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Abstract

the RIPS-u over the RIPS-sq is confirmed.

Radio interferometric positioning systems are developed for localization in wireless sensor networks (WSNs), and they
have the potential to yield highly accurate location information at low computational cost and implementation
complexity. In the radio interferometric positioning system (RIPS), two transmitters transmit sinusoidal signals at
slightly different frequencies, and two receivers pass the received signals through square-law devices to produce
low-frequency differential signals. However, a squaring operation increases the noise power, leading to performance
loss. To avoid this problem, a receiver for the RIPS using undersampling techniques (RIPS-u) has been proposed. In this
paper, we investigate the performance of the RIPS with a square-law device (RIPS-sq) and the performance of the
RIPS-u through theoretical and experimental analyses. Specifically, we compute Cramér-Rao lower bounds (CRLBs) of
the range and location estimates in both systems and show that the RIPS-u has lower CRLBs than the RIPS-sq.
Furthermore, we have carried out experimental tests by implementing both systems on National Instruments (NI)
Universal Software Radio Peripherals (USRPs). From both the theoretical and experimental results, the effectiveness of
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1 Introduction

Advances in technology have enabled small-sized devices
equipped with sensors to form wireless sensor networks
(WSNs) [1]. These small devices act as nodes in WSNs,
and their location information is a critical part of the
sensor data [2]. Thus, localization has to be performed
when node locations are unknown [3]. Global Positioning
System (GPS) is a well-known example for localization.
The global coverage and wide availability in commercial
devices make GPS attractive. However, GPS requires a
line-of-sight (LOS) path from the satellites in order to
function, and this renders GPS inadequate for indoor
scenarios. Furthermore, power consumption and com-
putational costs of GPS are often prohibitively high for
resource-limited WSNs [4]. For the same reason, ultra-
wideband (UWB)-based localization systems, which are
known for high accuracy and robustness to multipath
[5, 6], are also considered as unsuitable for WSNs [4].
Hence, the investigation of highly accurate localization
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systems using narrowband signals with low complexity is
of great interest. One such system is the radio interfero-
metric positioning system (RIPS) [7].

The RIPS is categorized as a range-based system,
where the location is estimated from range measure-
ments. The RIPS model to obtain range information is
illustrated in Fig. 1. Each ranging session involves four
nodes (two transmitters and two receivers); two trans-
mitter nodes transmit pure sinusoidal signals at slightly
different frequencies to produce slowly varying envelopes
at the receivers. The range information is contained in the
phases of the received signals, and the difference of the
phases at two receivers yields a range metric called Q-
range g = d1,1 —d1,2—d>,1+d22, where dy ,,, is the distance
between the kth transmitter and the mth receiver; (see
Fig. 1 for illustration). After obtaining multiple Q-range
measurements, node locations can be estimated. In
[7, 8], several iterative approaches with genetic algo-
rithm are used to collectively estimate the node locations
in WSNs. Since iterative approach is computationally
demanding, the computation is done at a centralized
server. Another approach is a hyperbolic positioning
method [9], which locates a single node at a time. In this
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Fig. 1 The radio interferometric ranging technique

paper, we show that the Q-range can be converted to
the range difference (RD), and the location can be esti-
mated linearly when enough Q-range measurements are
available.

In the original RIPS in [7], each receiver is equipped
with a square-law device to extract a low-frequency dif-
ferential signal. However, squaring the signal increases
the noise power, which in turn deteriorates the range-
estimation performance. To avoid this problem, the RIPS
with receivers using undersampling techniques (RIPS-u)
is proposed in [10]. The transmitter model of the RIPS-
u is the same as the original RIPS with a square-law
device (RIPS-sq), but the RIPS-u directly samples the sig-
nal without squaring operation. While the complexity of
the RIPS-u is reduced from that of the RIPS-sq by remov-
ing the square-law device, the results presented in [10]
show that the RIPS-u yields a 3-dB performance gain over
the RIPS-sq, and thus the RIPS-u holds great promise.

In this paper, we investigate the performance of the
RIPS-u and the RIPS-sq through theoretical and exper-
imental analyses to confirm that the RIPS-u has better
performance than the RIPS-sq. For the theoretical anal-
ysis, we compute Cramér-Rao lower bounds (CRLBs) for
the Q-range and location estimates in both systems. We
show that with least-squares (LS) estimators, the resulting
performances approach the CRLBs. We have also imple-
mented both systems using National Instruments (NI)
Universal Software Radio Peripherals (USRPs) and further
confirm the efficiency of the RIPS-u over the RIPS-sq.

The rest of this paper is organized as follows. An
overview of the RIPS and related work are briefly dis-
cussed in Section 2. In Section 3, the system models of
the RIPS-u and the RIPS-sq are described. Their per-
formances are analyzed theoretically by investigating the
CRLBs of the Q-range estimates and the location esti-
mates in Section 4. Simulation results are shown in
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Section 5, and experimental results are presented in
Section 6. Finally, conclusions are drawn in Section 7.

1.1 Notations

Bold uppercase letters denote matrices. Bold lowercase
letters denote vectors. CN'(u,0?) refers to a complex
Gaussian distribution with mean p and variance o2,
and U(a, b) signifies a uniform distribution over the
range [a, b]. Superscripts ()T, ()1, ()*, and (-)7 denote
transpose, Hermitian transpose, complex conjugate, and
pseudo-inverse, respectively.

2 Related work

Because of its flexibility and low complexity, the RIPS has
been applied for various scenarios. One of which is to
track mobile nodes [11-13]. In [11], a mobile node track-
ing system based on the RIPS called inTrack is proposed
to analyze the effects of velocity and moderate outdoor
multipath on the system performance. The system is fur-
ther improved in [12] by incorporating a Doppler shift
into location estimation. Their experimental results show
a mean absolute error (MAE) of 37 cm. Also taking a
Doppler shift into account and using an extended Kalman
filter, a tracking system based on the RIPS yields the MAE
of 1.68 m in a field test [13]. Another extension of the RIPS
is its implementation at a different frequency band. For-
merly, the RIPS is implemented on CC1000 RF transceiver
[14] at the frequency band below 1 GHz. However, in
[15, 16], the RIPS is implemented on CC2430 transceivers
[17], which operate at 2.4 GHz. Due to lack of fine-
frequency tuning capability of the CC2430 platform, an
inherent offset of local oscillators is used for the frequency
difference, resulting in the MAE of 1.5-2 m [15]. Using the
same platform, a stochastic RIPS (SRIPS) [16] is proposed
to improve the accuracy at 2.4 GHz by taking into account
some stochastic properties of Q-range measurements.

To use the RIPS for multipath-rich indoor environ-
ments, a multihop scheme is proposed in [18]. The
approach is similar to [19], where sinusoids are transmit-
ted at multiple frequencies, and a subspace-based method
is used to detect the first-arriving path. On the other hand,
the ranging signal of the RIPS is modified in [20-22] to
make the system robust to the fading. A dual-tone RIPS
(DRIPS) [20] uses dual-tone signaling to cancel the phase
shifts due to fading. Synchronized anchor nodes transmit
dual-tone signals simultaneously, which allow the tar-
get node to directly estimate its position. The DRIPS is
further enhanced in uDRIPS [21] by employing under-
sampling techniques at the receiver. A space-time RIPS
(STRIPS) [22] uses a space-time code and millimeter wave
(MMW) band to combat fading and multipath effects.
These aforementioned are some of the examples, and they
show the flexibility of the RIPS. However, to the best of
our knowledge, formal investigation of the performance
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bounds for the RIPS has not appeared in the literature.
Our theoretical analysis presented in this paper can serve
as benchmark to gauge various proposed algorithms.

3 System model

3.1 Transmitter design

A typical RIPS consists of two transmitters and two
receivers in each ranging session. These nodes require
perfect frequency synchronization. Time synchronization
is required between two receivers, but the transmitters
can be asynchronous. The transmitted signal at the kth
transmitter node in a band-pass complex form is repre-
sented as

Sk(t) = akej@/(eiZﬂ_f}(t, k = 1; 21 (1)

where a; e/’ and f; are the complex amplitude and the fre-
quency, respectively, of the signal transmitted by the kth
node. Let us further define A = fi —f, and g = (f1 +/f2)/2.
We assume f; > fo without loss of generality.

The block diagram of the RIPS-u and the RIPS-sq is
shown in Fig. 2. The received signal at the mth receiver is
modeled as

P () = ay @ i) eioim y g) 27 (ofo)tg=ionm 4y (1),
m=1,2,
(2)

where f; is the frequency of the local oscillator that down-
converts the signal to an intermediate frequency band,
Oim = 27 fx (dk,m/c + tk) — O is the phase of the received
signal from the kth transmitter to the mth receiver, dy,
is the distance between the kth transmitter and the mth
receiver, ¢ denotes the speed of light (c = 3 x 10 m/s), t;
is the unknown time instant when the kth node starts its
transmission, and v,,(¢) is the additive noise. Although the
RIPS works in the presence of stationary noise in general,
for purposes of finding the CRLBs, we assume vy, (t) to be
white Gaussian noise denoted as v,,(t) ~ CN (0,02) in
this paper. In other words, the real and imaginary parts of
Vi (£) are assumed to be mutually independent real-valued
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white Gaussian processes with zero mean and variance
2
0/2.

3.2 Receiver design in the RIPS-sq

In the RIPS-sq [7], the received signal r,,(f) is passed
through a band-pass filter (BPF) to remove the out-of-
band noise. Then, a square-law device squares the output
of the BPF, and a low-pass filter (LPF) removes high-
frequency components beyond A. The output of the LPF
is a low-frequency differential signal 7;,(¢), which only
contains the frequency components at £A. Sampling
7w (t) at the rate f; > 2A, we obtain

Vol 1] = aray > M5 m 4 gy ane T2 A LT ],
(3)

where ¢y = @1m — Y2m = 27fildim/c + 1) — 61 —
27 fo(dam/c + t2) + 02, and V[ 1] is the sampled aggre-
gated noise, which includes a noise product term and
signal-noise product terms. Mathematically, V,,,[ #] can be
written as

2
Vmln] = v}, [n] Z gkeﬂ”(ﬁ—fo)"/ﬁ—/%m
k=1

2
+ vln] Y age 2 ko) nlhititim vy, [ ] v, [n].
P

(4)

Statistics of v, [ 1] are investigated in Section 4.1. Collect-
ing N samples and stacking them vertically, (3) can be
represented in a matrix-vector form as

~

’i:m = Him +Vm: (5)
where T,, and V,, are columr’l vectors of samples from
Tm(t) and vy, (¢), respectively, H = [h (A,fs) , h (—A,fs)],
h(f.f) = [L &2k, ., e;znwfw/fs]T, and %,
[alaze’j‘i’m, ﬂ1ﬂ26j¢’”]T.

Notice that the range information is in the phase of Z,,.
To estimate the Q-range, the following assumptions are

RIPS-u
Y raln] R
Estimate
node 71 BPF Sampler > the Phase — Zm
5,(2)
7, (0)
RIPS-sq -
node 2 o 7 7 (1) r,n] )
vm t 7o 5 . ~
$:() = I e T e ampler [—>{ Estmate |7
Fig. 2 The block diagram of RIPS-u and RIPS-sq
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made [7]: (1) A < g ie, i —fp < (A+hH)/2 2
lgl < c/2g, where ¢ = dyi1 — dip2 — da1 + day is the
Q-range. From these assumptions, the phase difference at
two receivers can be approximated as [7]

c
T(¢1—¢z)=q+n%q, (6)
g
where 1 = ﬁ (dv1 — dy,2 + do1 — db). Hence, the Q-
range is estimated in the RIPS-sq as [7]
a6 — ¢ (3 _a 7
q an (¢1 ¢2) ’ ( )

where @, is the estimated phase at the mth receiver. One
way to estimate the phase is by using an LS estimator.
Assuming the frequencies are known at the receivers, ¢,
can be estimated as

D = arg ([T} + [Z],) ®

where /E\m = ﬁ*ﬂr’m and [z]; denotes the ith element of the
vector z.

From (6), it is apparent that as A increases, n becomes
a dominant source of error in the range estimation of the
RIPS-sq. Moreover, since the range is estimated from the
phase, an unknown integer is present when |g| > ¢/2g,
which results in integer ambiguity. In this paper, we call
the maximum range that causes no integer ambiguity as a
resolvable range. Here, the resolvable range in the RIPS-sq
isc/2g.

In practice, the Q-range is likely to be larger than the
resolvable range, and multiple Q-range measurements at
different frequencies are obtained to resolve the integer
ambiguity [7]. The unknown integers can be calculated
with the maximum likelihood estimator (MLE) [23], the
Chinese remainder theorem (CRT) [24, 25], or lattice
reduction method [26]. In this paper, we ignore the inte-
ger ambiguity for simplicity and choose the parameters
for simulations and experiments to avoid ambiguous mea-
surements.

3.3 Receiver design in the RIPS-u
In the RIPS-u [10], the received signal r,(£) in (2) is passed
through a BPF and directly sampled at the rate f,,, i.e.,

rm[ I’l] — aleiz”(flffa)n/fuefj(pl,m + azeﬂ”(ﬁfft))n/fue*j(h,m
+ vl nl.
©)

The receiver design of the RIPS-u is illustrated in the
upper half of Fig. 2. At the mth receiver, N samples are

collected, which are modeled as
r,, = Hz,;, + v, (10)

where r,, and v, are the sampled vectors of r,,[n] and

V| 1], respectively, H = [h (fi —forfu) M (f2 —fo,f,,)],
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and z,,, = [ule_/‘“'m, age_j“’2vm]T. As shown in [10], even
fu < 2(fk —fo), where the frequencies are aliased, the
RIPS-u can still accurately estimate the phase as long as
the aliased frequencies are well separated. In other words,
the frequencies are to be designed to satisfy the condi-
tion such that mod (A,f,) # 0 to prevent frequencies
from aliasing onto each other, where mod (A,f) = A —
fLA/f] with |-] denoting the floor function.

Assuming the knowledge of designed parameters is
shared among all the participating nodes, the LS estimator
for the phase vector z,, is

(11)
When |d1,1 — di2| < ¢/(2f1) and |da,y — da| < ¢/(2f2),

no unknown integers are generated from phase unwrap-
ping. In such a case, a Q-range estimator of the RIPS-u is
given as

Zn =H'r,,.

1 SN 1 SN
7“ :é { R arg ([Z1)} [22]1) + ;e (1] mb)}

_c (@1,1 — 92 P21 — @2,2)
2 h b

(12)

Notice that the formation of the estimator in (12) does
not involve any approximation in contrast to (7) for the
RIPS-sq. Moreover, the RIPS-sq requires the frequencies
to satisfy A < fi,/, to attain a small approximation error
and to guarantee a slowly varying envelope of the received
signal. Such a requirement is not imposed in the RIPS-u,
and thus, the RIPS-u has wider applicability.

Unfortunately, neither the RIPS-u nor the RIPS-sq is
robust to multipath [27]. This is because the fading chan-
nel causes unknown phase shifts in the received signal.
As four nodes are spatially apart, four links in Fig. 1
have independent channels. Hence, the phase shifts due
to multipath fading cannot be canceled out with the Q-
range estimators of both systems, resulting in the biased
Q-range estimates. To effectively combat the multipath
fading effects, the methods [20-22] discussed in Section 2
should be considered.

3.4 Localization
In the original RIPS [7], locations of the nodes in the WSN
are estimated collectively. The iterative algorithm used in
[7] is computationally expensive, and a dedicated server is
required to perform the localization. However, by restrict-
ing the Q-range measurements to have one unknown
node, localization can be performed at lower complexity.
The assumption we made here is applicable when we have
enough anchor nodes and one target node or localizing
one node at a time [12].

When there exists only one node with unknown posi-
tion in a ranging session, the Q-range can be converted
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to the range difference (RD). For example in Fig. 1, let us
assume that TX2, RX1, and RX2 are at known positions,
and TX1 is the target node to be localized. Then, the last
two terms in the Q-range g = dj;1 — dio — da1 + dap
can be pre-calculated. Moving the unknown terms to the
left-hand side (LHS), we arrive at the RD measurement
between TX1 and two receivers as

dig —dip=q+dy1 —dap. (13)

Let us denote the coordinates of the target node and the
mth receiver as x and x,,, respectively. Choosing the first
receiver node as the origin of the coordinate system (x; =
0), (13) can be rewritten as

Ixll = lIx =xafl = R, (14)

where R is the right-hand side (RHS) of (13) and |x||
denotes the Euclidean norm of the vector x. Rearranging
the terms and squaring both sides as

Ix —x201% = (x|l = R)?, (15)
we arrive at
2R|x|| — 2xI x = R* — |Ix2|%, (16)

where the unknown terms are collected on the LHS, and
the known terms are on the RHS. When we consider a
2D scenario, the dimension of x is 2. Keeping x; fixed as
the reference node over multiple RD measurements, we
have x and ||x|| as unknowns. Hence, with at least three
independent RD measurements, we have a set of linear
equations to solve the location vector x. Details of RD-
based localization algorithms with linear estimators can
be found in [28, 29].

4 Performance analysis

In this section, we derive the CRLB for both the RIPS-u
and the RIPS-sq based on the system models described
in Section 3. We first compute the CRLBs of ¢, and ¢,
for the RIPS-sq and the RIPS-u, respectively, and perform
the vector transformation to achieve the CRLBs of the Q-
range estimates. In the following analysis, we assume that
the Q-range is within the resolvable range for both sys-
tems, and thus we do not consider the integer ambiguity
issue.

4.1 The CRLB of the Q-range estimate in the RIPS-sq

To derive the CRLB in the RIPS-sq, the statistical prop-
erties of the aggregated noise V,,[ #] are analyzed first.
Since vi[#n] and vp[n] at a given time instant n are
treated as mutually independent Gaussian random vari-
ables (Vm[n] ~CN (0, o,%,)) and the signal is squared at
each receiver independently, the aggregated noise at each
receiver V1[ 7] and V[ 1] are also mutually independent.
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Thus, the first- and second-order statistics of ,,[ n] are
given as [10]

E[Vnln]] = o2, (17)
var[ V[ nl] = oy, + 200l um[n] %, (18)
G2 n) £ var[V,[n]], (19)

where u,,[n] = ZI2<=1 akeiz”(fk_f")"/ﬁe_j‘”k:m and recall
Om = 27fr (dk,m/c—i— tk) — O%. Notice that the noise
variance depends on n. Hence, let us further approxi-
mate G, [ 1] by its mean over the random parameter 6y ~
U(—7/2,7/2) in @y as

G, = Eg [G2[n]] = oy + 20, (al + a3). (20)

The exact distribution of the aggregated noise is difficult
to derive. Instead, we use the approximation in (20) and
model the aggregated noise as a normally distributed ran-
dom variable such that v,,[ n] ~ N (ai, 634). Later in this
paper, we show that the Monte Carlo simulation results
match well with the CRLB derived based on the Gaus-
sian approximation, and thus the Gaussian approximation
yields meaningful results.

The interest here is to find the CRLB of ¢,,. The low-
frequency differential signal in (3) can be equivalently
written as a real sinusoid with an additive noise as

An

_({bm) +T;m[n] (21)

Tml 1) = 2a1a, cos (
S

Since we model V,,[ 1] as Gaussian, the log-likelihood
function for T,, is represented as

N _
In p(ty; dm) = 5 In (27103,) -

2w An 2 2
—2dayay cos I’ —Om ) =0, .

S

(22)

Taking a second derivative of (22) w.r.t. ¢,,;, we obtain

P2InpGEmidm)  (2mar\2 = | o (27An
i = (Fa) Sl (o)

N

) <271An ) 1
— cos —Om | + Tm| 1
Js 142

N

2
m

2w An "
X COS — —
fs " 2(11612

XCOS(ZnAn 4 >}
fs ")
(23)

To compute the CRLB of ¢,, we need to take

the expectation of (23). Notice that E[r,[n]] =

2aia; cos (27}% — ¢m) + U,%,, where the second term is

due to the non-zero mean of V,,[ n] as shown in (19).
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Hence, using the trigonometric identities, the CRLB of ¢,
becomes
E 92 lnp(fm3¢m) -
392,

( o )2[ N7l <4rr An >} '
=2 cos — 20 .
2a1as et

i (24)

CRLB(¢m) = —

Recall that in the RIPS-sq, the signal is sampled at
the rate f; > 2A. Hence, we assume that mod (24, f)
is not near 0 or 0.5, which yields the approximations
Zn o cos (4’}# — 2¢m) ~ 0 ([30] pp. 56), and the CRLB

in (24) becomes

2 [ G, \?
CRLB(¢y) ~ N( ) . (25)

26116{2
From (7), in the RIPS-sq, the Q-range is approximated
as g9 ~ (¢1 ¢2) given A < g. By performing the
vector transformation, the CRLB of the Q-range estimate
in the RIPS-sq is calculated as

2
CRLB (q<sq>> = (27;) (CRLB(¢1) + CRLB(¢2))
_ ( c )2 612 + 622 1)\
~\or 2N (ﬂng) .

Notice that the CRLB depends on 62, ai, g and N.
According to (26), the CRLB decreases as the noise vari-
ance 6,%, decreases, and N and g increase. Note, how-
ever, when transmitters transmit with high frequencies,
the resolvable range becomes small, and the Q-range
estimates are likely to experience the integer ambiguity
problem.

(26)

4.2 The CRLB of the Q-range estimate in the RIPS-u

The CRLB of the Q-range estimate in the RIPS-u is
derived based on the system model in (10). Since the
noise variance is independent of the parameter ¢y ,,, the
Fisher information matrix (FIM) J for the parameter vec-
tor @,, =[ ©1,m, ¥2,m]° under the complex Gaussian noise
is expressed as ([30] pp. 525)

1 . .
D@ = —50(@km higrm), (27)

where [J];; denotes the element in the matrix J at the kth
row and the /th column and

b (fi — forfur) (—Page 9om } |

h* (fk _ﬁl’fu)jdkejWk,m (28)

li(‘/’k,m) = |:
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Substituting (28) into (27), we arrive at

N-1 2rA
aray Yy ,_o €os ( ’}u L

Yoo 1\2 aN
Pm =2 <7>
om) | aray Y N-) cos (2’}?” —¢m) a3N

_q)m)}

(29)

Taking the inverse of J(¢,,), the CRLB of ¢y, is
achieved along the diagonal as

2371

_d’m)) ] .

2 N—1
CRLB(¢4 ) =% (‘;—Vl’:) {Nz— (Z cos (2’}“
(30)

n=0

Recall that to avoid closely aliased frequencies, the
parameters are chosen so that mod (A,f,) # 0. There-
fore, similarly to the approximation that we made in the

RIPS-sq, we assume that 3"\ cos (2”“ ¢m> ~ 0
and further simplify the CRLB in (30) as

CRLB(pe ~ () -

Phom) = ay 2N’
Sequentially, the CRLB of the Q-range for the RIPS-
u is calculated from the CRLBs of ¢y, given in

(31). According to (12), the Q-range is calculated by
~u) _ _c ((’0\1,1*@,2 _ 02,1— 022
1 - h )

same transformation process as in the RIPS-sq, the CRLB
of the Q-range for the RIPS-u is obtained from the CRLB

of i as

(31)

). Hence, following the

2

2
CRLB (q“”) kZ () CRLB(@x,m)
—1 m=
_ (i>2 01 + 02 1 1
T \2n 2N azfl as f;

(32)

The CRLB of the Q-range depends on o2, ai, N, and f.
Now, let us investigate how different parameters affect
the CRLBs in both systems. For simplicity, consider the
special case where a,%, =o2anda; = a» = a. Insuch a
case, the CRLB of the Q-range estimate with the RIPS-sq

in (26) becomes

(5q) _ ( c )2 o202 +4a%) (1
=g a*N a2)’

Similarly, the CRLB of the Q-range estimate with the
RIPS-u in (32) becomes

W _ (L)Zi 1.1
V=) @nN 22
Under this simplified scenario, the CRLBs of the Q-
range estimates in both systems vs. signal-to-noise ratio

(SNR) are plotted in Fig. 3. Here, we define the SNR at the
mth receiver as (a} + a3)/ (PSDy,, (f1) + PSDy,, (f2)),

(33)

(34)
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CRLB of the Q-range estimates

—h&— RIPS-u
—&— RIPS-sq

Fig. 3 The CRLB of the Q-range estimates vs. SNR

30 40 50 60
SNR (dB)

where PSD,,, (f) denotes a power spectral density of the
noise vy, (t) at frequency f. Since we model the noise as
Gaussian distributed with variance 02, = o2 for m = 1,2,
PSD,,, (fi) = PSD,,, (f2) = o2 and the SNR is a?/c>.
For illustration purposes here, we choose g = 10 MHz,
A = 12kHz, f, = 9 MHz, and N = 100. The CRLB:s for
both systems decrease with increasing SNR (a decreasing
o?) as expected. Moreover, notice the 3-dB gap between
two curves. This is because when 0> < a2, the CRLB of

the RIPS-sq in (33) is approximated as

2 402
(s9) (i) . 35
v 2/ a’Ng? (35)
Also, assuming A « g such that fi =~ f, =~ g, (34)
becomes

W~ (N 207 s 60
yer (271) a?Ng? 05y (36)
Hence, the RIPS-u achieves a 3-dB gain over the RIPS-sq.
When the SNR is fixed at 30 dB and g is varied (A is
fixed at 1.2 kHz), the CRLB also decreases as shown in
Fig. 4. However, recall that frequencies affect the resolv-
able range. In other words, when the signals are transmit-
ted at a higher frequency band, the performance improves
at the cost of a reduction in the resolvable range. The
effect of A on the CRLB with fixed g is shown in Fig. 5.
Both CRLB curves are flat since the CRLB of the RIPS-
sq in (33) is independent of A and the change in A is
small compared to g for the RIPS-u in (34). Yet, a small A
is desirable for the RIPS-sq since the approximated term
n depends on the the ratio A/g. When A is large with

respect to g, 1 becomes a dominant source of error in the
RIPS-sq.

Let us further analyze how signal amplitudes influ-
ence the performance. Constraining the total transmit-
ting power as a7 + a3 = 1 and fixing the SNR at
30 dB, we plot the CRLB vs. a7 in Fig. 6. The perfor-
mance varies with different a%, and the minimum CRLB
is attained when a% = a% in both the RIPS-u and
the RIPS-sq. Hence, equal transmitting power at two
transmitters yields the best ranging performance in both
systems.

4.3 The CRLB of the location estimates

Using the CRLBs for the Q-ranges derived in the pre-
vious subsections, the CRLBs of the location estimates
in the RIPS-u and the RIPS-sq are derived. As we have
described in Section 3, we assume that positions of three
nodes are known at each ranging session. In the following
derivations, since both systems require time synchroniza-
tion between receivers, we fix the target node as the first
transmitter. Considering a 2D scenario, we denote the
coordinates of the target node and the mth receiver node
as x =[x, y]T and X,,; =[%,,, ym]T, respectively. Although
we only consider a 2D scenario here, the same deriva-
tion can be applied for a 3D scenario. The Q-range can be
represented as a function of x and y as

qz\/(x—x1)2+(y—y1)2

(37)
- \/(x —x2)2 + (y—y2)? —doy + dap.
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Taking a partial derivative of g with respect to x and y, we
obtain

g x—x1 x—x

ax - dl,l d1,2 ’ (38)
g _y=n y—m»

The RD-based localization requires multiple RD mea-
surements with a common reference node. Suppose we
have M anchor nodes, and we fix the first receiver for
all the RD measurements. Then, we can achieve up to
M — 1 independent RD measurements. Let us assume
that the Q-range estimates are obtained independently
using an efficient estimator. In such a case, denoting the

ay - di di ’ ith Q-range measurement as ¢; for i = 1,...,M — 1
107
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Fig. 5 The CRLB of the Q-range estimates vs. A
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and q =[q1, 92, ---» qM_l]T, the FIM of x is given

as [31]
aq\" ., (dq
=|—) = — ), 39
J(x) (ax) <ax (39)
where
I ¢
3 ox dy
A _ : : , (40)
0x . o
dqm-1 3qm-1
ox ay
and
¥ = diag {CRLB(q1), ..., CRLB(gm-1)}. (41)

Performing matrix multiplications, (39) is rewritten as

M-1

J(x) = Y CRLB(g:)"'G;

i=1

) ()()
ax 0x ay
P 2 )
aqi aqi 9qi
(%) (%) (%)

and CRLB(g;) in (42) is replaced with the CRLB for the ith
Q-range measurement with the RIPS-u in (32) and that
with the RIPS-sq in (26), respectively. The CRLBs of x and
y are the diagonal entries of the inverse of J(x) in (42).

As an example, consider the case where five anchor

nodes are placed at the center and the corners of a
10 x 10 m? A square root of the trace of J~!(x),

(42)

where

(43)

\/CRLB(x) + CRLB(y), for the RIPS-u and the RIPS-sq at
various target node locations are shown in Fig. 7. The SNR
is fixed at 30 dB. White circles denote the locations of the
anchor nodes. Since the special case defined in (33)—(34)
is considered, the CRLBs of the location estimates in two
systems are only different by a scalar constant. Therefore,
both figures show the same trend that the CRLBs increase
as the target node moves away from the origin.

Furthermore, Fig. 8 shows the CRLBs of the location
estimates vs. SNR at six different target node locations
that are represented by triangle marks in Fig. 7. Solid
lines represent the CRLBs corresponding to the RIPS-u
and dashed lines correspond to that of the RIPS-sq. At
any given location, the RIPS-u has the CRLB 3 dB lower
than that of the RIPS-sq, which is the difference in y ®
and y®9. Comparing the curves corresponding to posi-
tions inside (L1~L3) and outside (L4~L6) the square, we
observe that the latter has higher bounds compared to the
former, as we have already observed in Fig. 7.

5 Simulation results

In this section, we perform Monte Carlo simulations to
examine the theoretical bounds derived in Section 4.
The simulation setup and anchor node locations are the
same as those presented in Section 4. The target node
is randomly placed within a 10 x 10 m? at each itera-
tion. Frequencies are set at ¢ = 10 MHz and f, = 9
MHz, and we simulate over three different A’s, which are
A = 12,12, and 120 kHz. The sampling frequency is
fu = fs = 4A, and N = 100. Here, we use the simplified
case where a; = a for k = 1,2 and o,%, = o2 for
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Fig. 7 The CRLBs of the location estimates of at various locations with a the RIPS-u and b the RIPS-sq

m = 1,2, and the SNR is defined as in Section 4. Since
fu < 2(fc —fo), frequencies of the sampled signal are
aliased in the RIPS-u. For example, when A = 1.2 kHz,
frequencies are aliased as mod ( 1 —Jor fu) = 2.2 kHz
and mod (f2 —ﬁ,,fu) = 1.0 kHz. Under this setup, the
Q-ranges are always within the resolvable range. Hence,
there is no integer ambiguity in both systems.

A root-mean-square error (RMSE) of the Q-range esti-
mates vs. SNR is shown in Fig. 9. Dotted lines represent
the CRLBs of the Q-range estimates as given in (34) for
the RIPS-u and (33) for the RIPS-sq, and solid and dashed

lines correspond to the RMSE curves for the RIPS-sq and
the RIPS-u, respectively. Due to the space limitation, only
the CRLBs with A = 1.2 kHz are plotted, and both sys-
tems attain the CRLBs with this A as shown in Fig. 9.
Hence, our assumption that the Q-range estimators are
efficient at the derivation of the FIM J(x) in (42) is valid.
As expected from (36), there is approximately a 3-dB gain
in the performance of the RIPS-u over that of the RIPS-
sq. Also, note that there is an error floor in the RMSE
curves of the RIPS-sq at high SNR region. This is due to
the approximation in the estimator in the RIPS-sq, and the
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Fig. 8 The CRLBs of the location estimates vs. SNR at specific locations. Solid lines represent the RIPS-u and dashed lines are for the RIPS-sq
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error floor increases as A increases since the ratio A /g
in the approximated term 7 increases. On the other hand,
the performance of the RIPS-u is approximately the same
over different A’s. In other words, unlike in the RIPS-
sq, frequencies are allowed to be further apart without
worsening the performance in the RIPS-u. Therefore, the
RIPS-u has more flexibility in designing parameters than
the RIPS-sq.

The RMSEs of the location estimates of two systems
vs. SNR are shown in Fig. 10, respectively. We employ
the RD-based localization in [28] to estimate the location
of the target node. Since the CRLBs depend on the tar-
get node position, the average of the CRLBs calculated at
each iteration is plotted here. The figure shows the perfor-
mance gain of the RIPS-u over the RIPS-sq in the location
estimation as well.

6 Experimental evaluation
To further compare the performance of two systems, we
implemented them on the NI USRP transceivers [32].

6.1 The system model

We employed four NI USRP 2920 to estimate the Q-
range in the RIPS-u and the RIPS-sq. Two USRPs are used
as transmitters, and the other two are used as receivers.
Although one USRP transceiver is capable of both trans-
mitting and receiving, we use separate devices to allow
different spatial arrangements. The internal clock of the

USRP acting as the first receiver is used as the refer-
ence clock, and a MIMO cable connects two receivers for
synchronization. All four USRPs are connected to a host
PC through Ethernet cables. LabVIEW is running at the
host PC to control the USRP functions and to perform
Q-range estimation. Unfortunately, a square-law device is
not equipped in the USRP devices, and thus, the signal
is squared after sampling in the RIPS-sq. The lack of a
square-law device has advantages as well as shortcomings.
The RF part is simplified and non-linearity effect caused
by the square-law device is neglected. On the other hand,
the sampling rate increases as the raw received signal has
to be sampled beyond twice of its maximum frequency.
Hence, the parameters have to be chosen carefully to suc-
cessfully obtain low-frequency differential signals. As all
the samples are sent to the host PC for processing, the
sampling rate is limited by the host PC specifications.

Let us denote nodes A and B as transmitters and nodes
C and D as receivers. The signals given in (1) are trans-
mitted by nodes A and B. At the receivers, the received
signal is downconverted by f,. Since the bandwidth of
the USRP device is 20 MHz, frequencies are designed as
fx —fo < 20 MHz for k = 1,2. The downconverted signal
is sampled at f;1.

In both systems, the signal is processed accordingly and
decimated to the same final sampling rate f; for com-
parison. In the experiment, the sampling frequency is
chosen such that the decimation factor f;1 /f; is an inte-
ger. Moreover, the parameters should be designed such
that mod (A,f;) # 0 for the RIPS-u. To fulfill these
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Fig. 10 The RMSE of the location estimates vs. SNR

conditions, we chose f;; = 4 MHz and f; = 400 kHz.
As a result, the signal is decimated by the factor of 10,
and N = 10, 000 samples are used to obtain one Q-range
estimate.

6.2 Frequency estimation

To accurately estimate the phase, the receivers need
accurate knowledge of the frequencies. Although the
receivers do have knowledge of the designed parameters,
the local oscillators at transmitter USRPs and receiver
USRPs induce frequency offsets. Hence, the frequencies
are estimated from the sampled received signal at the
host PC using a frequency detector function from Lab-
VIEW. With the coarse frequency synchronization using a
MIMO cable, we have observed the frequency offsets up
to 20 Hz.

6.3 Receiver synchronization

Recall that the RIPS requires time synchronization
between the two receivers. However, the internal clock
of the USRP device used as the reference to synchronize
two receivers can only yield coarse synchronization. As
a result, the phase difference between the two receivers
contains two unknown terms: the distance metric and
the time offset between the receivers. Hence, we use the
true distances, which are physically measured, to calcu-
late the time offset at the beginning of a ranging session.
Assuming the time offset between receivers is constant
over a period of time, we use this estimated time offset to
calibrate the signal prior to the Q-range estimation.

6.4 Experimental results
Frequencies used in the experiment are f, = 80 MHz,
A 14 kHz, fi = fo + A, and f, = 79 MHz. The

Case l: ¢q=4 cm

Fig. 11 Three experimental setups

Case 2: ¢ =20 cm

node C

R -

Case 3: ¢ = —15 cm
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received signal is first sampled at f;; = 4 MHz. The sig-
nal is squared prior to decimation in the RIPS-sq whereas
the signal is directly decimated in the RIPS-u. With these
parameters, the approximation error in the RIPS-sq is less
than 0.001 m, and the resolvable range for both schemes is
i A i ~ 1.875 m. Since the length of the MIMO cable
is less than a meter, our experimental setup will not have
the Q-range exceeding these bounds.

Four USRPs are placed in three different arrangements,
and these setups are shown in Fig. 11. A number below
each setup is the true Q-range measured physically. In
each setup, the USRP device labeled “node D (RX2)” is
connected to the one labeled “node C (RX1)” through the
MIMO cable for coarse synchronization. For one Q-range
estimate, N = 100, 000 samples are acquired. We assume
the receiver and frequency offsets are constant over a
period of time required to obtain 100 Q-range estimates,
and the offsets are recalculated every 100 Q-range esti-
mates. Repeating this process for nine times, 900 Q-range
estimates are achieved.

Complementary cumulative distribution function
(CCDF) of the Q-range estimation errors for three setups
are presented in Fig. 12. Although we assumed that
the time and frequency offsets are constant over 100
Q-range estimates, we observed the random fluctuations
in frequency offsets. The frequency offset causes the
unknown bias in the estimated phase, and the same fre-
quency offsets produce the different bias in two systems.
As a result, the frequency offset instability caused the
difference in the performance among three cases. Yet,

the performance gain of the RIPS-u over the RIPS-sq is
noticeable, especially in case 2. Furthermore, the RIPS-u
yields smaller standard deviation compared to the RIPS-
sq as shown in Table 1. Hence, the experimental results
confirm that the RIPS-u has better performance than the
RIPS-sq.

7 Conclusions

In this paper, we investigated the performance of the RIPS
using the receiver with square-law devices (RIPS-sq) and
with undersampling techniques (RIPS-u) through theo-
retical and experimental analyses. In the theoretical anal-
ysis, we computed Cramér-Rao lower bounds (CRLBs)
for the Q-range and location estimates for both systems
and showed that the RIPS-u has a lower CRLB com-
pared to the RIPS-sq. For the experimental analysis, we
implemented two systems onto the USRP devices and
confirmed the accuracy of the RIPS-u over the RIPS-sq.

Table 1 Medians and standard deviations of the estimated
Q-ranges

RIPS-u RIPS-sq
Median Std. dev. Median Std. dev.
(cm) (cm) (cm) (cm)
Case 1 (4cm) 40072 0.2207 40056 03155
Case 2 (20 cm) 19.8753 0.7346 19.8753 14525
Case 3 (—15cm) —14.9520 03737 —14.9673 0.3850
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