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Abstract

In this paper, a sea clutter decomposition model is newlxy proposed. The decomposition structure is organized
according to a comparison study between measured sea clutter and Lorenz chaotic signals. Based on the
decomposition model, a sea clutter constituent synthesis approach is developed to reconstruct sea clutter series
with neural networks. Simulation results demonstrate the effectiveness and stability of the proposed approach.
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1 Introduction
Sea clutter modeling is a significant issue in radar sig-
nal processing. Generally, a proper sea clutter model
is important in radar signal processing for three rea-
sons. Firstly, it can describe the underlying dynamics
of sea clutter. Secondly, with a proper model, effective
detectors can be developed for target tracking in sea
clutter. Finally, it is also useful for generating a repre-
sentative clutter signal for radar system’s testing and
receiver algorithm’s development [1].
Various models for sea clutter have been proposed with

simulation techniques [2]. Traditionally, sea clutter is com-
monly described as a non-Gaussian stochastic process [3],
such as Weibull, log-normal, K, and compound Gaussian
distributions [4–8]. A major drawback of statistical models
is that they provide very little information about the under-
lying dynamics of sea clutter, which might be useful for
improving signal processing performance [9–11]. Moreover,
statistical models are used to describe a large amount of
data’s distribution characteristics. In practical applications, a
coherent processing interval (CPI) is always limited (such
as 64 or 128 pulses). It can be inappropriate to refer to this
small amount of data with statistical models.
While statistical models still have their problems, and the

nonlinear behavior within sea clutter has been confirmed
[1], fractal model and chaotic model of sea clutter are pro-
posed as innovative methods. By applying fractal analyses
techniques (such as the Hurst parameter estimation), the
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fractal modeling of sea clutter has been shown to be effect-
ive in target detection [12–14]. At the mean time, chaotic
modeling of sea clutter is also studied. In the past decades,
several researchers have reported that sea clutter is more
likely to be chaotic rather than purely random [15–17]. As
a result, a lot of effort has been made to fit sea clutter with
chaotic models [18–20]. However, the fitting performance
of these reconstruction methods is not good enough. As a
consequence, the chaotic nature of sea clutter has been re-
examined. It has been suggested that sea clutter is not the
result of deterministic chaos, but it might be a stochastic
chaotic process [1]. This conclusion indicates that sea clut-
ter might be “partially chaotic”. Due to the fact that chaotic
processes have been realized with analog circuits, chaotic
modeling approach of sea clutter can be utilized not only in
sea clutter underlying dynamic analysis and target detection
but also in clutter generation applications, which makes the
chaotic modeling of sea clutter still worthy of study.
This article focuses on improving sea clutter’s chaotic

modeling performance. As an intelligent computation
approach, neural networks are widely employed in sea
clutter’s chaotic modeling for their ability to approxi-
mate the unknown functional form of a chaotic system.
By using neural networks as one-step predictors, targets
within sea clutter background can be detected from the
prediction error. One of the commonly used neural net-
works is the radial basis function (RBF) network [21–25],
which has been utilized for sea clutter modeling and target
detection in the last two decades [26–28]. In reference [18],
an RBF neural network is used to perform a non-recursive
single-point prediction of the real measured IPIX radar sea
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clutter data. Unfortunately, when this approach is used to
model a spiky sea clutter, the predictable samples’ number
is small and the overall fitting performance is unstable.
Advanced machine learning techniques are used to deal
with this problem, such as multi-model RBF approach
(MM-RBF) and genetic algorithm multi-model RBF ap-
proach (GA-MM-RBF) [9, 20]. Both approaches share the
same assumption that sea clutter can be divided into
different segments with different chaotic dynamic models
in a time domain. In this work, in order to give a better
understanding of our newly proposed approach, we refer
to the MM-RBF approach as a “time division” approach.
Note that the time division approach adjusts the intelli-
gent predictors’ structure to deal with the spiky sea clutter
without any preprocessing of the sea clutter itself.
In this paper, a sea clutter decomposition model

(SCD model) is proposed via decomposing sea clutter
in the frequency domain. The SCD model is motivated by
the observation of a comparison study between real mea-
sured sea clutter time series under different sea states and
typical chaotic signals. The comparison study is necessary
since the goal of our work is to fit sea clutter with chaotic
models. The comparison results suggest that 1) the original
sea clutter series are quite different from chaos signals in
waveforms and spectrums, and 2) with a two-step decom-
position process, a chaotic likely component in sea clutter
is found to have similar characteristics with chaotic signals
in both the waveforms and spectrums. In fact, no matter
what kind of nonlinear predictor is utilized, a right object
to fit is crucial for a good fitting performance. The com-
parison results indicate that instead of regarding the whole
original sea clutter as chaotic series, the chaotic likely com-
ponent in sea clutter is probably a more appropriate fitting
object to be approximated with chaotic models.
Based on the proposed SCD model, sea clutter is

modeled by a constituent synthesis approach. We refer
to this approach as a sea clutter constituent synthesis
(SCCS) approach for short. In the SCCS approach, as an
inverse process of the SCD model, sea clutter is regarded as
a compound signal of two major components: a relatively
low-frequency envelope likely signal, and a relatively high-
frequency “de-enveloped” signal, where the “de-enveloped”
signal is the “chaotic likely component” (note that these
two components are different from the “texture” and
“speckle” components in compound Gaussian distribution
model). In this work, chaotic modeling of sea clutter is real-
ized by fitting these two components with RBF predictors
separately.
Simulation results with measured sea clutter confirm

that the SCCS approach can achieve a good and stable
fitting performance. It is worth noting that the simulation
results shown in this work are used to illustrate that the
proposed SCD model can be used as a preprocessing
method. The fitting performance might be improved
when other advanced predictors (such as the Support
Vector Machine (SVM) model [29] and the mentioned
GA-MM-RBF model) are involved instead of the very
basic RBF model used in this paper.
The proposed SCD model and SCCS approach have the

flowing advantages: 1) theoretically, by using the right com-
ponent as the chaotic modeling object, the SCCS approach
is more compliant with the original motivation of the sea
clutter’s chaotic modeling; 2) in practice, the utilization of
SCD model leads to a robust performance of the SCCS
approach in different kinds of spiky sea clutter situations; 3)
from the development perspective, the SCD model provides
a new angel to analysis and modeling sea clutter.
This paper is organized as follows: a brief description

of sea clutter chaotic modeling with neural networks is
presented in Section 2. Section 3 introduces the newly
proposed sea clutter decomposition model as well as the
constituent synthesis approach for sea clutter reconstruc-
tion. In Section 4, performance of the proposed approach is
analyzed using real measured IPIX radar data. Finally, the
work is summarized and concluded in Section 5.

2 Sea clutter’s neural network prediction
approach
Neural networks use a training algorithm to adjust the
weights and thresholds in order to optimize the universal
function. This adjusting process is known as a training or
learning process. After the training process, the optimized
universal function can be used to approximate a predictive
process (also called as a target process). Mathematically,
the prediction computation process (also called as a testing
process) in a trained neural network is described by the fol-
lowing equation [9]:

x n½ � ¼ f x n−1½ �; x n−2½ �;⋯; x n−N½ �ð Þ ð1Þ

where (x[n − 1], x[n − 2],⋯, x[n −N]) is an N sample in-
put time series; x[n] is the predicted value in time step
n, and f is a nonlinear one-step prediction function
which is determined during the training process.
When a set of sea clutter data is used in the training

process, after an effective training process, the trained
neural network function f will be able to approximate
the underlying nonlinear function in this set of sea clutter
data. In target detection applications, the trained network is
used as a one-step predictor. The presence of target within
sea clutter will be detected if the prediction error is abnor-
mal. So the detection performance is determined by the
prediction accuracy.
A radial basis function (RBF) network is used to predict

real sea clutter data collected by the McMaster IPIX Radar
system at the east coast of Canada, from a cliff top near
Dartmouth, Nova Scotia (http://soma.ece.mcmaster.ca/
ipix/). The IPIX radar is an X-band land-based radar and
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the IPIX radar data sets are widely used in research works
about sea clutter issues. Five sets of measured target-free
range bin staring data are used in this paper. Some char-
acteristics of these datasets are shown in Table 1, where
the “sea state code” and “characteristics” come from the
world meteorological organization sea state code. Since
each dataset has 131,072 samples, only a segment of
them is employed for training and testing process in
each experiment.
In this section, data S1 is utilized in simulation experi-

ments. The number of training samples has complex
influence on the prediction performance of the trained
network. Since this issue is not the focus of this work, an
appropriate samples’ number is chosen to obtain general
results. In each experiment, 5000 samples from S1 are
invoked as training data. The RBF network is constructed
with MATLAB library functions from the neural network
toolbox without any adjustment of the center of each
neuron. After the training process, the next 2000 samples
are used to test the prediction performance of the trained
network. The predictor works in a one-step fashion, which
means that the most recently acquired real measured sam-
ples are used as the network input for the next prediction
step. The start points of the training samples are chosen
randomly and different in each experiment, as shown in
Fig. 1. Although the training and testing data series of each
experiment are intercepted from the same data set, their
characteristics can be quite different since they have differ-
ent start points.
Two typical prediction results are presented in Figs. 2

and 3. The corresponding measured data series is shown
for comparison. The training samples’ start point of the re-
sults shown in Fig. 2 is data point 5000, while the start
point of the experiment illustrated in Fig. 3 is data point 1.
To evaluate the performance of a chaotic modeling ap-

proach of sea clutter, prediction errors and predictable
samples’ number are two commonly used indicators [18].
In Fig. 2, with the increase of the testing samples’ number,
prediction errors are tended to increase. In fact, the predic-
tion performance shown in Fig. 2 is rarely good in most
times of experiments. In most of the other experiments
(with different training samples’ start points), the predicted
data are unable to fit the measured data and become diver-
gent, which means that only a very short segment of testing
samples is predictable. One typical result is illustrated in
Table 1 Characteristics of IPIX radar measured datasets used in this

Datasets S1(Hi-State) S2(Lo-State)

Range (m) 900–1095 1200–1410

RPF(Hz) 1000 2000

Wave height (m) 1.8 (max. 2.9) 0.8 (max. 1.3)

Sea state code 4–5 3–4

Characteristics Moderate/rough Slight/moderate
Fig. 3. Simulation results in this section indicate that using
a single-RBF network to fit sea clutter directly is not effect-
ive enough due to its instability.

3 Sea clutter comparative analysis, a
decomposition model, and a reconstruction
approach
3.1 A comparative study
Since the original motivation and potential to describe sea
clutter with chaotic model come from the observation that
sea clutter displays qualitative similarities to chaotic signals,
a comparative study between real-life sea clutter and cha-
otic signals generated by the well-known Lorenz chaotic
system is developed, which examines the similarity between
measured sea clutter and chaotic signals in an intuitive way.
The Lorenz chaotic system is given by [30]

_x ¼ −σxþ σy
_y ¼ rx−y−xz
_z ¼ xy−bz

8<
: ð2Þ

where x, y, and z are state variables and σ, r, and b are
Lorenz parameters. The system is chaotic when all the
Lorenz parameters are greater than zero and satisfy the
flowing constraints:

σ > bþ 1

r >
σ σ þ bþ 3ð Þ

σ−b−1

(
ð3Þ

The top subplot in Fig. 4 shows a typical 2000-point
waveform of state y obtained via numerical integration of
the dynamical system given by Eq. (2) with σ = 267, r = 595
and b = 100. The bottom subplot shows a typical waveform
from the IPIX radar measured dataset S1. Their corre-
sponding spectrums are shown in Fig. 5. Spectrums are
calculated by FFT (the DC component has been removed),
and the FFT results are normalized to a range of 0–1 for
the ease of comparison.
In Fig. 4, the amplitude of the Lorenz signal has a stable

boundary, while the fluctuation of the amplitude of the
sea clutter is fairly obvious. In Fig. 5, the Lorenz series has
a broad flat spectrum, while the sea clutter series has a
broad flat spectrum with a high-energy component in the
very low-frequency region. Note that this low-frequency
work

S3(#19) S4(#31) S5(#280)

5475–5670 2574–2769 2550–2745

1000 1000 1000

2.0 0.9 1.4

4 3 4

Moderate Slight Moderate



Fig. 1 Data interception schematic. Start points of the training samples are chose randomly and different in each experiment
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component is caused by the fluctuation of the sea clutter’s
spiky envelope.
As mentioned earlier, the potential to model sea clutter

using neural networks comes from not only the fact that
neural networks can be used to reconstruct nonlinear sys-
tems such as chaotic systems but also the observation that
sea clutter display qualitative similarities to chaotic signals.
Considering the fact that sea clutter as a whole signal is
not similar enough to chaotic signals, it is reasonable to
suggest that a decomposition process is needed to find an
appropriate component in sea clutter, which is similar to
chaotic signals and can be well reconstructed by neural
networks.

3.2 The sea clutter decomposition model
The proposed sea clutter decomposition (SCD) process
and the example waveforms at each step of SCD process
are shown in Fig. 6. The measured data S1 is utilized to
construct example waveforms.
The measured base-band sea clutter signal takes the

form of a time series, c[n] = {cn, n = 1, 2,⋯} (waveforms a
Fig. 2 Prediction results using single-RBF predictor with data start point at 50
Five thousand samples are used for training, and the next 2000 samples are u
increasing of the testing samples’ number, prediction errors have a tendency
in Fig. 6). In step 1, c[n] is divided into a relatively low-
frequency curve signal and a high-frequency signal by a
low-pass filter. Output signal of the low-pass filter is de-
noted as

s0 n½ � ¼ f LP c n½ �ð Þ ð4Þ
With the group delay caused by the low-pass filter

taken into account, the low-frequency part (waveforms b
in Fig. 6) in c n½ � is

s n½ � ¼ s0 n−k½ � ð5Þ
where k refers to the discrete group delay. Then the

residual signal (waveforms c in Fig. 6) is calculated by

r n½ � ¼ c n½ �−s n½ � ð6Þ
The envelope of the residual signal r[n] is shown in Fig. 7

with a dotted line. Obviously, the waveform of r[n] still
has certain fluctuation. In order to find a chaotic similar
component in the sea clutter signal, r[n] need be further
decomposed.
00th. A rarely good prediction result obtained by single-RBF predictor.
sed for testing. Although the predicted series are convergent, with the
to increase



Fig. 3 Prediction results using single-RBF predictor with data start point at 1st. A typical prediction result obtained by single-RBF predictor (5000
samples are used for training and the next 2000 samples are used for testing), in which the predicted data were unable to fit the measured data
and became divergence
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Unlike the first step, low-pass filter is not used in step 2.
Instead, the residual signal is “de-amplitude-modulated
(de-AM)” by the low-frequency signal s n½ � obtained in
the first step. The reason lies in the interesting observa-
tion that the envelope of r[n] is very close to s n½ � , as
shown in Fig. 7.
The underlying cause of this observation is unknown

yet, but we can make use of it to simplify the decompos-
ition process. So the low-frequency signal is employed in
Fig. 4 Waveforms comparison of measured sea clutter and Lorenz signal. T
S1, while the 2000 samples’ waveform in bottom subplot is a typical wavef
parameters of the Lorenz dynamical systems are set as σ = 267, r = 595, and
step 2 directly. Then r[n] is “de-AM” by s[n] and get the
de-AM signal d[n]:

d n½ � ¼ 1
s n½ �⊙r n½ � ð7Þ

where ⊙ refers to the Hadamard product (element-by-
element multiplication), and d[n] is named as a “de-AM
signal” (waveforms d in Fig. 6). Waveforms shown in
he 2000 samples’ waveform in top subplot is intercepted from dataset
orm of Lorenz signal obtained via numerical integration. Here the
b = 100



Fig. 5 a, b Spectrums comparison of measured sea clutter and Lorenz
signal. The spectrums are calculated by FFT (the DC component has
been removed) and the FFT results are normalized to a range of 0–1 for
ease of comparison
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Figs. 6 and 7 have the original length (131,072 samples)
of the measured IPIX radar data sets. In order to make a
fair comparison, a piece of signal with 2000 samples is
intercepted randomly from d[n]:

dpiece ¼ d p : pþ 1999½ � ð8Þ

where p refers to the random data start point. The wave-
form and spectrum of a typical dpiece are illustrated in Fig. 8.
Again, the spectrum is calculated by FFT (the DC compo-
nent has been removed) and the FFT result is normalized
to a range of 0–1 for the ease of comparison.
Comparing Fig. 8 with Figs. 4 and 5, although the band-

width of spectrums shown in Figs. 5 and 8 are different,
the envelope of these spectrums share a similar shape, and
both the waveforms and spectrums of the de-AM signal
are quite similar to that of chaotic signals. Actually, the
bandwidth of a chaotic signal can be adjusted by changing
its system parameters, such as σ, r, and b in the Lorenz
Fig. 6 a–d Decomposition process. This figure illustrates the process of de
corresponding waveform examples are also presented
system. So the bandwidth difference between sea clutter
and a typical piece of chaotic signal will not affect the
spectrum similarity between them. Therefore, the de-AM
signal d[n] might be an appropriate component in sea
clutter and can be described by a chaotic model.
The two-step decomposition process described by Eq.

(4)–(7) is referred to as a sea clutter decomposition model,
which can be used to divide sea clutter series and obtain
the chaotic likely component. After the proposed SCD
process, measured sea clutter series is divided into s[n] and
d[n]. In the next section, an inverse process of SCD process
will be used to reconstruct the whole sea clutter.

3.3 The sea clutter constituent synthesis approach
In this section, a sea clutter constituent synthesis (SCCS)
approach is proposed based on the SCD model. A block
diagram of the proposed SCCS approach is shown in Fig. 9.
It consists of one decomposition model, two predictors,
and one synthesis model. The decomposition model is used
to decompose c n½ � into s[n] and d[n]. The predictors are
used to approximate the unknown dynamical functions in
s[n] and d[n], while the synthesis model is used to recon-
struct the predicted sea clutter signal ~c nþ 1½ � . Here, the
low-frequency component s[n] is also predicted by an RBF
network for simulation simplicity. Note that s[n] can be
modeled via different approaches, such as advanced intelli-
gent methods or statistical models.
The output signal of the synthesis model is

~c nþ 1½ � ¼ ~s nþ 1½ � þ λ⋅~s nþ 1½ �⊙~d nþ 1½ � ð9Þ

where ~s nþ 1½ � and ~d nþ 1½ � are the one-step predicted
outputs of the RBF predictors A and B. λ is an amplitude
modulation coefficient, which is normally set as λ = 1.
When the target sea clutter series is spiky, λ can be larger
than 1 in order to get a reconstructed signal with stronger
fluctuation. In this work, λ is chosen manually to obtain a
relatively good performance. Adaptive λ setting algorithm
composing the whole measured sea clutter into two components. The



Fig. 7 Comparison of s n½ � and r[n]. A comparison of two components after the first decompose step: low-frequency component s n½ � and the envelope
of residual signal r[n]
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should be considered in the future to improve the practic-
ability of SCCS.
It should be mentioned that the measured sea clut-

ter may include measurement noise and dynamic
noise [1]. Since a determined chaotic process is noise-
free, measurement noise and dynamic noise should be
removed before approximating sea clutter time series
with chaotic models. Unfortunately, due to the ab-
sence of a priori knowledge, these noise components
can hardly be distinguished from measured sea clutter.
So in this work, the contribution of noise components
is assumed as a white noise floor in the frequency do-
main. In our simulation experiments, the input signal
Fig. 8 Characteristics of the de-AM signal. The waveform and spectrum of
of the RBF predictor B is d[n] with the white noise
floor removed.
4 Simulation results
4.1 Typical results

(1) Partial chaotic data experiment

A partial chaotic series is simulated to validate the
SCCS approach. The partial chaotic signal is constructed
by a Lorenz chaotic signal and a low-frequency signal
extracted from real data.
a typical de-AM signal



Fig. 9 Block diagram of SCCS. This figure illustrates the process of sea
clutter decomposition and reconstruction based on SCD model
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A typical waveform obtained via numerical integration of
the Lorenz system described in Eq. (2) is illustrated in
Fig. 10. The corresponding phase-space projection is shown
in Fig. 11.
Here, signal y in the Lorenz system is utilized to con-

struct the partial chaotic signal. Note that the amplitude of
y is normalized to the amplitude range level of the real
measured sea clutter series. Then the constituent partial
chaotic series is

spc ¼ sþ s⊙y ð10Þ
where s represents the low-frequency signal in a sea clutter
signal. In this work, s is a segment of the low-frequency
signal extracted from data S4.
A typical waveform of the constituent partial chaotic

signal spc is shown in the top subplot of Fig. 12. The low-
Fig. 10 A typical waveform obtained by Lorenz system. This figure illustrat
set as σ = 267, r = 595, and b = 100
frequency signal s is also illustrated for comparison, which
can describe the fluctuant trend of spc . The normalized
spectrum of spc is given in the bottom subplot of Fig. 12.
It can be observed that spc has a relatively broad flat
spectrum with a high-energy component in the very low-
frequency region, which is similar to the spectrum of real
sea clutter shown in Fig. 5a. Note that this result is an-
other proof of the decomposition model introduced in
Section 3.2.
Then the proposed SCCS approach is applied to model

the partial chaotic signal spc . Results are given in Fig. 13,
where the vertical ordinate is the clutter signal amplitude.
Five thousand points are used for training, and the next
2000 points are used for testing. Results show that the
SCCS approach can excellently fit the constituent partial
chaotic signal.

(2) Real sea clutter data experiments

In this part, the proposed SCCS approach is applied to
model real sea clutter data introduced in Table 1. Three
typical results using the dataset S4 are depicted in Figs. 14,
15, and 16, respectively. Five thousand points are used for
training, and the next 2000 points are used for testing. The
amplitude modulation coefficient λ is fixed to 1.4 in the fol-
lowing experiments discussed in this work.
Results suggest that the SCCS approach can fit the spiky

measured sea clutter without divergence phenomenon.
Figure 14 shows that the proposed SCCS approach is able
to fit measured data with large sea clutter spikes. In Fig. 15,
the amplitude of some samples in the SCCS output are
larger than that of the measured data. While in Fig. 16,
the amplitude of some samples in the SCCS output
are smaller than that of the measured data, and the
approximation errors usually appear when the signal
comes to wave crests. This kind of fitting error is the
reason to involve the amplitude modulation coefficient
es a typical waveform obtained by a Lorenz system with parameters



Fig. 11 Phase-space projection. A phase-space projection of the three signals shown in Fig. 10
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λ in Eq. (9), and these errors can be reduced by adjusting
λ to an appropriate value. Since λ is fixed in the experi-
ments discussed in this work, fitting results illustrated here
are not optimal performance which the SCCS method can
achieve.

4.2 Performance comparison
To further test the effectiveness of the SCCS approach, a
longer series is reconstructed by SCCS. As mentioned earl-
ier in Section 2, the predictable samples’ number is also an
important performance evaluation indicator in sea clutter
modeling. In a longer series test, 5000 points are used in
the training process and the next 6000 points are used for
testing. In comparison, a same length series is predicted
Fig. 12 Waveform and spectrums of the constituent partial chaotic signal.
low-frequency signal used to construct it are shown in the top subplot. Th
the bottom subplot
directly by a single-RBF network as described in Section 2,
as well as an MM-RBF network with two single-RBF
models and one gating model (2M-RBF).
In the 2M-RBF network utilized in this work, two RBF

predictors (named as RBF-1 and RBF-2) are different in
their spread coefficients. The spread coefficient is a variance
parameter in the nonlinear transfer function in an RBF
network and can be set as a multiple of the average distance
between data points considered in the fitting process [18].
Therefore, by changing the spread coefficient, the network
can be adjusted to fit different segments of sea clutter series
with different average data distances. In this work, the
spread coefficients in all single-RBF networks are set as
σSRBF = 1. The spread coefficient of each RBF predictors in
A typical waveform of the constructed partial chaotic signal and the
e normalized spectrum of this typical partial chaotic signal is given in



Fig. 13 SCCS prediction result with the partial chaotic signal. SCCS prediction result and the corresponding real data from the constructed partial
chaotic signal
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2M-RBF network is set as σMMRBF1 = 1 and σMMRBF2 = 10,
respectively. Note that σMMRBF1 is set equal to σSRBF in
order to give a comparative study.
In addition, in order to describe the time-decomposition

modeling strategy of the MM-RBF network, the output of
the gate model, i.e., the model choosing results are obtained
from the posterior fitting accuracy. Note that in real appli-
cations, the output of the gating model should be trained
with a priori information [9]. Let the prediction outputs of
the two RBF predictors in 2M-RBF be ~cM1 n½ � and ~cM2 n½ � ,
respectively. Output signal of the gate model in 2M-RBF is
given by:

g nþm½ � ¼ 0; ~cM1 nþm½ �−c nþm½ �j j≤ ~cM2 nþm½ �−c nþm½ �j j
1; otherwise

�

ð11Þ

Here m = 1, 2,…, 6000. Then the final output of 2M-
RBF is
Fig. 14 SCCS method typical prediction result 1. The training and testing s
125,000, testing samples: 125,001–127,000
~cMM nþm½ � ¼ 1−g nþm½ �ð Þ⋅~cM1 nþm½ �
þ g nþm½ �⋅~cM2 nþm½ � ð12Þ

which means that in step m, if the gate model output is 0,
the RBF-1 predictor should be set active and the output of
2M-RBF is equal to ~cM1 n½ �; otherwise, the RBF-2 predictor
should be set active and the output of 2M-RBF is equal
to ~cM2 n½ �.
The fitting results are presented in Fig. 17. It shows that

waveforms of the SCCS output fit the measured data well,
while the predicted signal of the single-RBF approach be-
comes seriously divergent in some areas. As a sub-optimal
performance fitting result, the output of 2M-RBF is able to
fit the real data in some segments, but incurs relatively
large fitting errors in other areas.
Detail information of a typical data area without diver-

gence or large fitting errors is presented in Fig. 18. In
Fig. 18, waveforms as well as the gate model output g[n]
eries are intercepted from dataset S4. Training samples: 120,001–



Fig. 15 SCCS method typical prediction result 2. The training and testing series are intercepted from dataset S4. Training samples: 60,001–65,000,
testing samples: 65,001–67,000
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from data point 475 to 520 are depicted. In the data point
area from 475 to 485, g[n] is stable at 1, which means that
in this data segment, RBF-2 in 2M-RBF has a better fitting
performance and should be set as the active predictor. In
this area, 2M-RBF has a better fitting performance
than single-RBF since RBF-2 is active. Meanwhile, in
the data point area from 491 to 504, g[n] is stable at 0,
which means that in this segment RBF-1 has a better
performance. As shown in Fig. 18, in this segment the
output of 2M-RBF is identical to that of single-RBF
since the spread coefficient of RBF-1 is equal to that
of the single-RBF network. This result suggests that the
RBF-2 model works worse than RBF-1 in this data segment,
and none of the predictors in 2M-RBF is suitable for this
data segment. In contrast, the SCCS output fits the real
data well in all the data segments, as shown in Fig. 17.
Fig. 16 SCCS method typical prediction result 3. The training and testing s
testing samples: 85,001–87,000
The comparison results show that the performance of
single-RBF is unacceptable for its risk to diverge. The 2M-
RBF network is a better predictor than single-RBF, but still
not stable since the number of predictors in MM-RBF is
limited and cannot be very large in real applications. When
none of them is suitable, the fitting performance will
degrade. While for the proposed SCCS, since the sea clutter
signal is decomposed before prediction, a good and stable
fitting performance can be obtained by two simple-RBF
networks without any parameter adjustment or gate model
training process, which makes it a better choice for sea clut-
ter modeling.

4.3 Detection performance discussion
A typical target detection scene is considered in this
subsection to examine the detection performance of the
eries are intercepted from dataset S4. Training samples: 80,001–85,000,



Fig. 17 Typical prediction results with longer testing series. Fitting performance comparison of single-RBF, MM-RBF predictor, and SCCS predictor.
The measured data is intercepted from dataset S4, 5000 samples are used for training and the next 6000 samples are used for testing
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SCCS model. The target echo signal is assumed to exist
in the ith pulse, then the echo signal series is

y n½ � ¼ st þ c n½ �; n ¼ i
c n½ �; n≠i

�
ð13Þ

where st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SCNR⋅PCN

p
; SCNR refers to the signal to

clutter-and-noise power ratio and PCN refers to the power
of clutter and noise. Note that since the real sea clutter
datasets include clutter echo and noise, c[n] is actually the
clutter-and-noise signal.
For the nth pulse, the output of the detector is

d n½ � ¼ 1; if ~c n½ �−y n½ �j j≥ε
0; otherwise

�
ð14Þ

where ~c n½ � is the predicted output of SCCS and ε is the
detector threshold. The same 6000-point series shown in
Fig. 17 is used for the detection experiment. Let i
Fig. 18 Local maps of Fig. 17 with gate model output. A local map of Fig.
output signal of gate model in 2M-RBF predictor
changes from 1 to 6000, then the detection probability is
calculated as

Pd ¼
X6000
i¼1

d i½ �=6000 ð15Þ

Figure 19 shows the Pd results under different SCNR
with three ε values:

ε1 ¼ 0:05⋅ var c n½ �ð Þ; ε2 ¼ 0:1⋅ var c n½ �ð Þ; ε3
¼ 0:15⋅ var c n½ �ð Þ ð16Þ

where var(c[n]) indicates the variance of c[n]. In a low
SCNR area (less than −3 dB) illustrated in Fig. 19, three
curves are stable at values of 0.21, 0.05, and 0.01 separ-
ately. These values are equal to the false alarm probabilities
under their ε values. Since a false alarm will occur when the
prediction error becomes larger than ε, for a determined
threshold ε, the false alarm probability is proportional to
17 with waveforms from data point 475th to 520th as well as the



Fig. 19 Detection performances of SCCS with different threshold values. Detection performance when the target signal existing in a single pulse.
The detection probability results obtained with different detector thresholds are illustrated
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the prediction error level. On the other hand, for a deter-
mined prediction error level, the larger the threshold, the
less the false alarm probability as well as the less the sensi-
tivity of the detector. In real applications, if the threshold is
set as ε3, the false alarm probability is 0.01, and the existing
target in a single pulse can be detected if its power is com-
parable to the clutter-and-noise power.
Note that under this detection scenario, a target sig-

nal in a single pulse can hardly be detected from the
waveform or spectrum, especially when the target is
near or overlapped by the sea spikes.

4.4 Applicability tests
To further evaluate the applicability of the SCCS ap-
proach in different situations, we consider applying
SCCS to fit the five real measured datasets introduced
in Table 1. The root-mean-squared error (RMSE) is
used as the performance measurement:

RMSEd;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m¼1

~c nþm½ �−c nþm½ �ð Þ2
s

M
ð17Þ

where M refers to the number of testing samples, d
refers to the dataset number, and l refers to the data
start point in each dataset. Five thousand samples are
Table 2 RMSE of 35 tests

Datasets Wave heights (m) Series 1 RMSE Series 2 RMSE Series 3

S2(Lo-State) 0.8 0.0075 0.0029 0.0067

S4(#31) 0.9 0.0089 0.0009 0.0005

S5(#280) 1.4 0.0057 0.0005 0.0283

S1(Hi-State) 1.8 0.0102 0.0137 0.0102

S3(#19) 2.0 0.0095 0.0732 0.0085
used for training, and the next 2000 samples are used
for testing (M = 2000).
To get a fair and comprehensive performance evaluation,

seven series from each dataset are used for training and
testing. The start points of the seven series in each dataset
are 1, 20,000, 40,000, 60,000, 80,000, 100,000, and 120,000,
respectively. So we have d = [1, 2, 3, 4, 5], l = [1, 20, 000, 40,
000, 60, 000, 80, 000, 100, 000, 120, 000]. The RMSE of 35
tests (5 datasets, 7 series in each dataset) are shown in
Table 2.
Results show that for all the 35 tests, the fitting

RMSE remains under 0.1, which means that the SCCS
approach is able to reconstruct measured sea clutter
series under different sea state situations.
To evaluate the relationship between the fitting per-

formance and sea clutter characteristics, mean value
εd and variance σd of the fitting RMSE of each dataset
are calculated as:

εd ¼
X
l

RMSEd;l

.
7;

σd ¼
X
l

RMSEd;l−εd
� �2.

7 ð18Þ

Results of ε1 ∼ ε5 and σ1 ∼ σ5 are shown in Fig. 20, where
the x axis is the wave height of each dataset. As mentioned
RMSE Series 4 RMSE Series 5 RMSE Series 6 RMSE Series 7 RMSE

0.0039 0.0034 0.0216 0.0357

0.0226 0.0002 0.0019 0.0041

0.0005 0.0010 0.0006 0.0011

0.0429 0.0676 0.0085 0.0037

0.0068 0.0071 0.0082 0.0079



Fig. 20 Mean values and variance values of RMSE results with measured data collected under different wave height. The RMSE results are
calculated with Eq. (17). The mean values and variance values of RMSE results are calculated with Eq. (18)
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above, the wave height can be used as a measure of sea
state.
It can be observed that as the wave height increases,

the mean values of RMSE are monotonously increasing,
and the variances have a certain upward trend. This
indicates that the fitting performance of SCCS has a
kind of proportional relationship with the sea state. The
reason might lie in the fact that under a high sea state
circumstance, the increased degree of freedom and fluc-
tuation in sea clutter makes it more difficult to approxi-
mate the de-AM signal with a structure fixed neural
network. However, comparing to the prediction outputs
of the single-RBF method, the SCCS outputs remain
convergent in all the experiments. Improved neural net-
works can be used to deal with this sea state related per-
formance deterioration.
Based on the real data involved experiment results,

the following observations could be made about the
SCCS modeling approach.

(1) Free of divergence problem

The SCCS approach can fit sea clutter with different
waveform properties and barely encounter
divergence problem, which obviously outperforms
the single-RBF approach since the divergence
problem can cause unacceptable prediction errors.

(2) Stable performance when long testing series is
needed
Keeping the training samples’ number unchanged,
with the increase of the testing samples’ number,
the SCCS approach consistently maintains a stable
fitting performance. This indicates that the trained
SCCS model successfully approximates the
compound underlying process within the target
sea clutter.

(3) Applicable under different sea states
Sea clutter collected in various sea states can be
quite different. For most of the clutter datasets, we
have investigated, the SCCS approach has shown a
good overall fitting performance.
These observations confirm the effectiveness of the
SCCS approach. Most of them come from the
utilization of the SCD model proposed in this paper,
in which a more suitable component for chaotic
modeling is found. Again, we emphasize that the
role of the SCD model is a preprocessing approach,
which can be used to reduce the difficulty of sea
clutter modeling. So the SCD-SCCS approach is not
exclusive. RBF predictors in SCCS can be replaced by
other modeling approach (such as improved intelligent
algorithms, fractal models, and statistics models) as an
alternative choice in different application situations.

5 Conclusions
In this paper, a sea clutter decomposition model is pro-
posed inspired by the observation that sea clutter as a
whole signal is not similar enough to chaotic signals.
Based on the comparison analysis, a frequency domain
divided decomposition model is proposed, in which sea
clutter signals can be decomposed into a slow-frequency
component and a de-modulated component. Based on
the decomposition model, a sea clutter constituent syn-
thesis approach is developed to reconstruct sea clutter.
Supported by experiments using actual measured sea

clutter signals, the SCCS approach is found to outper-
form the single-RBF approach. It is also demonstrated
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that the SCCS approach can fit sea clutter effectively in
different sea states. Future work may focus on the adap-
tive adjustment algorithm of the amplitude modulation
coefficient in the SCCS model.
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