (iii) the
problem of estimating the model parameters.
The classification problem involves computing the

probability of an observation sequence O = {O1,
O2, . . . ,OT } given a model λ, i.e, Pr(O|λ). This probabil-
ity is computed efficiently using the forward–backward
procedure [16].
In most applications, it often turns out that computing

an optimal state sequence is more useful than Pr(O|λ).
There are several possible optimality criteria. One that
is particularly useful is to maximize Pr(O,Q|λ) over all
possible state sequences Q. The Viterbi algorithm [17] is
an efficient and formal technique for finding this optimal
state sequence and its probability.
The third problem in building an HMM is the train-

ing problem: how does one estimate the parameters of the
model? The problem is difficult because there are several
levels of estimation required in an HMM. First, the states
themselves must be estimated. Then, the model parame-
ters λ = (A,B,π) need to be estimated. For the discrete
HMM, first the codebook is determined, usually using
the K-means algorithm [18], or other vector quantization
algorithms. Then, the parameters (A,B,π) are estimated
iteratively using the Baum-Welch learning algorithm [19].

2.2 Baseline HMM classifier for landmine detection
The baseline HMM classifier for GPR-based landmine
detection was first introduced in [5]. It consists of two
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Fig. 1 Block diagram of the proposed eHMM

HMMmodels, one for mines and one for the background.
Each model has four states and produces a probability
value by backtracking through model states using the
Viterbi algorithm [17]. Themine model, λm, is designed to
capture the spatial distribution of the features. This model
assumes that mine signatures have a hyperbolic shape
comprised of a succession of rising, horizontal, and falling
edges with variable duration in each state. The beginning
and the end of the observation vectors correspond typi-
cally to a non-edge (or background) state. The background
model, λb, is needed to capture the background and clut-
ter characteristics. No prior information or assumptions
are used for this model.
The architecture of the baseline HMM classifier is

shown in Fig. 2. Full details of the model’s initialization
and training can be found in [5]. The probability value
produced by themine (background)model can be thought
of as an estimate of the probability of the observation
sequence given that there is a mine (background) present.
The confidence value assigned to each observation

sequence, Conf(O), depends on: (1) the probability

assigned by the mine model, Pr(O|λm); (2) the probability
assigned by the background model, Pr(O|λc); and (3) the
optimal state sequence. Thus,

Conf(O) =
{
max

(
log Pr(O|λm)

Pr(O|λc) , 0
)

if #{st = 1, t = 1, · · · ,T} ≤ Tmax

0 otherwise

(2)

where #{st = 1, t = 1, · · · ,T} corresponds to the number
of observations assigned to the background state (state 1).
Tmax is defined experimentally based on the shortest mine
signature. Equation (2) ensures that sequences with a large
number of observations assigned to state 1 are considered
non-mines.

2.3 Extensions to the baseline HMM for landmine
detection

In an effort to improve performance and generaliza-
tion, several extensions to the baseline HMM have been
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Fig. 2 Architecture of the baseline HMM classifier for landmine detection

proposed. For instance, in [12, 13], the authors pro-
posed the multi-stream HMM (MSHMM) that com-
bines multiple sets of features. An optimal weight
for each feature was learned in the training phase.
In [14], maximum likelihood (ML) and minimization
of classification error (MCE) learning methods were
derived for the MSHMM. In [15], HMMs with stick-
breaking priors (SBHMM) [20] were employed to learn
the number of HMM states in the baseline HMM
landmine detector. This approach relies on a variational
Bayesian learning technique in lieu of standard BW
training.

3 Motivations
The baseline HMM represents each class by a single
model learned from all the observations within that
class. The goal is to generalize from all the training
data in order to classify unseen observations. However,
for complex classification problems with large intra-class
variations, combining observations with different charac-
teristics to learn one model might lead to too much aver-
aging thus, lose the discriminating characteristics of the
observations.
To illustrate this problem, we use the example of detect-

ing buried landmines using GPR sensors1. In this case, the
training data consists of a set of N GPR alarms labeled as
mines (class 1) or clutter (class 0). The goal is to generalize
from the training data in order to classify unlabeled GPR
signatures. In Fig. 3, we show three groups of mines with
different signature strengths. It is obvious that grouping
all of these signatures, to learn a single model, would lead
to poor generalization. Similarly, the false alarms could
have significant variations as they are caused by different
clutter objects and varied environment conditions. These
issues are more acute when data are collected by multiple
sensors and/or using various features.
Consequently, learning a set of models that reflect dif-

ferent characteristics of the observations might be more
beneficial than using one global model for each class. This

is typical in many classifiers such as the K-NN [9], which
uses different prototypes for each class, and the SVM [10],
which uses multiple support vectors.
In this paper, we develop a new approach that replaces

the two-model classifier with one that includes multiple
models for each class. For instance, each group of signa-
tures in Fig. 3 would be used to learn a different model.
Our approach aims to capture the characteristics of the
observations that would be lost under averaging in the
two-model case.
We hypothesize that under realistic conditions, the

data are generated by multiple models. The proposed
approach, called ensemble HMM (eHMM), attempts to
partition the training data within the log-likelihood space
and identify multiple clusters in an unsupervised man-
ner. Depending on each cluster’s homogeneity and size, an
appropriate training scheme is applied to learn the corre-
sponding HMM parameters. The resulting K HMMs are
then aggregated through a decision level fusion compo-
nent to form a descriptive model for the data.

4 Ensemble HMM architecture
Let O = {

Or , yr
}R
r=1 be a set of R labeled sequences

of length T where Or =
{
O(1)
r , · · · ,O(T)

r
}

and yr ∈
{1, · · · ,C} is the label (class) of sequenceOr . First, we need
to identify subgroups of observations that have common
patterns. Ground truth information could not be used for
this task as it is insufficient and unreliable. For instance,
a large deep buried mine can have a signature similar to
a small shallow buried mine. Furthermore, the same mine
buried at the same depth in soil with different proper-
ties may have different signatures. Thus, the partitioning
needs to be done in an unsupervised way, i.e., regardless of
the observation’s labels and the limited ground truth infor-
mation. In our approach, we use unsupervised learning to
cluster the set of all observations, O, into subgroups of
“similar” observations. The first step in this approach is to
define a measure of similarity between two observations.
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Fig. 3 Sample mine signatures manually categorized into three groups. aMines with strong signature. bMines with average signature. cMines with
weak signature

4.1 Similarity between observations in the log-likelihood
space

4.1.1 Fitting individual models to sequences
Initially, each sequence in the training data, Or , 1 ≤ r ≤ R
is used to learn an HMM model λr . Even though using
only one sequence of observations to learn an HMM
might lead to over-fitting, this technique is only an inter-
mediate step that aims to capture the characteristics of
each sequence. The produced HMM model is meant to
give a maximal description of each sequence, and there-
fore, over-fitting is not an issue in this context. In fact,
it is desired that the model perfectly fits the observation
sequence. In this case, the likelihood of each sequence
with respect to its corresponding model is expected to be
higher than those with respect to the remaining models.
Let

{
λ

(0)
r

}R
r=1

be the set of initial models and let s(r)n , 1 ≤
n ≤ N , be the representative of each state in λ

(0)
r . Each

model hasN states. First, the model states can be assigned
to the sequence observations either heuristically, using
domain knowledge, or automatically by clustering the
sequence observations into N clusters. In our approach,
we use the latter and we define the states’ means and
observations as the center and elements of each resulting
cluster, respectively. Consequently, the transition matrix
and the initial probabilities of λ(0)

r are set according to the
aforementioned associations. For the emission probabili-
ties, the initialization differs whether we use the discrete
or continuous HMM.
For the discrete case, the codewords {v1, · · · vM} of the

initial individual DHMM model are the actual observa-
tions of the sequence {O1, · · ·OT }. The emission probabil-
ity of each codeword in each state is inversely proportional
to their distance to the mean of that state. We use

bn(m) =
1

‖vm−sn‖∑N
l=1

1
‖vm−sl‖

, 1 ≤ m ≤ M, 1 ≤ n ≤ N . (3)

To satisfy the requirement that
∑M

m=1 bn(m) = 1, we
normalize the values using

bn(m) ←− bn(m)∑M
l=1 bn(l)

, 1 ≤ m ≤ M, 1 ≤ n ≤ N . (4)

In the continuous case, the emission probability den-
sity functions are modeled by mixtures of Gaussians. In
the case of individual sequence models, as the number of
observations is small, we use a single component mixture
for each state. Thus, the observations belonging to each
state are used to estimate the mean and covariance of that
state’s component. We use

μn = mean {Ot|Ot ∈ sn} , 1 ≤ n ≤ N , (5)

and

�n = covariance {Ot|Ot ∈ sn} , 1 ≤ n ≤ N . (6)

Then, the Baum-Welch algorithm [21] is used to adapt the
model parameters to each given observation. Let {λr}Rr=1
be the set of trained individual models.
Next, we need to define a measure that evaluates the

similarity between pairs of observation sequences. While
similarity between static data observations is straight-
forward and well defined, defining a similarity between
observation sequences is more of a challenge. Within the
context of HMM modeling, we consider two observation
sequences similar if: (i) they fit each other’s models; and
(ii) they have similar Viterbi optimal paths [17].
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4.1.2 Log-likelihood-based similarity
The log-likelihood, L(i, j), of sequence Oi being generated
frommodel λj reflects the degree to whichOi fits λj and is
defined as:

L(i, j) = logPr
(
Oi|λj

)
. (7)

In (7), L can be computed using the forward–backward
procedure mentioned in Section 2.1. When the log-
likelihood value is high, it is likely that model λj gener-
ated sequence Oi. In this case, sequences Oi and Oj are
expected to have common salient features and are consid-
ered to be similar. On the other hand, when the likelihood
term is low, it is unlikely that model λj generated the
sequence Oi. In this case, Oi and Oj are considered to be
dissimilar. For each observation sequence Or , 1 ≤ r ≤ R,
we compute its likelihood in eachmodel λp, Pr(Or|λp), for
1 ≤ p ≤ R. This will result in an R × R log-likelihood
matrix.

4.1.3 Path-mismatch-based penalty
The likelihood-based similarity may not be always accu-
rate. In fact, some observations can have high likelihood
in a visually different model. This occurs when most of
the elements of a sequence partially match only one or
two of the states of the model. In this case, the observa-
tion sequence can have a high likelihood in the model but
its optimal Viterbi path will deviate from the typical path.
To alleviate this problem, we introduce a penalty term,
P(i, j), to the log-likelihood measure that is related to the
mismatch between the most likely sequence of hidden
states of the test sequence (Oi) and that of the generating
sequence (Oj), i.e.,

P(i, j) = DEdit
(
Q(ji),Q(jj)

)
, 1 ≤ i, j ≤ R. (8)

In (8), P(i, j) is the distance between the Viterbi optimal
path, Q(ji), of testing sequence Oi with model λj, and the
Viterbi optimal path of testing sequence Oj with model λj,
Q(jj). In (8), DEdit is the “edit distance” [17] , commonly
used in string comparisons. The “edit distance” between
two strings, say p and q, is defined as the minimum num-
ber of single-character edit operations (deletions, inser-
tions, and/or replacements) that would convert p into q.
The Viterbi path mismatch term is intended to ensure
that similar sequences have few mismatches in their cor-
responding Viterbi optimal paths. Since the Viterbi path is
already available when using the forward–backward pro-
cedure for the likelihood computation, the penalty term
does not require significant additional computation.
Finally, we define the similarity, S, between two

sequences Oi and Oj by combining (7) and (8):

S(i, j) = αL(i, j) − (1 − α)P(i, j). (9)

In (9), the mixing factor, α ∈[ 0, 1], is a trade-off param-
eter between the log-likelihood-based similarity and the

Viterbi-path-mismatch-based dissimilarity. It is estimated
experimentally by maximizing the intra-class similarity
and minimizing the inter-class similarity across the train-
ing data. A larger value of α corresponds to a dominant
log-likelihood-based similarity where the need for the
penalty mismatch is not significant. A smaller α corre-
sponds to a more significant path mismatch penalty.
Using (9) to compute the similarity between all pairs

of observations results in a similarity matrix that is not
symmetric. Thus, we use the following three-step sym-
metrization scheme to transform it into a pairwise dis-
tance matrix:⎧⎨
⎩
1. D(i, j) = −S(i, j) 1 ≤ i, j ≤ R
2. D(i, i) = 0, 1 ≤ i ≤ R
3. D(i, j) = max(D(i, j),D(j, i)), 1 ≤ i, j ≤ R.

(10)

4.2 Pairwise distance-based clustering
The distance matrix, computed using (10), reflects the
degree to which pairs of sequences are considered similar.
The largest variation is expected to be between sequences
from different classes. Other significant variations may
exist within the same class, e.g., the groups of signatures
shown in Fig. 3. Our goal is to identify the similar groups
so that one model can be learned for each group. This
task can be achieved using any relational clustering algo-
rithm. In our work, we use the standard agglomerative
hierarchical algorithm [18].
Agglomerative hierarchical clustering is a bottom–up

approach that starts with each data point as a cluster. It
then proceeds bymerging themost similar clusters to pro-
duce a sequence of clusters. Several measures have been
used to assess the similarity between clusters [18]. Exam-
ples include single link, complete link, average link, and
ward distance. The complete link method tends to pro-
duce a large number of small and compact clusters, while
the single link method is known to result in few “elon-
gated” clusters with large number of points. A compro-
mise between the two is the minimum-variance distance,
or ward distance [22]. This distance is defined as

d(i, j) = ninj
ni + nj

∥∥ci − cj
∥∥2 (11)

where nk and ck are the cardinality and the centroid of
cluster Ck , respectively. It has been shown in [17] that this
approach merges the two clusters that lead to the smallest
increase in the overall variance.

4.3 Ensemble HMM initialization and training
The previous clustering step results in K clusters, each
comprised of potentially similar sequences. Each cluster is
then used to learn an HMM, resulting in an ensemble of K
HMMs. Let Nk denote the number of sequences assigned
to the same cluster k. Since our clustering step did not use
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class labels, clusters may include sequences from differ-
ent classes. LetN (c)

k be the number of sequences in cluster
k that belong to class c, such that

∑C
c=1N

(c)
k = Nk . For

instance, for the landmine example, if we let c = 1 denote
the class of mines and c = 0 denote the class of clutter,
N (1)
k would be the number of mines assigned to cluster k.
The next step of our approach consists of learning a

set of HMMs that reflect the diversity of the training
data. Since a cluster contains a set of similar sequences,
and each cluster may include observations from different
classes, we learn one HMM model

{
λ

(c)
k

}
for each set of

sequences assigned to class c within cluster k. Let O(c)
k ={

O(c)
r , y(c)

r
}N (c)

k

r=1
be the set of sequences partitioned into

cluster k that belong to class c and let
{
λ

(c)
r

}N (c)
k

r=1
be their

corresponding individual HMMmodels, c ∈ {1, · · · ,C}.
For each cluster, we devise one of the following opti-

mized training methods based on the cluster’s size and
homogeneity.

• Clusters dominated by sequences from only one
class: In this case, we learn only one model for this
cluster. The sequences within this cluster are
presumably similar and belong to the same ground
truth class, denoted Ci. We assume that this cluster is
a representative of that particular dominating class. It
is expected that the class conditional posterior
probability is uni-modal and peaks around the MLE
of the parameters. Thus, a maximum likelihood
estimation would result in an HMM that best fits this
particular class. For these reasons, we use the
standard Baum-Welch re-estimation procedure [21].
Let K1 be the number of homogenous clusters that fit
into this category and let

{
λ

(Ci)
i , i = 1, · · · ,K1

}
denote the set of BW-trained models.

• Clusters with a mixture of observations
belonging to different classes: In this case, it is
expected that the posterior distribution of the
classes is multi-modal. Thus, we need to learn one
model for each class represented in this cluster. The
MLE approach is not adequate, and more
discriminative learning techniques such as genetic
algorithms [23] or simulated annealing optimization
[24] are needed to address the multimodality. In our
work, we build a model for each class within the
cluster. We focus on finding the class boundaries
within the posteriors rather than trying to
approximate a joint posterior probability. Thus, the
models’ parameters are jointly optimized to minimize
the overall misclassification error using a
discriminative learning approach [25]. Let K2 be the
number of mixed clusters that fit into this category

and let
{
λ

(c)
j , j = 1, · · · ,K2, c = 1, · · · ,C

}
be the set

of MCE-trained models.
• Clusters containing a small number of sequences:

The MLE and MCE learning approaches need a large
number of data points to give robust estimates of the
model parameters. Thus, when a cluster has few
samples, the above approaches may not be reliable.
Ignoring these clusters is not a good option as they
may contain information about sequences with
distinctive characteristics. The Bayesian training
framework [26], on the other hand, is suitable to learn
model parameters using a small number of training
sequences. Specifically, we select only the dominating
class for this cluster and learn a single model using a
variational Bayesian approach [26] to approximate
the class conditional posterior distribution. Let K3 be
the number of small clusters that fit into this category
and let

{
λ

(Ck)
k , k = 1, · · · ,K3

}
denote the set of

Bayesian-trained models.

To summarize, for each homogenous cluster i, we define
one model λ

(Ci)
i , i = 1, · · · ,K1, for the dominating class

Ci. For mixed clusters, we define C models per cluster:
λ

(c)
j , c = 1 . . .C, j = 1, · · · ,K2. For each small cluster,

we define one model λ
(Ck)
k for the dominating class Ck .

The ensemble HMM mixture is defined as
{
λ

(c)
k

}
, where

k ∈ {1, · · · ,K}, and c = Ck if cluster k is dominated
by sequences labeled with class Ck , and c ∈ {1 · · · ,C} if
cluster k is a mixed cluster.
For simplicity, we assume that all models λ

(c)
k have a

fixed number of states N. For each model λ
(c)
k , the ini-

tialization step consists of assigning the priors, the initial
states transition probabilities, and the states parameters
(initial means and initial emission probabilities) using
observations O(c)

r and their respective individual models
λ

(c)
r , r ∈

{
1, · · · ,N (c)

k

}
. In particular, the initial val-

ues for the priors and the state transition probabilities
are obtained by averaging, respectively, the priors and
the state transition probabilities of the individual models
λ

(c)
r , r ∈

{
1, · · · ,N (c)

k

}
. The initialization of the emission

probabilities in each state, b(k,c)
n , depends on whether the

HMM is discrete or continuous.

• Discrete HMM (DHMM): the state representatives
and the codebook of model λ(c)

k are obtained by
partitioning and quantizing the observations O(c)

k .
First, sequences from cluster k that belong to class c,
O(c)
r , are “unrolled” to form a vector of observations

U(k,c) of length N (c)
k T . The state representatives,

s(k,c)n , are obtained by clustering U(k,c) into N clusters
and taking the centroid of each cluster as the state
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representative. Similarly, the codebook V(k,c) =[
v(k,c)
1 , · · · , v(k,c)

M

]
is obtained by clustering U(k,c) into

M clusters. For each symbol v(k,c)
m , the membership in

each state s(k,c)n is computed using

b(k,c)
n (m) =

1
‖v(k,c)m −s(k,c)n ‖∑N
l=1

1∥∥∥v(k,c)m −s(k,c)l

∥∥∥
, 1 ≤ m ≤ M. (12)

To satisfy the requirement
∑M

m=1 b
(k,c)
n (m) = 1, we

scale the values by:

b(k,c)
n (m) ←− b(k,c)

n (m)∑M
l=1 b

(k,c)
n (l)

(13)

• Continuous HMM (CHMM): we assume that each
state has Ng Gaussian components. For each model
λ

(c)
k , as in the discrete case, we define a vector of

observations, U(k,c). First, U(k,c) is partitioned into N
clusters and the center of cluster n is taken as state
s(k,c)n . Let U(k,c)

n be the observations assigned to
cluster n. Next, we partition U(k,c)

n into Ng clusters
using the k-means algorithm [27]. The mean of each
component, μ(k,c,g)

n , is the center of one of the
resulting clusters, and the covariance, �(k,c,g)

n , is
estimated using the observations that belong to that
same cluster. If we denote by U(k,c,g)

n the observations
that belong to component g of state s(k,c)n , the
parameters of λ(c)

k are computed using

μ
(k,c,g)
n = mean

{
U(k,c,g)
n

}
, 1 ≤ n ≤ N , 1 ≤ g ≤ Ng .

(14)

�
(k,c,g)
n = covariance

{
U(k,c,g)
n

}
, 1 ≤ n ≤ N , 1 ≤ g ≤ Ng .

(15)

For both the discrete and continuous cases, any clus-
tering algorithm, such as the K-means [27] or the fuzzy
c-means [28], could be used to identify the states, code-
book, or the multiple components. After initialization,
we use one of the training schemes described earlier, to
update λ

(c)
k parameters using the respective observations

O
(c)
k , k ∈ {1, · · · ,K}, c ∈ {1, · · · ,C}. As mentioned ear-

lier, for homogenous clusters, BW training results in one
model λBW per cluster; for mixed clusters, MCE training
results in C models per cluster, λMCE

c , c = 1 . . .C; and for
small clusters, variational Bayesian learning results in one
model per cluster, λVB. The output of Baum-Welch- and
VB-trained cluster models is Pr(O|λk) while the output of
the MCE-trained cluster models is maxc Pr

(
O|λMCE

k,c

)
.

4.4 Decision level fusion
The partial confidence values of the different models
need to be combined into a single confidence value. Let
� =

{
λBWi , λMCE

j , λVBk
}
be the resulting mixture model

composed of a total of K models, K = K1 + K2 + K3.
Let F(k, r) = logPr (Or|λk), 1 ≤ r ≤ R, 1 ≤ k ≤ K ,

be the log-likelihood matrix obtained by testing the R
training sequences with the K models. Each column fr of
matrix F represents the feature vector of each sequence in
the decision space (recall that fr is a K-dimensional vector
whileOr is a sequence of vector observations of length T).
In other words, each column represents the confidences
assigned by the K models to each sequence r. Therefore,
the set of sequences O = {Or , yr}Rr=1 is mapped to a con-
fidence space {fr , yr}Rr=1. Finally, a combination function,
H, takes all the fr ’s as input and outputs the final deci-
sion. The general framework for fusing the K outputs is
highlighted in Algorithm 1.

Algorithm 1 Testing a new sequence using the eHMM
Require: Test observation O
Ensure:
1: Compute Pr

(
O|λBWi

)
for the K1 clusters learned with

BW
2: Compute Pr

(
O|λMCE

j

)
= maxc Pr

(
O|λMCE

j,c

)
, for the

K2 clusters learned with MCE
3: Compute Pr

(
O|λVBk

)
for the K3 clusters learned with

VB
4: Combine the outputs of the multiple mod-

els: Pr(O|�) = H
(
Pr

(
O|λBWi

)
, Pr

(
O|λMCE

j

)
,

Pr
(
O|λVBk

))

Several decision level fusion techniques such as simple
algebraic [29], artificial neural networks (ANN) [30], and
hierarchical mixture of experts (HME) [31] can be used.
In our work, we use an ANN with a single-layer percep-
tron and no hidden layers. The ANN weights are learned
from the labeled training data using the backpropagation
algorithm [32].
The architecture of the proposed eHMM is summarized

in Fig. 1. It is composed of four main components: simi-
larity matrix computation, relational clustering, adaptive
training scheme, and decision level fusion. To test a new
sequence, the outputs of the different models are aggre-
gated into a single confidence value using Algorithm 1.

5 Application to landmine detection using
ground-penetrating radar data

5.1 Data collections
The proposed eHMM was implemented and tested on
GPR data collected with a NIITEK vehicle mounted GPR
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system [33] (see Fig. 4). This system collects 51 chan-
nels of data. Adjacent channels are spaced approximately
five centimeters apart in the cross-track direction, and
sequences (or scans) are taken at approximately 1-cm
down-track intervals. Each A-scan, that is, the measured
waveform that is collected in one channel at one down-
track position, contains 416 time samples at which the
GPR signal return is recorded. We often refer to the time
index as depth although, since the radar wave is travel-
ing through different media, this index does not represent
a uniform sampling of depth. Thus, we model an entire
collection of input data as a three-dimensional matrix of
sample values, S(z, x, y), z = 1, · · · , 416; x = 1, · · · , 51; y =
1, · · · ,NS, whereNS is the total number of collected scans,
and the indices z, x, and y represent depth, cross-track
position, and down-track positions respectively. A collec-
tion of scans, forming a volume of data, is illustrated in
Fig. 5.
Figure 6 displays several B-scans (sequences of A-

scans) both down-track (formed from a time sequence
of A-scans from a single sensor channel) and cross-track
(formed from each channel’s response in a single sample).
The surveyed object position is highlighted in each figure.
The objects scanned are (a) a high-metal content antitank
mine, (b) a low-metal antipersonnel mine, and (c) a wood
block.
Raw GPR data needs to be preprocessed and pre-

screened. Preprocessing includes ground-level alignment
and signal and noise background removal. Prescreening
is needed to focus attention and identify regions with
subsurface anomalies. For this step, we use the adaptive
least mean squares (LMS) prescreener [34]. The LMS flags
locations of interest utilizing a computationally inexpen-
sive algorithm so that more advanced algorithms can be
applied only on the small subsets of data flagged by the
prescreener.
In our experiments, data sets are comprised of a variety

of mine and background signatures. In particular, we use

Fig. 4 NIITEK vehicle mounted GPR system

Fig. 5 A collection of few GPR scans

data collected from outdoor test lanes at three different
locations. The first two locations, site 1 and site 2, were
temperate regions with significant rainfall, whereas the
third collection, site 3, was a desert region. The lanes are
simulated roads with knownmine locations. Multiple data
collections were performed at each site at different dates.
The statistics of these data sets are reported in Table 1.
Data cubes of size (15 scans, 7 channels, 416 depths) were
extracted from each scan position flagged by the pre-
screener and are presented to the classifier to discriminate
between mines and false alarms.

5.2 Feature extraction
The goal of the feature extraction step is to transform
original GPR data into a sequence of observation vectors.
We use two types of features that have been proposed
and used independently. Each feature represents a differ-
ent interpretation of the raw data and aims at providing a
good discrimination between mine and clutter signatures.
These features are outlined in the following subsections.

5.2.1 EHD features
This feature is based on the edge histogram descriptor
[9] (EHD) and characterizes edges in the spatial domain.

Table 1 Data collections

Total number of Mine encounters False alarms
prescreened alarms

D1 2477 732 1745

D2 1343 724 619

D3 1843 613 1230
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Fig. 6 NIITEK radar down-track and cross-track (at position indicated by a line in the down-track) B-scans pairs for a an Anti-Tank (AT) mine, b an
Anti-Personnel (AP) mine, and c a non-metal clutter alarm

The EHD captures the salient properties of the 3D alarms
in a compact and translation invariant representation.
It extracts edge histograms capturing the frequency of
occurrence of edge orientations in the data associated
with a ground position. Simple edge detector operators
are used to identify edges and group them into five cat-
egories: vertical, horizontal, diagonal, anti-diagonal, and
isotropic (non-edge). Each B-scan position is then rep-
resented by a five-dimensional observation vector. Each
dimension of this vector represents the percentage of
pixels (in a small interval along the depth) that belong to
each of the five edge categories.

5.2.2 Gabor features
Gabor features characterize edges in the frequency
domain at multiple scales and orientations and are based
onGabor wavelets [7]. This feature is extracted by expand-
ing the signature’s B-scan (depth vs. down-track) using
a bank of scale and orientation selective Gabor filters.
Expanding a signal using Gabor filters provides a local-
ized frequency description. In our experiments, we use a
bank of filters tuned to the combination of three scales and
four orientations. Each observation is then represented by
a 12-dimension feature vector.

5.3 Ensemble HMM implementation and results
In all experiments reported in this paper, we use a sixfold
cross validation for each data collection Dl, l ∈ {1, 2, 3}.
For each fold, a subset of the data (DlTrn) is used for
training and the remaining data (DlTst) is used for testing.

Ol
Feat
Trn denotes the set of observation sequences extracted

from datasetDl, using one of the feature extraction meth-
ods, “Feat” (EHD or Gabor).
The first step of the eHMM is the similarity matrix com-

putation. This step requires fitting an individual HMM
model for each sequence in the training data Ol

Feat
Trn .

Figure 7 shows the log-likelihood and path mismatch
penalty matrices for a training collection that has 521
mines and 1471 clutter signatures (first training fold of
D1 using EHD features, O1

EHD
Trn1). In these figures, the

indices are rearranged so that the first entries correspond
to the mine signatures and the latter ones correspond to
non-mine signatures. As it can be seen, the matrices are
composed mainly of four blocks. The diagonal blocks cor-
respond to testing mine signatures in mine models and
non-mine signatures in non-mine models, and the off-
diagonal blocks correspond to testing mine signatures in
non-mine models and non-mine signatures in mine mod-
els. In these figures, dark pixels correspond to small values
of the log-likelihood or path mismatch penalty and bright
pixels correspond to larger entries of the correspond-
ing matrices. Note that in the case of the log-likelihood
matrix in Fig. 7a, the diagonal blocks are brighter than
the off-diagonal blocks. This means that the signatures
from the same class are more similar to each other than
to signatures from different classes. Similarly, in the path
mismatch penalty matrix of Fig. 7b, the diagonal blocks
are darker than the off-diagonal blocks. This means that
when different mines are tested with each other models,
the paths are similar. The above observations are trivial
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Fig. 7 Log-likelihood and path mismatch penalty matrices for a large collection of mine and clutter signatures. a Log-likelihood true and b path
mismatch penalty

as alarms from the same class are expected to be more
similar to each other than alarms from different classes.
However, they could be used to validate our similarity (and
penalty) measures in the log-likelihood space. A more
important observation is that within each diagonal block,
sub-blocks can be extracted. This is an indication of the
existence of different clusters within the mines (and the
clutter) themselves.
In the second step, the similarity matrix is transformed

into a distance matrix, D, using (10). The hierarchi-
cal clustering algorithm [18] is then applied, using D
with a fixed number of clusters K = 10, to identify
sub-categories within the training data. For both the
discrete and continuous versions, using any of the fea-
tures and datasets, the eHMM clustering step success-
fully assigns groups of similar alarms into clusters. For
instance, in Fig. 9, we show the hierarchical clustering
results of the first crossvalidation fold of the eCHMM
using the EHD features on dataset D1. As it can be seen

in Fig. 9a, we have a group of clutter dominated clus-
ters (in brown) and a second group of clusters dominated
by mines (in blue). In Fig. 8, we show sample signatures
that belong to clusters 1, 6, and 10. As it can be seen
from Figs. 8 and 9a, cluster 1 has only clutter and clus-
ters 6 and 10 are composed exclusively of mine alarms.
The mines that belong to cluster 6 have typically strong
mine signatures. These mines, as shown in Fig. 9b, c,
are typically mines with highmetal content that are buried
at shallow depths. The mines that belong to cluster 10
have weak GPR signatures. These mines, as shown in
Fig. 9b, c, are typically mines with weak signatures that
are either low metal mines or mines buried at deep
depths.
Additional details of the clusters’ contents per mine type

and per burial depth are shown in Fig. 9b, c. To summa-
rize, the training data includes four homogeneous clusters
(Clusters 6, 7, and 10 contain only mines and cluster 1 has
only clutter). The remaining clusters (2, 3, 4, 5, 8, and 9)

Fig. 8 Sample signatures from clusters 1, 6, and 10
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Fig. 9 eCHMM hierarchical clustering results ofO1
EHD
Trn1: distribution of the alarms in each cluster: a per class, b per type, c per depth

are mixed. Therefore, using the notation of Algorithm 1,
we define our eHMM as:⎧⎪⎪⎨

⎪⎪⎩
λBWi =

{
λ

(F)
1 , λ(M)

6 , λ(M)
7 , λ(M)

10

}
,

λMCE
j =

{
λ

(M)
j , λ(C)

j

}
, j ∈ {2, 3, 4, 5, 8, 9} ,

λVBk = ∅.
(16)

In Table 2, we report the means and the weights of
the components of each state of the BW-trained eCHMM
model for cluster 6, λ

(M)
6 , as well as its transition proba-

bility matrix. Cluster 6 contains “typical” mines that have

Table 2 λM6 CHMMmodel parameters of cluster 6

Means Weights

H V D A N w

s1 c11 0.21 0.17 0.41 0.07 0.13 g11 0.30

c12 0.36 0.12 0.25 0.11 0.17 g12 0.22

c13 0.15 0.18 0.23 0.06 0.37 g13 0.49

s2 c21 0.42 0.09 0.25 0.12 0.13 g21 0.30

c22 0.37 0.10 0.10 0.30 0.13 g22 0.20

c23 0.59 0.05 0.10 0.12 0.14 g23 0.50

s3 c31 0.38 0.11 0.10 0.26 0.16 g31 0.21

c32 0.20 0.17 0.07 0.43 0.13 g32 0.30

c33 0.14 0.20 0.06 0.25 0.36 g33 0.49

A

s1 s2 s3

s1 0.73 0.27 0.00

s2 0.00 0.67 0.33

s3 0.00 0.00 1.00

strong-edge and near-perfect hyperbolic shape signatures
with succession of states s1, s2, and s3. Recall that s1, s2,
and s3 correspond respectively to the rising (Dg), flat (Hz),
and falling (Ad) edges within the mine signature. There-
fore, all the components of s1 (resp. s3) have their diagonal
edge higher (resp. lower) than the anti-diagonal one. Sim-
ilarly, components of s2 have higher horizontal edge and
comparable diagonal and anti-diagonal edges. As it can be
seen in the transition matrix of Table 2, the probability of
staying in s1 (resp. s2) is approximately three times (resp.
two times) the probability of moving to s2 (resp. s3).

Table 3 λM10 CHMMmodel parameters of cluster 10

Means Weights

H V D A N w

s1 c11 0.14 0.13 0.17 0.08 0.48 g11 0.27

c12 0.26 0.11 0.20 0.06 0.37 g12 0.40

c13 0.16 0.04 0.10 0.05 0.66 g13 0.32

s2 c21 0.30 0.07 0.10 0.14 0.39 g21 0.50

c22 0.48 0.05 0.11 0.14 0.22 g22 0.28

c23 0.27 0.12 0.07 0.37 0.16 g23 0.21

s3 c31 0.09 0.11 0.03 0.18 0.59 g31 0.60

c32 0.22 0.17 0.05 0.36 0.20 g32 0.04

c33 0.10 0.20 0.02 0.31 0.36 g33 0.36

A

s1 s2 s3

s1 0.74 0.26 0.00

s2 0.00 0.89 0.11

s3 0.00 0.00 1.00
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Fig. 10 Scatter plot of the confidences of the training data in cluster model λ(M)
6 (strong mines) vs. cluster model λ(M)

10 (weak mines)

Table 3 shows the BW-trained eCHMMmodel for clus-
ter 10, λ

(M)
10 . Recall that cluster 10 contains only mine

signatures that have a lowmetal content and/or are buried
at 4" or deeper, as it can be seen in Fig. 9c. Therefore,
the alarms in cluster 10 are expected to have weak sig-
natures and weak edge features. This could explain the
large non-edge component of most of the states’ means
components of λ

(M)
10 reported in Table 3, compared to

the non-edge components of λ(M)
6 ’s states representatives.

Nevertheless, the states representatives still characterize
the hyperbolic shape of a typical mine signature, i.e.,
the succession of Dg − Hz − Ad states. For instance, all
s1 components means have their diagonal D dimension
larger than the anti-diagonal A dimension. For the tran-
sition matrix, we notice that λ

(M)
10 is more stationary in

s2, with a probability of 0.89, compared to λ
(M)
6 . This

means that, on average, sequences belonging to cluster 10
have a large number of observations with flat edge and

fewer observations with strong diagonal or anti-diagonal
edges.
Figure 10 shows the scatter plot of the confidences

assigned by λ
(M)
6 and λ

(M)
10 to all the training data. In

this figure, we display clutter and mine signatures that
belong to each cluster using different symbols and colors.
Even though the two models are dominated by mine sig-
natures, we see that not all confidence values are highly
correlated. On one hand, some strong mine signatures,
particularly those belonging to cluster 6, have high log-
likelihoods in model λ

(M)
6 and lower log-likelihoods in

model λ(M)
10 (lower right side of the scatter plot, region R1).

This can be attributed to the fact that cluster 6 contains
mainly strong mines and is more likely to yield high log-
likelihood when testing a strong mine signature. On the
other hand, in region R2, the performance of λ(M)

10 is better
as it gives higher likelihood values to the “weak” mines
in that region, particularly those belonging to cluster 10.

Fig. 11 ROCs generated by the eDHMM (solid lines) and baseline DHMM (dashed lines) classifiers usingD1 and a EHD, b Gabor features
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Fig. 12 ROCs generated by the eCHMM (solid lines) and baseline CHMM (dashed lines) classifiers usingD1 and a EHD, b Gabor features

In fact, this result is expected because cluster 10 contains
weak mine signatures.
The main conclusion that we can draw from the above

example is that λ
(M)
6 and λ

(M)
10 are very different and char-

acterize two distinct subsets of the training data. The
standard HMM approach would combine all alarms to
learn a single model for mines (weak and strong) and a
single model for clutter.
In the final step, the eHMM mixture is combined using

a single-layer ANN. The ANN parameters are trained to
fit the responses of the eHMM mixture models to the
training data labels.

5.4 eHMM vs. baseline HMM results
In this section, we compare the performance of the pro-
posed eHMM to the baseline HMM [5]. For the eHMM,
we show the results using the ANN fusion and the
hierarchical agglomerative clustering with K = 20. In
Fig. 11a, b, we show the ROCs generated by the dis-
crete versions of the eHMM and the baseline HMM on
dataset D1, using EHD and Gabor features. Similarly, in
Fig. 12a, b, we report the ROCs generated by the contin-
uous versions, i.e., the eCHMM and the baseline CHMM,
on datasetD1. As it can be seen, in all the ROCs of Figs. 11
and 12, at a given false alarm rate (FAR), the eHMM
has a better probability of detecting targets. For instance,
in Fig. 11a, at a FAR of 10 %, the eDHMM using EHD
features successfully identifies 94 % of the mines while
the baseline DHMM identifies only 87 % of the targets.
At the same FAR of 10 %, the ROCs of Fig. 12a show
that the eCHMM successfully identifies 95 % of the tar-
gets while the baseline CHMM probability of detection
is 85 %.
The results for all three datasets are summarized

in terms of the Area Under ROC Curve (AUC) and
are reported in Table 4. As it can be seen, in all
experiments, the eHMM outperforms the baseline
HMM.

6 Conclusions
In this work, we have proposed a novel ensemble
HMM classification method that is based on clustering
sequences in the log-likelihood space. The eHMM uses
multiple HMM models and fuses them for final deci-
sion making. We hypothesized that the data are generated
by multiple models. These different models reflect the
fact that samples from the same class can have different
characteristics resulting in large intra-class variability.
The eHMM, in its discrete and continuous versions,

was implemented and evaluated using large collections of
landmine GPR data. We examined the intermediate steps
of the eHMM and compared its performance to the base-
line HMM. Results on three GPR data collections show
that the proposed method can identify meaningful and
coherent HMM mixture models that describe different
properties of the data. Each individual HMM character-
izes a group of data that share common attributes. The
experiments show that the proposed eHMM intermediate
results are inline with the expected behavior. The results

Table 4 AUC of the ensemble HMM and baseline HMM classifiers

Dataset Classifier using: EHD Gabor

D1 Ensemble DHMM 712 719

Baseline DHMM 643 499

Ensemble CHMM 718 617

Baseline CHMM 614 472

D2 Ensemble DHMM 402 127

Baseline DHMM 107 30

Ensemble CHMM 359 122

Baseline CHMM 209 102

D3 Ensemble DHMM 343 296

Baseline DHMM 272 122

Ensemble CHMM 326 226

Baseline CHMM 284 140
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also indicate that, for both the continuous and discrete
versions, the proposed method outperforms the baseline
HMM that uses one model for each class in the data.

Endnote
1The details of the landmine detection application

using GPR signatures will be presented in section 5.
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