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Abstract

This paper presents adaptive link selection algorithms for distributed estimation and considers their application to
wireless sensor networks and smart grids. In particular, exhaustive search-based least mean squares (LMS) / recursive
least squares (RLS) link selection algorithms and sparsity-inspired LMS / RLS link selection algorithms that can exploit
the topology of networks with poor-quality links are considered. The proposed link selection algorithms are then
analyzed in terms of their stability, steady-state, and tracking performance and computational complexity. In
comparison with the existing centralized or distributed estimation strategies, the key features of the proposed
algorithms are as follows: (1) more accurate estimates and faster convergence speed can be obtained and (2) the
network is equipped with the ability of link selection that can circumvent link failures and improve the estimation
performance. The performance of the proposed algorithms for distributed estimation is illustrated via simulations in
applications of wireless sensor networks and smart grids.
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1 Introduction
Distributed signal processing algorithms have become a
key approach for statistical inference in wireless networks
and applications such as wireless sensor networks and
smart grids [1–5]. It is well known that distributed pro-
cessing techniques deal with the extraction of information
from data collected at nodes that are distributed over a
geographic area [1]. In this context, for each specific node,
a set of neighbor nodes collect their local information and
transmit the estimates to a specific node. Then, each spe-
cific node combines the collected information together
with its local estimate to generate an improved estimate.

1.1 Prior and related work
Several works in the literature have proposed strate-
gies for distributed processing which include incremental
[1, 6–8], diffusion [2, 9], sparsity-aware [3, 10], and
consensus-based strategies [11]. With the incremental
strategy, the processing follows a Hamiltonian cycle, i.e.,
the information flows through these nodes in one direc-
tion, which means each node passes the information to its
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adjacent node in a uniform direction. However, in order
to determine an optimum cyclic path that covers all nodes
(considering the noise, interference, path loss, and chan-
nels between neighbor nodes), this method needs to solve
an NP-hard problem. In addition, when any of the nodes
fails, data communication through the cycle is interrupted
and the distributed processing breaks down [1].
In distributed diffusion strategies [2, 10], the neighbors

for each node are fixed and the combining coefficients
are calculated after the network topology is deployed and
starts its operation. One potential risk of this approach is
that the estimation procedure may be affected by poorly
performing links. More specifically, the fixed neighbors
and the pre-calculated combining coefficients may not
provide an optimized estimation performance for each
specified node because there are links that are more
severely affected by noise or fading. Moreover, when the
number of neighbor nodes is large, each node requires a
large bandwidth and transmit power. In [12, 13], the idea
of partial diffusionwas introduced for reducing communi-
cations between neighbor nodes. Prior work on topology
design and adjustment techniques includes the studies in
[14–16] and [17], which are not dynamic in the sense that
they cannot track changes in the network and mitigate the
effects of poor links.
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1.2 Contributions
The adaptive link selection algorithms for distributed esti-
mation problems are proposed and studied in this chapter.
Specifically, we develop adaptive link selection algorithms
that can exploit the knowledge of poor links by selecting
a subset of data from neighbor nodes. The first approach
consists of exhaustive search-based least mean squares
(LMS)/ recursive least squares (RLS) link selection (ES-
LMS/ES-RLS) algorithms, whereas the second technique
is based on sparsity-inspired LMS/RLS link selection
(SI-LMS/SI-RLS) algorithms. With both approaches, dis-
tributed processing can be divided into two steps. The
first step is called the adaptation step, in which each node
employs LMS or RLS to perform the adaptation through
its local information. Following the adaptation step, each
node will combine its collected estimates from its neigh-
bors and local estimate, through the proposed adaptive
link selection algorithms. The proposed algorithms result
in improved estimation performance in terms of the mean
square error (MSE) associated with the estimates. In con-
trast to previously reported techniques, a key feature of
the proposed algorithms is that the combination step
involves only a subset of the data associated with the best
performing links.
In the ES-LMS and ES-RLS algorithms, we consider

all possible combinations for each node with its neigh-
bors and choose the combination associated with the
smallest MSE value. In the SI-LMS and SI-RLS algo-
rithms, we incorporate a reweighted zero attraction (RZA)
strategy into the adaptive link selection algorithms. The
RZA approach is often employed in applications deal-
ing with sparse systems in such a way that it shrinks
the small values in the parameter vector to zero, which
results in better convergence and steady-state perfor-
mance. Unlike prior work with sparsity-aware algorithms
[3, 18–20], the proposed SI-LMS and SI-RLS algorithms
exploit the possible sparsity of the MSE values asso-
ciated with each of the links in a different way. In
contrast to existing methods that shrink the signal sam-
ples to zero, SI-LMS and SI-RLS shrink to zero the
links that have poor performance or high MSE values.
By using the SI-LMS and SI-RLS algorithms, the data
associated with unsatisfactory performance will be dis-
carded, which means the effective network topology used
in the estimation procedure will change as well. Although
the physical topology is not changed by the proposed
algorithms, the choice of the data coming from the neigh-
bor nodes for each node is dynamic, leads to the change
of combination weights, and results in improved per-
formance. We also remark that the topology could be
altered with the aid of the proposed algorithms and a feed-
back channel which could inform the nodes whether they
should be switched off or not. The proposed algorithms
are considered for wireless sensor networks and also as a

tool for distributed state estimation that could be used in
smart grids.
In summary, the main contributions of this chapter are

the following:

• We present adaptive link selection algorithms for
distributed estimation that are able to achieve
significantly better performance than existing
algorithms.

• We devise distributed LMS and RLS algorithms with
link selection capabilities to perform distributed
estimation.

• We analyze the MSE convergence and tracking
performance of the proposed algorithms and their
computational complexities, and we derive analytical
formulas to predict their MSE performance.

• A simulation study of the proposed and existing
distributed estimation algorithms is conducted along
with applications in wireless sensor networks and
smart grids.

This paper is organized as follows. Section 2 describes
the system model and the problem statement. In
Section 3, the proposed link selection algorithms are
introduced. We analyze the proposed algorithms in terms
of their stability, steady-state, and tracking performance
and computational complexity in Section 4. The numeri-
cal simulation results are provided in Section 5. Finally, we
conclude the paper in Section 6.
Notation: We use boldface upper case letters to denote

matrices and boldface lower case letters to denote vectors.
We use (·)T and (·)−1 to denote the transpose and inverse
operators, respectively, (·)H for conjugate transposition
and (·)∗ for complex conjugate.

2 Systemmodel and problem statement
We consider a set of N nodes, which have limited
processing capabilities, distributed over a given geograph-
ical area as depicted in Fig. 1. The nodes are connected
and form a network, which is assumed to be partially
connected because nodes can exchange information only
with neighbors determined by the connectivity topology.
We call a network with this property a partially connected
network whereas a fully connected network means that
data broadcast by a node can be captured by all other
nodes in the network in one hop [21]. We can think of
this network as a wireless network, but our analysis also
applies to wired networks such as power grids. In our
work, in order to perform link selection strategies, we
assume that each node has at least two neighbors.
The aim of the network is to estimate an unknown

parameter vector ω0, which has length M. At every time
instant i, each node k takes a scalar measurement dk(i)
according to
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Fig. 1 Network topology with N nodes

dk(i) = ωH
0 xk(i) + nk(i), i = 1, 2, . . . , I, (1)

where xk(i) is the M × 1 random regression input signal
vector and nk(i) denotes the Gaussian noise at each node
with zeromean and variance σ 2

n,k . This linear model is able
to capture or approximate well many input-output rela-
tions for estimation purposes [22], and we assume I > M.
To compute an estimate of ω0 in a distributed fashion, we
need each node to minimize the MSE cost function [2]

Jk (ωk(i)) = E

∣∣∣dk(i) − ωH
k (i)xk(i)

∣∣∣2, (2)

where E denotes expectation and ωk(i) is the estimated
vector generated by node k at time instant i. Equation (3)
is also the definition of the MSE, and the global network
cost function could be described as

J(ω) =
N∑
k=1

E
∣∣dk(i) − ωHxk(i)

∣∣2. (3)

To solve this problem, diffusion strategies have been
proposed in [2, 9] and [23]. In these strategies, the esti-
mate for each node is generated through a fixed combina-
tion strategy given by

ωk(i) =
∑
l∈Nk

cklψ l(i), (4)

where Nk denotes the set of neighbors of node k includ-
ing node k itself, ckl ≥ 0 is the combining coefficient, and
ψ l(i) is the local estimate generated by node l through its
local information.
There are many ways to calculate the combining coeffi-

cient ckl which include the Hastings [24], the Metropolis
[25], the Laplacian [26], and the nearest neighbor [27]
rules. In this work, due to its simplicity and good per-
formance, we adopt the Metropolis rule [25] given by

ckl =
⎧⎨⎩

1
max{|Nk |,|Nl|} , if k �= l are linked
1 − ∑

l∈Nk/k
ckl, for k = l. (5)

where |Nk| denotes the cardinality of Nk . The set of
coefficients ckl should satisfy [2]∑

l∈Nk ∀k
ckl = 1. (6)

For the combination strategy mentioned in (4), the
choice of neighbors for each node is fixed, which results
in some problems and limitations, namely:

• Some nodes may face high levels of noise or
interference, which may lead to inaccurate estimates.

• When the number of neighbors for each node is high,
large communication bandwidth and high transmit
power are required.

• Some nodes may shut down or collapse due to
network problems. As a result, local estimates to their
neighbors may be affected.

Under such circumstances, a performance degradation
is likely to occur when the network cannot discard the
contribution of poorly performing links and their associ-
ated data in the estimation procedure. In the next section,
the proposed adaptive link selection algorithms are pre-
sented, which equip a network with the ability to improve
the estimation procedure. In the proposed scheme, each
node is able to dynamically select the data coming from
its neighbors in order to optimize the performance of
distributed estimation techniques.

3 Proposed adaptive link selection algorithms
In this section, we present the proposed adaptive link
selection algorithms. The goal of the proposed algorithms
is to optimize the distributed estimation and improve
the performance of the network by dynamically chang-
ing the topology. These algorithmic strategies give the
nodes the ability to choose their neighbors based on their
MSE performance. We develop two categories of adap-
tive link selection algorithms; the first one is based on an
exhaustive search, while the second is based on a sparsity-
inspired relaxation. The details will be illustrated in the
following subsections.
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3.1 Exhaustive search–based LMS/RLS link selection
The proposed ES-LMS and ES-RLS algorithms employ an
exhaustive search to select the links that yield the best
performance in terms of MSE. First, we describe how
we define the adaptation step for these two strategies. In
the ES-LMS algorithm, we employ the adaptation strategy
given by

ψk(i) = ωk(i) + μkxk(i)
[
dk(i) − ωH

k (i)xk(i)
]∗ , (7)

where μk is the step size for each node. In the ES-RLS
algorithm, we employ the following steps for the adapta-
tion:

�−1
k (i) = λ−1�−1

k (i − 1)

− λ−2�−1
k (i − 1)xk(i)xHk (i)�−1

k (i − 1)
1 + λ−1xHk (i)�−1

k (i − 1)xk(i)
, (8)

where λ is the forgetting factor. Then, we let

Pk(i) = �−1
k (i) (9)

and

kk(i) = λ−1Pk(i)xk(i)
1 + λ−1xHk (i)Pk(i)xk(i)

. (10)

ψk(i) = ωk(i) + k(i)
[
dk(i) − ωH

k (i)xk(i)
]∗ , (11)

Pk(i + 1) = λ−1Pk(i) − λ−1kk(i)xHk (i)Pk(i). (12)

Following the adaptation step, we introduce the combi-
nation step for both the ES-LMS and ES-RLS algorithms,
based on an exhaustive search strategy. At first, we intro-
duce a tentative set �k using a combinatorial approach
described by

�k ∈ 2|Nk |\∅, (13)

where the set �k is a nonempty set with 2|Nk | elements.
After the tentative set �k is defined, we write the cost
function (2) for each node as

Jk (ψ(i)) � E
∣∣dk(i) − ψH(i)xk(i)

∣∣2, (14)

where

ψ(i) �
∑
l∈�k

ckl(i)ψ l(i) (15)

is the local estimator and ψ l(i) is calculated through (7)
or (11), depending on the algorithm, i.e., ES-LMS or ES-
RLS. With different choices of the set �k , the combining
coefficients ckl will be re-calculated through (5), to ensure
condition (6) is satisfied.
Then, we introduce the error pattern for each node,

which is defined as

e�k (i) � dk(i) −
⎡⎣∑
l∈�k

ckl(i)ψ l(i)

⎤⎦H

xk(i). (16)

For each node k, the strategy that finds the best set�k(i)
must solve the following optimization problem:

�̂k(i) = arg min
�k∈2Nk \∅

|e�k (i)|. (17)

After all steps have been completed, the combination
step in (4) is performed as described by

ωk(i + 1) =
∑

l∈�̂k(i)

ckl(i)ψ l(i). (18)

At this stage, the main steps of the ES-LMS and ES-RLS
algorithms have been completed. The proposed ES-LMS
and ES-RLS algorithms find the set �̂k(i) that minimizes
the error pattern in (16) and (17) and then use this set of
nodes to obtain ωk(i) through (18).
The ES-LMS/ES-RLS algorithms are briefly summa-

rized as follows:

Step 1 Each node performs the adaptation through its
local information based on the LMS or RLS algorithm.
Step 2 Each node finds the best set �k(i), which satisfies

(17).
Step 3 Each node combines the information obtained

from its best set of neighbors through (18).

The details of the proposed ES-LMS and ES-RLS algo-
rithms are shown in Algorithms 1 and 2. When the
ES-LMS and ES-RLS algorithms are implemented in net-
works with a large number of small and low–power
sensors, the computational complexity cost may become
high, as the algorithm in (17) requires an exhaustive
search and needs more computations to examine all the
possible sets �k(i) at each time instant.

Algorithm 1 The ES-LMS Algorithm
Initialize: ωk(1)=0, for k = 1, 2, . . . ,N
For each time instant i = 1, 2, . . . , I
For each node k = 1, 2, . . . ,N

ψk(i) = ωk(i) + μkxk(i)
[
dk(i) − ωH

k (i)xk(i)
]∗

end
For each node k = 1, 2, . . . ,N

find all possible sets of �k

e�k (i) = dk(i) −
[ ∑
l∈�k

ckl(i)ψ l(i)
]H

xk(i)

�̂k(i) = argmin
�k

|e�k (i)|
ωk(i + 1) = ∑

l∈�̂k(i)
ckl(i)ψ l(i)

end
end
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Algorithm 2 The ES-RLS Algorithm
Initialize: ωk(1)=0, for k = 1, 2, . . . ,N

�−1
k (0) = δ−1I, δ = small positive constant

For each time instant i = 1, 2, . . . , I
For each node k = 1, 2, . . . ,N

�−1
k (i) = λ−1�−1

k (i − 1)

−λ−2�−1
k (i−1)xk(i)xHk (i)�−1(i−1)

1+λ−1xHk (i)�−1(i−1)xk(i)
Pk(i) = �−1

k (i)
kk(i) = λ−1Pk(i)xk(i)

1+λ−1xHk (i)Pk(i)xk(i)
ψk(i) = ωk(i) + k(i)

[
dk(i) − ωH

k (i)xk(i)
]∗

Pk(i + 1) = λ−1Pk(i) − λ−1k(i)xHk (i)Pk(i)
end
For each node k = 1, 2, . . . ,N

find all possible sets of �k

e�k (i) = dk(i) −
[ ∑
l∈�k

ckl(i)ψ l(i)
]H

xk(i)

�̂k(i) = argmin
�k

|e�k (i)|
ωk(i + 1) = ∑

l∈�̂k(i)
ckl(i)ψ l(i)

end
end

3.2 Sparsity–inspired LMS/RLS link selection
The ES-LMS/ES-RLS algorithms previously outlined
need to examine all possible sets to find a solution at
each time instant, which might result in high computa-
tional complexity for large networks operating in time-
varying scenarios. To solve the combinatorial problem
with reduced complexity, we propose the SI-LMS and
SI-RLS algorithms, which are as simple as standard diffu-
sion LMS or RLS algorithms and are suitable for adaptive
implementations and scenarios where the parameters to
be estimated are slowly time-varying. The zero-attracting

(ZA) strategy, RZA strategy, and zero-forcing (ZF) strat-
egy are reported in [3] and [28] as for sparsity-aware
techniques. These approaches are usually employed in
applications dealing with sparse systems in scenarios
where they shrink the small values in the parameter vec-
tor to zero, which results in a better convergence rate
and a steady-state performance. Unlike existing methods
that shrink the signal samples to zero, the proposed SI-
LMS and SI-RLS algorithms shrink to zero the links that
have poor performance or high MSE values. To detail the
novelty of the proposed sparsity-inspired LMS/RLS link
selection algorithms, we illustrate the processing in Fig. 2.
Figure 2a shows a standard type of sparsity-aware pro-

cessing. We can see that, after being processed by a
sparsity-aware algorithm, the nodes with small MSE val-
ues will be shrunk to zero. In contrast, the proposed
SI-LMS and SI-RLS algorithms will keep the nodes with
lower MSE values and reduce the combining weight
of the nodes with large MSE values as illustrated in
Fig. 2b. When compared with the ES-type algorithms,
the SI-LMS/RLS algorithms do not need to consider all
possible combinations of nodes, which means that the
SI-LMS/RLS algorithms have lower complexity. In the
following, we will show how the proposed SI-LMS/SI–
RLS algorithms are employed to realize the link selection
strategy automatically.
In the adaptation step, we follow the same procedure

in (7)–(11) as that of the ES-LMS and ES-RLS algorithms
for the SI-LMS and SI-RLS algorithms, respectively. Then,
we reformulate the combination step. First, we introduce
the log-sum penalty into the combination step in (4). Dif-
ferent penalty terms have been considered for this task.
We have adopted a heuristic approach [3, 29] known as
reweighted zero-attracting strategy into the combination
step in (4) because this strategy has shown an excellent
performance and is simple to implement. The log-sum
penalty is defined as:

Fig. 2 a–b Sparsity aware signal processing strategies
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f1(ek(i)) =
∑
l∈Nk

log (1 + ε|ekl(i)|) , (19)

where the error ekl(i)(l ∈ Nk), which stands for the
neighbor node l of node k including node k itself, is
defined as

ekl(i) � dk(i) − ψH
l (i)xk(i) (20)

and ε is the shrinkage magnitude. Then, we introduce
the vector and matrix quantities required to describe the
combination step. We first define a vector ck that contains
the combining coefficients for each neighbor of node k
including node k itself as described by

ck � [ckl] , l ∈ Nk . (21)

Then, we define a matrix �k that includes all the esti-
mated vectors, which are generated after the adaptation
step of SI-LMS and of SI-RLS for each neighbor of node k
including node k itself as given by

�k �[ψ l(i)] , l ∈ Nk . (22)

Note that the adaptation steps of SI-LMS and SI-RLS
are identical to (7) and (11), respectively. An error vec-
tor êk that contains all error values calculated through
(20) for each neighbor of node k including node k itself is
expressed by

êk �[ekl(i)] , l ∈ Nk . (23)

To devise the sparsity-inspired approach, we have
modified the vector êk in the following way:

1. The element with largest absolute value |ekl(i)| in êk
will be kept as |ekl(i)|.

2. The element with smallest absolute value will be set
to −|ekl(i)|. This process will ensure the node with
smallest error pattern has a reward on its combining
coefficient.

3. The remaining entries will be set to zero.

At this point, the combination step can be defined
as [29]

ωk(i) =
|Nk |∑
j=1

[
ck,j − ρ

∂f1(êk,j)
∂ êk,j

]
ψk,j, (24)

where ck,j, êk,j stand for the jth element in the ck , êk , and
ψk,j stands for the jth column in �k . The parameter ρ

is used to control the algorithm’s shrinkage intensity. We
then calculate the partial derivative of êk[j]:

∂f1(êk,j)
∂ êk,j

= ∂
(
log(1 + ε|ekl(i)|)

)
∂ (ekl(i))

= ε
sign(ekl(i))
1 + ε|ekl(i)| l ∈ Nk

= ε
sign(êk,j)
1 + ε|êk,j| . (25)

To ensure that
|Nk |∑
j=1

(
ck,j − ρ

∂ f1(êk,j)
∂ êk,j

)
= 1, we replace êk,j

with ξmin in the denominator of (25), where the parameter
ξmin stands for the minimum absolute value of ekl(i) in êk .
Then, (25) can be rewritten as

∂f1(êk,j)
∂ êk,j

≈ ε
sign(êk,j)
1 + ε|ξmin| . (26)

At this stage, the log-sum penalty performs shrinkage
and selects the set of estimates from the neighbor nodes
with the best performance, at the combination step. The
function sign(a) is defined as

sign(a) =
{
a/|a| a �= 0
0 a = 0. (27)

Then, by inserting (26) into (24), the proposed combi-
nation step is given by

ωk(i) =
|Nk |∑
j=1

[
ck,j − ρε

sign(êk,j)
1 + ε|ξmin|

]
ψk,j. (28)

Note that the condition ck,j−ρε
sign(êk,j)
1+ε|ξmin| ≥ 0 is enforced

in (28). When ck,j − ρε
sign(êk,j)
1+ε|ξmin| = 0, it means that the

corresponding node has been discarded from the com-
bination step. In the following time instant, if this node
still has the largest error, there will be no changes in the
combining coefficients for this set of nodes.
To guarantee the stability, the parameter ρ is assumed

to be sufficiently small and the penalty takes effect only on
the element in êk for which the magnitude is comparable
to 1/ε [3]. Moreover, there is little shrinkage exerted on
the element in êk whose |êk[ j] | � 1/ε. The SI-LMS and
SI-RLS algorithms perform link selection by the adjust-
ment of the combining coefficients through (28). At this
point, it should be emphasized that:

• The process in (28) satisfies condition (6), as the
penalty and reward amounts of the combining
coefficients are the same for the nodes with
maximum and minimum error, respectively, and
there are no changes for the rest nodes in the set.

• When computing (28), there are no matrix–vector
multiplications. Therefore, no additional complexity
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is introduced. As described in (24), only the j th
element of ck , êk and j th column of �k are used for
calculation.

For the neighbor node with the largest MSE value, after
the modifications of êk , its ekl(i) value in êk will be a posi-
tive number which will lead to the term ρε

sign(êk,j)
1+ε|ξmin| in (28)

being positive too. This means that the combining coeffi-
cient for this node will be shrunk and the weight for this
node to build ωk(i) will be shrunk too. In other words,
when a node encounters high noise or interference levels,
the corresponding MSE value might be large. As a result,
we need to reduce the contribution of that node.
In contrast, for the neighbor node with the smallest

MSE, as its ekl(i) value in êk will be a negative number, the
term ρε

sign(êk,j)
1+ε|ξmin| in (28) will be negative too. As a result,

the weight for this node associated with the smallest MSE
to build ωk(i) will be increased. For the remaining neigh-
bor nodes, the entry ekl(i) in êk is zero, which means the
term ρε

sign(êk,j)
1+ε|ξmin| in (28) is zero and there is no change

for the weights to build ωk(i). The main steps for the
proposed SI-LMS and SI-RLS algorithms are listed as
follows:
Step 1 Each node carries out the adaptation through its

local information based on the LMS or RLS algorithm.
Step 2 Each node calculates the error pattern through

(20).
Step 3 Each node modifies the error vector êk .
Step 4 Each node combines the information obtained

from its selected neighbors through (28).

Algorithm 3 The SI-LMS and SI-RLS Algorithms
Initialize: ωk(−1)=0, k = 1, 2, . . . ,N

P(0) = δ−1I, δ = small positive constant
For each time instant i = 1, 2, . . . , I
For each node k = 1, 2, . . . ,N

The adaptation step for computing ψk(i)
is exactly the same as the ES-LMS and ES-RLS
for the SI-LMS and SI-RLS algorithms respectively

end
For each node k = 1, 2, . . . ,N
ekl(i) = dk(i) − ψH

l (i)xk(i) l ∈ Nk
ck = [ ckl] l ∈ Nk
�k = [ψ l(i)] l ∈ Nk
êk = [ ekl(i)] l ∈ Nk
Find the maximum and minimum absolute terms in ek
Modified êk as êk = [0· · ·0, |ekl(i)|︸ ︷︷ ︸

max

, 0 · · · 0,−|ekl(i)|︸ ︷︷ ︸
min

, 0 · ··0]

ξmin = min (|ekl(i)|)
ωk(i) =

|Nk |∑
j=1

[
ck,j − ρε

sign(ek,j)
1+ε|ξmin|

]
ψk,j

end
end

The SI-LMS and SI-RLS algorithms are detailed in
Algorithm 3. For the ES-LMS/ES-RLS and SI-LMS/SI-
RLS algorithms, we design different combination steps
and employ the same adaptation procedure, which means
the proposed algorithms have the ability to equip any
diffusion-type wireless networks operating with other
than the LMS and RLS algorithms. This includes, for
example, the diffusion conjugate gradient strategy [30].
Apart from using weights related to the node degree, other
signal dependent approaches may also be considered, e.g.,
the parameter vectors could be weighted according to the
signal-to-noise ratio (SNR) (or the noise variance) at each
node within the neighborhood.

4 Analysis of the proposed algorithms
In this section, a statistical analysis of the proposed algo-
rithms is developed, including a stability analysis and
an MSE analysis of the steady-state and tracking perfor-
mance. In addition, the computational complexity of the
proposed algorithms is also detailed. Before we start the
analysis, we make some assumptions that are common in
the literature [22].

Assumption I: The weight-error vector εk(i) and the
input signal vector xk(i) are statistically independent, and
the weight-error vector for node k is defined as

εk(i) � ωk(i) − ω0, (29)

where ω0 denotes the optimum Wiener solution of the
actual parameter vector to be estimated, and ωk(i) is
the estimate produced by a proposed algorithm at time
instant i.

Assumption II: The input signal vector xl(i) is drawn
from a stochastic process, which is ergodic in the autocor-
relation function [22].

Assumption III: The M × 1 vector q(i) represents a sta-
tionary sequence of independent zero mean vectors and
positive definite autocorrelation matrixQ=E

[
q(i)qH(i)

]
,

which is independent of xk(i), nk(i) and εl(i).

Assumption IV (Independence): All regressor input sig-
nals xk(i) are spatially and temporally independent. This
assumption allows us to consider the input signal xk(i)
independent of ωl(i), l ∈ Nk .

4.1 Stability analysis
In general, to ensure that a partially connected network
performance can converge to the global network perfor-
mance, the estimates should be propagated across the
network [31]. The work in [14] shows that it is central to
the performance that each node should be able to reach
the other nodes through one or multiple hops [31].
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To discuss the stability analysis of the proposed ES-LMS
and SI-LMS algorithms, we first substitute (7) into (18)
and obtain

ωk(i + 1) =
∑

l∈�̂k(i)

ckl(i)ψ l(i + 1)

=
∑

l∈�̂k(i)

[
ωl(i) + μlxl(i + 1)e∗l (i + 1)

]
ckl(i)

=
∑

l∈�̂k(i)

[
ω0 + εl(i) + μlxl(i + 1)e∗l (i + 1)

]
ckl(i)

=
∑

l∈�̂k(i)

ω0ckl +
∑

l∈�̂k(i)

[εl(i)

+ μlxl(i + 1)e∗l (i + 1) ] ckl(i)

subject to
∑
l
ckl(i) = 1

= ω0+
∑

l∈�̂k(i)

[
εl(i) + μlxl(i +1)e∗l (i +1)

]
ckl(i).

(30)
Then, we have

εk(i + 1) =
∑

l∈�̂k(i)

[
εl(i) + μlxl(i + 1)e∗l (i + 1)

]
ckl(i).

(31)

By employing Assumption IV, we start with (31) for
the ES-LMS algorithm and define the global vectors and
matrices:

ε(i + 1) � [ε1(i + 1), · · · , εN (i + 1)]T (32)

M � diag {μ1IM, . . . ,μN IM} (33)

D(i + 1) �diag
{
x1(i + 1)xH1 (i + 1), . . . , xN (i + 1)xHN (i + 1)

}
(34)

and the NM × 1 vector

g(i+1) =
[
xT1 (i + 1)n1(i + 1), · · · , xTN (i + 1)nN (i + 1)

]T
.

(35)

We also define an N × N matrix C where the combin-
ing coefficients {ckl} correspond to the {l, k} entries of the
matrix C and the NM × NM matrix CG with a Kronecker
structure:

CG = C ⊗ IM (36)

where ⊗ denotes the Kronecker product.
By inserting el(i+ 1) = e0−l(i+ 1) − εHl (i)xl(i+ 1) into

(31), the global version of (31) can then be written as

ε(i + 1) = CT
G [I − MD(i + 1)] ε(i) + CT

GMg(i + 1),
(37)

where e0−l(i + 1) is the estimation error produced by the
Wiener filter for node l as described by

e0−l(i + 1) = dl(i) − ωH
0 xl(i). (38)

If we define

D � E[D(i + 1)]
= diag{R1, . . . ,RN } (39)

and take the expectation of (37), we arrive at

E{ε(i + 1)} = CT
G [I − MD]E{ε(i)}. (40)

Before we proceed, let us define X = I − MD. We say
that a square matrix X is stable if it satisfies X i → 0 as i →
∞. A known result in linear algebra states that a matrix is
stable if, and only if, all its eigenvalues lie inside the unit
circle. We need the following lemma to proceed [9].

Lemma 1. Let CG and X denote arbitrary NM × NM
matrices, where CG has real, non-negative entries, with
columns adding up to one. Then, the matrix Y = CT

GX is
stable for any choice of CG if, and only if, X is stable.

Proof. Assume that X is stable, it is true that for every
square matrix X and every α > 0, there exists a submulti-
plicativematrix norm ||·||τ that satisfies ||X||τ ≤ τ(X)+α,
where the submultiplicative matrix norm ||AB|| ≤ ||A|| ·
||B|| holds and τ(X) is the spectral radius of X [32, 33].
Since X is stable, τ(X) < 1, and we can choose α > 0
such that τ(X) + α = v < 1 and ||X||τ ≤ v < 1. Then we
obtain [9]

||Y i||τ = ||
(
CT
GX
)i ||τ

≤ ||
(
CT
G

)i ||τ · ||X i||τ
≤ vi||

(
CT
G

)i ||τ .
(41)

Since CT
G has non-negative entries with columns that

add up to one, it is element-wise bounded by unity. This
means its Frobenius norm is bounded as well and by
the equivalence of norms, so is any norm, in particular
|| (CT

G
)i ||τ . As a result, we have

lim
i→∞ ||Y i||τ = 0, (42)

so Y i converges to the zero matrix for large i. Therefore,
Y is stable.



Xu et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:86 Page 9 of 22

In view of Lemma 1 and (82), we need thematrix I−MD
to be stable. As a result, it requires I − μkRk to be stable
for all k, which holds if the following condition is satisfied:

0 < μk <
2

λmax (Rk)
(43)

where λmax (Rk) is the largest eigenvalue of the correlation
matrix Rk . The difference between the ES-LMS and SI-
LMS algorithms is the strategy to calculate the matrix C.
Lemma 1 indicates that for any choice of C, only X needs
to be stable. As a result, SI-LMS has the same convergence
condition as in (43). Given the convergence conditions,
the proposed ES-LMS/ES-RLS and SI-LMS/SI-RLS algo-
rithms will adapt according to the network connectivity
by choosing the group of nodes with the best available
performance to construct their estimates.

4.2 MSE steady-state analysis
In this part of the analysis, we devise formulas to predict
the excess MSE (EMSE) of the proposed algorithms. The
error signal at node k can be expressed as

ek(i) = dk(i) − ωH
k (i)xk(i)

= dk(i) − [ω0 − εk(i)]H xk(i)

= dk(i) − ωH
0 xk(i) + εHk (i)xk(i)

= e0−k + εHk (i)xk(i).

(44)

With Assumption I, the MSE expression can be derived
as

Jmse−k(i) = E[|ek(i)|2]

= E

[(
e0−k + εHk (i)xk(i)

) (
e∗0 + xHk (i)εk(i)

)]
= Jmin−k + E

[
εHk (i)xk(i)xHk (i)εk(i)

]
= Jmin−k + tr

{
E

[
εk(i)εHk (i)xk(i)xHk (i)

]}
= Jmin−k + tr

{
E

[
xk(i)xHk (i)

]
E

[
εk(i)εHk (i)

]}
= Jmin−k + tr {Rk(i)K k(i)} , (45)

where tr(·) denotes the trace of a matrix and Jmin−k is the
minimum mean square error (MMSE) for node k [22]:

Jmin−k = σ 2
d,k − pHk (i)R−1

k (i)pk(i), (46)

Rk(i) = E
[
xk(i)xHk (i)

]
is the correlation matrix of the

inputs for node k, pk(i) = E
[
xk(i)d∗

k (i)
]
is the cross-

correlation vector between the inputs and the measure-
ment dk(i), andK k(i) = E

[
εk(i)εHk (i)

]
is the weight-error

correlation matrix. From [22], the EMSE is defined as the
difference between the mean square error at time instant i
and the minimum mean square error. Then, we can write

Jex−k(i) = Jmse−k(i) − Jmin−k

= tr{Rk(i)K k(i)}.
(47)

For the proposed adaptive link selection algorithms, we
will derive the EMSE formulas separately based on (47)
and we assume that the input signal is modeled as a
stationary process.

4.2.1 ES–LMS
To update the estimate ωk(i), we employ

ωk(i + 1) =
∑

l∈�̂k(i)

ckl(i)ψ l(i + 1)

=
∑

l∈�̂k(i)

ckl(i)
[
ωl(i) + μlxl(i + 1)e∗l (i + 1)

]
=
∑

l∈�̂k(i)

ckl(i)[ωl(i) + μlxl(i + 1)(dl(i + 1)

− xHl (i + 1)ωl(i))] . (48)

Then, subtracting ω0 from both sides of (48), we arrive
at

εk(i + 1) =
∑

l∈�̂k(i)

ckl(i)
[
ωl(i) + μlxl(i + 1) (dl(i + 1)

−xHl (i + 1)ωl(i)
)]

−
∑

l∈�̂k(i)

ckl(i)ω0

=
∑

l∈�̂k(i)

ckl(i)
[
εl(i) + μlxl(i + 1) (dl(i + 1)

−xHl (i + 1)(εl(i) + ω0)
)]

=
∑

l∈�̂k(i)

ckl(i)
[
εl(i) + μlxl(i + 1) (dl(i + 1)

−xHl (i + 1)εl(i) − xHl (i + 1)ω0
)]

=
∑

l∈�̂k(i)

ckl(i)
[
εl(i) − μlxl(i + 1)xHl (i + 1)εl(i)

+μlxl(i + 1)e∗0−l(i + 1)
]

=
∑

l∈�̂k(i)

ckl(i)
[
(I − μlxl(i + 1)xHl (i + 1))εl(i)

+μlxl(i + 1)e∗0−l(i + 1)
]
. (49)

Let us introduce the random variables αkl(i):

αkl(i) =
{
1, if l ∈ �̂k(i)
0, otherwise. (50)
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At each time instant, each node will generate data asso-
ciated with network covariance matrices Ak with size
N × N which reflect the network topology, according to
the exhaustive search strategy. In the network covariance
matrices Ak , a value equal to 1 means nodes k and l are
linked and a value 0 means nodes k and l are not linked.
For example, suppose a network has 5 nodes. For node

3, there are two neighbor nodes, namely, nodes 2 and 5.
Through Eq. (13), the possible configurations of set�3 are
{3, 2}, {3, 5}, and {3, 2, 5}. Evaluating all the possible sets
for �3, the relevant covariance matrices A3 with size 5×5
at time instant i are described in Fig. 3.
Then, the coefficients αkl are obtained according to the

covariance matrices Ak . In this example, the three sets of
αkl are respectively shown in Table 1.
The parameters ckl will then be calculated through

Eq. (5) for different choices of matricesAk and coefficients
αkl. After αkl and ckl are calculated, the error pattern for
each possible �k will be calculated through (16) and the
set with the smallest error will be selected according to
(17).
With the newly defined αkl, (49) can be rewritten as

εk(i +1) =
∑
l∈Nk

αkl(i)ckl(i)
[(

I −μlxl(i +1)xHl (i + 1)
)

×εl(i) + μlxl(i + 1)e∗0−l(i + 1)
]
.

(51)

Fig. 3 Covariance matrices A3 for different sets of �3

Table 1 Coefficients αkl for different sets of �3

{2, 3}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α31 = 0

α32 = 1

α33 = 1

α34 = 0

α35 = 0

{3, 5}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α31 = 0

α32 = 0

α33 = 1

α34 = 0

α35 = 1

{2, 3, 5}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α31 = 0

α32 = 1

α33 = 1

α34 = 0

α35 = 1

Starting from (47), we then focus on K k(i + 1).

K k(i + 1) = E

[
εk(i + 1)εHk (i + 1)

]
. (52)

In (51), the term αkl(i) is determined through the net-
work topology for each subset, while the term ckl(i) is
calculated through the Metropolis rule. We assume that
αkl(i) and ckl(i) are statistically independent from the
other terms in (51). Upon convergence, the parameters
αkl(i) and ckl(i) do not vary because at steady state, the
choice of the subset �̂k(i) for each node k will be fixed.
Then, under these assumptions, substituting (51) into
(52), we arrive at:

K k(i + 1) =
∑
l∈Nk

E
[
α2
kl(i)c

2
kl(i)

]
((I − μlRl(i + 1))K l(i)

× (I − μlRl(i + 1))

+μ2
l e0−l(i + 1)e∗0−l(i + 1) × Rl(i + 1)

)
+
∑

l,q∈Nk
l �=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

× ((I − μlRl(i + 1))K l,q(i)
(
I − μqRl(i + 1)

)
+μlμqe0−l(i + 1)e∗0−q(i + 1)Rl,q(i + 1)

)
+
∑

l,q∈Nk
l �=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((
I − μqRq(i + 1)

)
KH

l,q(i) (I − μlRl(i + 1))

+μlμqe0−q(i + 1)e∗0−l(i + 1)RH
l,q(i + 1)

)
(53)
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where Rl,q(i + 1) = E

[
xl(i + 1)xHq (i + 1)

]
and K l,q(i) =

E

[
εl(i)εHq (i)

]
. To further simplify the analysis, we assume

that the samples of the input signal xk(i) are uncorrelated,
i.e., Rk = σ 2

x,kI with σ 2
x,k being the variance. Using the

diagonal matrices Rk = �k = σ 2
x,kI and Rl,q = �l,q =

σx,lσx,qI, we can write

K k(i +1) =
∑
l∈Nk

E
[
α2
kl(i)c

2
kl(i)

]
((I−μl�l)K l(i) (I−μl�l)

+μ2
l e0−l(i + 1)e∗0−l(i + 1)�l

)
+
∑

l,q∈Nk
l �=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

× ((I − μl�l)K l,q(i)
(
I − μq�q

)
+μlμqe0−l(i + 1)e∗0−q(i + 1)�l,q

)
+
∑

l,q∈Nk
l �=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((
I − μq�q

)
KH

l,q(i) (I − μl�l)

+μlμqe0−q(i + 1)e∗0−l(i + 1)�H
l,q

)
. (54)

Due to the structure of the above equations, the approxi-
mations, and the quantities involved, we can decouple (54)
into

Kn
k (i +1) =

∑
l∈Nk

E
[
α2
kl(i)c

2
kl(i)

]((
1−μlλ

n
l
)
Kn
l (i)

(
1−μlλ

n
l
)

+μ2
l e0−l(i + 1)e∗0−l(i + 1)λnl

)

+
∑

l,q∈Nk
l �=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((
1 − μlλ

n
l
)
Kn
l,q(i)

(
1 − μqλ

n
q

)

+μlμqe0−l(i + 1)e∗0−q(i + 1)λnl,q
)

+
∑

l,q∈Nk
l �=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((

1 − μqλ
n
q

)
(Kn

l,q(i))
H (1 − μlλ

n
l
)

+μlμqe0−q(i + 1)e∗0−l(i + 1)λnl,q
)
, (55)

where Kn
k (i + 1) is the nth element of the main diagonal

of K k(i+1). With the assumption that αkl(i) and ckl(i) are
statistically independent from the other terms in (51), we
can rewrite (55) as

Kn
k (i + 1) =

∑
l∈Nk

E
[
α2
kl(i)

]
E
[
c2kl(i)

] ((
1−μlλ

n
l
)2 Kn

l (i)

+μ2
l e0−l(i + 1)e∗0−l(i + 1)λnl

)
+ 2 ×

∑
l,q∈Nk

l �=q

E
[
αkl(i)αkq(i)

]
E
[
ckl(i)ckq(i)

]

×
((
1 − μlλ

n
l
) (

1 − μqλ
n
q

)
Kn
l,q(i)

+μlμqe0−l(i + 1)e∗0−q(i + 1)λnl,q
)
. (56)

By taking i → ∞, we can obtain (57).

Kn
k (ES-LMS) =

∑
l∈Nk

α2
klc

2
klμ

2
l Jmin−lλ

n
l + 2

∑
l,q∈Nk
l �=q

αklαkqcklckqμlμqe0−le∗0−qλ
n
l,q

1 − ∑
l∈Nk

α2
klc

2
kl
(
1 − μlλ

n
l
)2 − 2

∑
l,q∈Nk
l �=q

αklαkqcklckq
(
1 − μlλ

n
l
) (

1 − μqλnq

) . (57)
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Fig. 4 Covariance matrix A3 upon convergence

We assume that the choice of covariance matrix Ak for
node k is fixed upon the proposed algorithms conver-
gence, as a result, the covariance matrix Ak is determin-
istic and does not vary. In the above example, we assume
the choice of A3 is fixed as shown in Fig. 4.
Then the coefficients αkl will also be fixed and given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α31 = 0
α32 = 1
α33 = 1
α34 = 0
α35 = 1

as well as the parameters ckl that are computed using the
Metropolis combining rule. As a result, the coefficients αkl
and the coefficients ckl are deterministic and can be taken
out from the expectation. The MSE is then given by

Jmse−k = Jmin−k + Mσ 2
x,k

M∑
n=1

Kn
k (ES-LMS). (58)

4.2.2 SI-LMS
For the SI-LMS algorithm, we do not need to consider all
possible combinations. This algorithm simply adjusts the
combining coefficients for each node with its neighbors in

order to select the neighbor nodes that yield the smallest
MSE values. Thus, we redefine the combining coefficients
through (28)

ckl−new = ckl − ρε
sign(|ekl|)
1 + ε|ξmin| (l ∈ Nk). (59)

For each node k, at time instant i, after it receives the
estimates from all its neighbors, it calculates the error pat-
tern ekl(i) for every estimate received through Eq. (20)
and finds the nodes with the largest and smallest errors.
An error vector êk is then defined through (23), which
contains all error patterns ekl(i) for node k.
Then a procedure which is detailed after

Eq. (23) is carried out and modifies the error vec-
tor êk . For example, suppose node 5 has three
neighbor nodes, which are nodes 3, 6, and 8.
The error vector ê5 has the form described by
ê5 = [e53, e55, e56, e58] = [0.023, 0.052,−0.0004,−0.012].
After the modification, the error vector ê5 will be edited
as ê5 = [0, 0.052,−0.0004, 0]. The quantity hkl is then
defined as

hkl = ρε
sign(|ekl|)
1 + ε|ξmin| (l ∈ Nk), (60)

and the term ‘error pattern’ ekl in (60) is from the modified
error vector êk .
From [29], we employ the relation E [sign(ekl)]≈

sign(e0−k). According to Eqs. (1) and (38), when the pro-
posed algorithm converges at node k or the time instant i
goes to infinity, we assume that the error e0−k will be equal
to the noise variance at node k. Then, the asymptotic value
hkl can be divided into three situations due to the rule of
the SI-LMS algorithm:

hkl =

⎧⎪⎨⎪⎩
ρε

sign(|e0−k |)
1+ε|e0−k | for the node with the largest MSE

ρε
sign(−|e0−k |)
1+ε|e0−k | for the node with the smallest MSE

0 for all the remaining nodes.
(61)

Under this situation, after the time instant i goes to
infinity, the parameters hkl for each neighbor node of node
k can be obtained through (61) and the quantity hkl will be
deterministic and can be taken out from the expectation.
Finally, removing the random variables αkl(i) and insert-

ing (59) and (60) into (57), the asymptotic values Kn
k for

the SI-LMS algorithm are obtained as in (62).

Kn
k (SI-LMS) =

∑
l∈Nk

(ckl − hkl)2μ2
l Jmin−lλ

n
l + 2

∑
l,q∈Nk
l �=q

(ckl − hkl)(ckq − hkq)μlμqe0−le∗0−qλ
n
l,q

1 − ∑
l∈Nk

(ckl − hkl)2
(
1 − μlλ

n
l
)2 − 2

∑
l,q∈Nk
l �=q

(ckl − hkl)
(
ckq − hkq

) (
1 − μlλ

n
l
) (

1 − μqλnq

) . (62)



Xu et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:86 Page 13 of 22

At this point, the theoretical results are deterministic, and the MSE for SI-LMS algorithm is given by

Jmse−k = Jmin−k + Mσ 2
x,k

M∑
n=1

Kn
k (SI-LMS). (63)

4.2.3 ES-RLS
For the proposed ES-RLS algorithm, we start from (11), after inserting (11) into (18), we have

ωk(i + 1) =
∑

l∈�̂k(i)

ckl(i)ψ l(i + 1)

=
∑

l∈�̂k(i)

ckl(i)
[
ωl(i) + kl(i + 1)e∗l (i + 1)

]
=
∑

l∈�̂k(i)

ckl(i)
[
ωl(i) + kl(i + 1)(dl(i + 1) − xHl (i + 1)ωl(i))

]
. (64)

Then, subtracting the ω0 from both sides of (48), we arrive at

εk(i + 1) =
∑

l∈�̂k(i)

ckl(i)
[
ωl(i) + kl(i + 1)(dl(i + 1) − xHl (i + 1)ωl(i))

]
−
∑

l∈�̂k(i)

ckl(i)ω0

=
∑

l∈�̂k(i)

ckl(i)
[
εl(i) + kl(i + 1)

(
dl(i + 1) − xHl (i + 1)(εl(i) + ω0)

)]
=
∑

l∈�̂k(i)

ckl(i)
[(

I − kl(i + 1)xHl (i + 1)
)

εl(i) + kl(i + 1)e∗0−l(i + 1)
]
. (65)

Then, with the random variables αkl(i), (65) can be rewritten as

εk(i + 1) =
∑
l∈Nk

αkl(i)ckl(i)
[(

I − kl(i + 1)xHl (i + 1)
)

εl(i) + kl(i + 1)e∗0−l(i + 1)
]
. (66)

Since kl(i + 1) = �−1
l (i + 1)xl(i + 1) [22], we can modify (66) as

εk(i + 1) =
∑
l∈Nk

αkl(i)ckl(i)
[(

I − �−1
l (i + 1)xl(i + 1)xHl (i + 1)

)
εl(i) + �−1

l (i + 1)xl(i + 1)e∗0−l(i + 1)
]
. (67)

At this point, if we compare (67) with (51), we can find that the difference between (67) and (51) is that the �−1
l (i+ 1)

in (67) has replaced the μl in (51). From [22], we also have

E

[
�−1

l (i + 1)
]

= 1
i − M

R−1
l (i + 1) for i > M + 1. (68)
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As a result, we can arrive

K k(i + 1) =
∑
l∈Nk

E
[
α2
kl(i)c

2
kl(i)

] ((
I − �−1

l �l

i − M

)
K l(i)

(
I − �l�

−1
l

i − M

)
(69)

+�−1
l �l�

−1
l

(i − M)2
e0−l(i + 1)e∗0−l(i + 1)

)
+
∑

l,q∈Nk
l �=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((

I − �−1
l �l

i − M

)
K l,q(i)

(
I − �q�

−1
q

i − M

)
+ �−1

l �l,q�
−1
q

(i − M)2
e0−l(i + 1)

×e∗0−q(i + 1)
)

+
∑

l,q∈Nk
l �=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((

I − �q�
−1
q

i − M

)
KH

l,q(i)
(
I − �−1

l �l

i − M

)
+

�−1
q �H

l,q�
−1
l

(i − M)2
e0−q(i + 1)e∗0−l(i + 1)

)
. (70)

Due to the structure of the above equations, the approximations and the quantities involved, we can decouple (70) into

Kn
k (i + 1) =

∑
l∈Nk

E
[
α2
kl(i)c

2
kl(i)

] ((
1 − 1

i − M

)2
Kn
l (i) + e0−l(i + 1)e∗0−l(i + 1)

λnl (i − M)2

)

+
∑

l,q∈Nk
l �=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

] ((
1 − 1

i − M

)2
Kn
l,q(i) +

λnl,qe0−l(i + 1)e∗0−q(i + 1)
(i − M)2λnl λ

n
q

)

+
∑

l,q∈Nk
l �=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]×
((

1 − 1
i − M

)2 (
Kn
l,q(i)

)H +
λnl,qe0−q(i + 1)e∗0−l(i + 1)

(i − M)2λnqλ
n
l

)
(71)

where Kn
k (i + 1) is the nth elements of the main diagonals of K k(i + 1). With the assumption that, upon convergence,

αkl and ckl do not vary, because at steady state, the choice of subset �̂k(i) for each node k will be fixed, we can rewrite
(71) as (72). Then, the MSE is given by

Kn
k (ES-RLS) =

∑
l∈Nk

α2
klc

2
kl

Jmin−l
λnl (i−M)2

+ 2
∑

l,q∈Nk
l �=q

αklαkqcklckq
λnl,qe0−le∗0−q
(i−M)2λnl λ

n
q

1 − ∑
l∈Nk

α2
klc

2
kl

(
1 − 1

i−M

)2 − 2
∑

l,q∈Nk
l �=q

αklαkqcklckq
(
1 − 1

i−M

)2 . (72)

Jmse−k = Jmin−k + Mσ 2
x,k

M∑
n=1

Kn
k (ES-RLS). (73)

On the basis of (72), we have that when i tends to infinity, the MSE approaches the MMSE in theory [22].

4.2.4 SI-RLS
For the proposed SI-RLS algorithm, we insert (59) into (72) and remove the random variables αkl(i), and following the
same procedure as for the SI-LMS algorithm, we can obtain (74), where hkl and hkq satisfy the rule in (61). Then, the
MSE is given by

Kn
k (SI-RLS) =

∑
l∈Nk

(ckl − hkl)2
Jmin−l

λnl (i−M)2
+ 2

∑
l,q∈Nk
l �=q

(ckl − hkl) (ckq − hkq)
λnl,qe0−le∗0−q
(i−M)2λnl λ

n
q

1 − ∑
l∈Nk

(ckl − hkl)2
(
1 − 1

i−M

)2 − 2
∑

l,q∈Nk
l �=q

(ckl − hkl)(ckq − hkq)
(
1 − 1

i−M

)2 . (74)



Xu et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:86 Page 15 of 22

Jmse−k = Jmin−k + Mσ 2
x,k

M∑
n=1

Kn
k (SI-RLS). (75)

In conclusion, according to (62) and (74), with the help of
modified combining coefficients, for the proposed SI-type
algorithms, the neighbor node with lowest MSE con-
tributes the most to the combination, while the neighbor
node with the highest MSE contributes the least. There-
fore, the proposed SI-type algorithms perform better than
the standard diffusion algorithms with fixed combining
coefficients.

4.3 Tracking analysis
In this subsection, we assess the proposed ES-LMS/RLS
and SI-LMS/RLS algorithms in a non-stationary environ-
ment, in which the algorithms have to track the minimum
point of the error performance surface [34, 35]. In the
time-varying scenarios of interest, the optimum estimate
is assumed to vary according to the model ω0(i + 1) =
βω0(i) + q(i), where q(i) denotes a random perturbation
[32] and β = 1 in order to facilitate the analysis. This
is typical in the context of tracking analysis of adaptive
algorithms [22, 32, 36, 37].

4.3.1 ES-LMS
For the tracking analysis of the ES-LMS algorithm, we
employAssumption III and start from (48). After subtract-
ing the ω0(i + 1) from both sides of (48), we obtain

εk(i + 1) =
∑

l∈�̂k(i)

ckl(i)[ωl(i) + μlxl(i + 1)(dl(i + 1)

− xHl (i + 1)ωl(i))]−
∑

l∈�̂k(i)

ckl(i)ω0(i + 1)

=
∑

l∈�̂k(i)

ckl(i)[ωl(i) + μlxl(i + 1)(dl(i + 1)

− xHl (i + 1)ωl(i))]−
∑

l∈�̂k(i)

ckl(i) (ω0(i) + q(i))

=
∑

l∈�̂k(i)

ckl(i)
[
εl(i) + μlxl(i + 1) (dl(i + 1)

−xHl (i + 1)(εl(i) + ω0)
)]

− q(i)

=
∑

l∈�̂k(i)

ckl(i)
[(

I − μlxl(i + 1)xHl (i + 1)
)

εl(i)

+μlxl(i + 1)e∗0−l(i + 1)
]

− q(i). (76)

Using Assumption III, we can arrive at

Jex−k(i + 1) = tr{Rk(i+1)K k(i+1)}+ tr{Rk(i+1)Q}.
(77)

The first part on the right side of (77) has already been
obtained in theMSE steady-state analysis part in Section 4
B. The second part can be decomposed as

tr{Rk(i + 1)Q} = tr
{
E

[
xk(i + 1)xHk (i + 1)

]
E
[
q(i)qH(i)

]}
= Mσ 2

x,ktr{Q}.
(78)

The MSE is then obtained as

Jmse−k = Jmin−k +Mσ 2
x,k

M∑
n=1

Kn
k (ES-LMS) +Mσ 2

x,ktr{Q}.

(79)

4.3.2 SI-LMS
For the SI-LMS recursions, we follow the same procedure
as for the ES-LMS algorithm and obtain

Jmse−k = Jmin−k+Mσ 2
x,k

M∑
n=1

Kn
k (SI-LMS)+Mσ 2

x,ktr{Q}.

(80)

4.3.3 ES-RLS
For the SI-RLS algorithm, we follow the same procedure
as for the ES-LMS algorithm and arrive at

Jmse−k(i + 1) = Jmin−k + Mσ 2
x,k

M∑
n=1

Kn
k (i + 1)(ES-RLS)

+ Mσ 2
x,ktr{Q}. (81)

4.3.4 SI-RLS
We start from (75), and after a similar procedure to that of
the SI-LMS algorithm, we have

Jmse−k(i + 1) = Jmin−k + Mσ 2
x,k

M∑
n=1

Kn
k (i + 1)(SI-RLS)

+ Mσ 2
x,ktr{Q}. (82)

In conclusion, for time-varying scenarios, there is only
one additional term Mσ 2

x,ktr{Q} in the MSE expression
for all algorithms, and this additional term has the same
value for all algorithms. As a result, the proposed SI-type
algorithms still perform better than the standard diffusion
algorithmswith fixed combining coefficients, according to
the conclusion obtained in the previous subsection.

Table 2 Computational complexity for the adaptation step per
node per time instant

Adaptation method Multiplications Additions

LMS 2M + 1 2M

RLS 4M2 + 16M + 2 4M2 + 12M − 1
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Table 3 Computational complexity for the combination step per
node per time instant

Algorithms Multiplications Additions

ES–LMS/RLS M(t + 1) |Nk |!
t!(|Nk |−t)! Mt |Nk |!

t!(|Nk |−t)!

SI–LMS/RLS (2M + 4)|Nk| (M + 2)|Nk|

4.4 Computational complexity
In the analysis of the computational cost of the algo-
rithms studied, we assume complex-valued data and first
analyze the adaptation step. For both ES-LMS/RLS and
SI-LMS/RLS algorithms, the adaptation cost depends on
the type of recursions (LMS or RLS) that each strategy
employs. The details are shown in Table 2.
In the combination step, we analyze the computational

complexity in Table 3. The overall complexity for each
algorithm is summarized in Table 4. In the above three
tables, t is the number of nodes chosen from |Nk| and
M is the length of the unknown vector ω0. The pro-
posed algorithms require extra computations as compared
to the existing distributed LMS and RLS algorithms.
This extra cost ranges from a small additional num-
ber of operations for the SI-LMS/RLS algorithms to a
more significant extra cost that depends on |Nk| for the
ES-LMS/RLS algorithms.

5 Simulations
In this section, we investigate the performance of the
proposed link selection strategies for distributed estima-
tion in two scenarios: wireless sensor networks and smart
grids. In these applications, we simulate the proposed link
selection strategies in both static and time-varying sce-
narios. We also show the analytical results for the MSE
steady-state and tracking performances that we obtained
in Section 4.

5.1 Diffusion wireless sensor networks
In this subsection, we compare the proposed ES-LMS/ES-
RLS and SI-LMS/SI-RLS algorithms with the diffusion
LMS algorithm [2], the diffusion RLS algorithm [38],
and the single-link strategy [39] in terms of their MSE
performance. A reduced-communication diffusion LMS
algorithm with a performance comparable or worse to

the standard diffusion LMS algorithm, which has been
reported in [40], may also be considered if a designer
needs to reduce the required bandwidth.
The network topology is illustrated in Fig. 5, and we

employ N = 20 nodes in the simulations. The aver-
age node degree of the wireless sensor network is 5. The
length of the unknown parameter vector ω0 is M = 10,
and it is generated as a complex random vector. The input
signal is generated as xk(i) =[ xk(i) xk(i− 1) . . . xk(i−
M+ 1)] and xk(i) = uk(i)+αkxk(i− 1), where αk is a cor-
relation coefficient and uk(i) is a white noise process with
variance σ 2

u,k = 1− |αk|2, to ensure the variance of xk(i) is
σ 2
x,k = 1. The xk(0) is defined as a Gaussian random num-

ber with zero mean and variance σ 2
x,k . The noise samples

are modeled as circular Gaussian noise with zero mean
and variance σ 2

n,k ∈[ 0.001, 0.01]. The step size for the dif-
fusion LMS ES-LMS and SI-LMS algorithms is μ = 0.2.
For the diffusion RLS algorithm, both ES-RLS and SI-RLS,
the forgetting factor λ is set to 0.97 and δ is equal to 0.81.
In the static scenario, the sparsity parameters of the SI-
LMS/SI-RLS algorithms are set to ρ = 4 × 10−3 and
ε = 10. The Metropolis rule is used to calculate the com-
bining coefficients ckl. TheMSE andMMSE are defined as
in (3) and (46), respectively. The results are averaged over
100 independent runs.
In Fig. 6, we can see that the ES-RLS has the best per-

formance for both steady-state MSE and convergence rate
and obtains a gain of about 8 dB over the standard diffu-
sion RLS algorithm. The SI-RLS is worse than the ES–RLS
but is still significantly better than the standard diffusion
RLS algorithm by about 5 dB. Regarding the complexity
and processing time, the SI-RLS is as simple as the stan-
dard diffusion RLS algorithm, while the ES-RLS is more
complex. The proposed ES-LMS and SI-LMS algorithms
are superior to the standard diffusion LMS algorithm.
In the time-varying scenario, the sparsity parameters of

the SI-LMS and SI-RLS algorithms are set to ρ = 6×10−3

and ε = 10. The unknown parameter vector ω0 varies
according to the first-order Markov vector process:

ω0(i + 1) = βω0(i) + q(i), (83)

where q(i) is an independent zero mean Gaussian vector
process with variance σ 2

q = 0.01 and β = 0.9998.

Table 4 Computational complexity per node per time instant

Algorithm Multiplications Additions

ES-LMS
[

(t+1)|Nk |!
t!(|Nk |−t)! + 8

]
M + 2

[ |Nk |!
(t−1)!(|Nk |−t)! + 8

]
M

ES-RLS 4M2 +
[

(t+1)|Nk |!
t!(|Nk |−t)! + 16

]
M + 2 4M2 +

[ |Nk |!
(t−1)!(|Nk |−t)! + 12

]
M − 1

SI-LMS (8 + 2|Nk|)M + 4|Nk| + 2 (8 + |Nk|)M + 2|Nk|
SI-RLS 4M2 + (16 + 2|Nk|)M + 4|Nk| + 2 4M2 + (12 + |Nk|)M + 2|Nk| − 1
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Fig. 5Wireless sensor networks topology with 20 nodes

Figure 7 shows that, similarly to the static scenario,
the ES-RLS has the best performance and obtains
a 5 dB gain over the standard diffusion RLS algo-
rithm. The SI-RLS is slightly worse than the ES-
RLS but is still better than the standard diffusion
RLS algorithm by about 3 dB. The proposed ES-LMS
and SI-LMS algorithms have the same advantage over

the standard diffusion LMS algorithm in the time-
varying scenario. Notice that in the scenario with large
|Nk|, the proposed SI-type algorithms still have a bet-
ter performance when compared with the standard
techniques.
To illustrate the link selection for the ES-type algo-

rithms, we provide Figs. 8 and 9. From these two figures,

Fig. 6 Network MSE curves in a static scenario
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Fig. 7 Network MSE curves in a time-varying scenario

we can see that upon convergence, the proposed algo-
rithms converge to a fixed selected set of links �̂k .

5.2 MSE analytical results
The aim of this section is to validate the analytical results
obtained in Section 4. First, we verify the MSE steady-
state performance. Specifically, we compare the analytical

results in (58), (63), (73) and (75) to the results obtained
by simulations under different SNR values. The SNR
indicates the input signal variance to noise variance ratio.
We assess the MSE against the SNR, as shown in Figs. 10
and 11. For ES-RLS and SI-RLS algorithms, we use (73)
and (75) to compute the MSE after convergence. The
results show that the analytical curves coincide with those

Fig. 8 Set of selected links for node 16 with ES-LMS in a static scenario
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Fig. 9 Link selection state for node 16 with ES-LMS in a time-varying scenario

obtained by simulations, which indicates the validity of
the analysis. We have assessed the proposed algorithms
with SNR equal to 0, 10, 20, and 30 dB, respectively, with
20 nodes in the network. For the other parameters, we
follow the same definitions used to obtain the network
MSE curves in a static scenario. The details have been
shown on the top of each subfigure in Figs. 10 and 11. The

Fig. 10 a–bMSE performance against SNR for ES-LMS and SI-LMS

theoretical curves for ES-LMS/RLS and SI-LMS/RLS are
all close to the simulation curves.
The tracking analysis of the proposed algorithms in a

time-varying scenario is discussed as follows. Here, we
verify that the results in (79), (80), (81), and (82) of the
subsection 4.3 can provide a means of estimating the
MSE. We consider the same model as in (83), but with

Fig. 11 a–bMSE performance against SNR for ES-RLS and SI-RLS
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Fig. 12 a–bMSE performance against SNR for ES-LMS and SI-LMS in a
time-varying scenario

β set to 1. In the next examples, we employ N = 20
nodes in the network and the same parameters used to
obtain the network MSE curves in a time-varying sce-
nario. A comparison of the curves obtained by simula-
tions and by the analytical formulas is shown in Figs. 12
and 13. From these curves, we can verify that the gap
between the simulation and analysis results are extraor-
dinary small under different SNR values. The details of

Fig. 13 a–bMSE performance against SNR for ES-RLS and SI-RLS in a
time-varying scenario

the parameters are shown on the top of each subfigure in
Figs. 12 and 13.

5.3 Smart Grids
The proposed algorithms provide a cost-effective tool that
could be used for distributed state estimation in smart
grid applications. In order to test the proposed algorithms
in a possible smart grid scenario, we consider the IEEE 14-
bus system [41], where 14 is the number of substations. At
every time instant i, each bus k, k = 1, 2, . . . , 14, takes a
scalar measurement dk(i) according to

dk(i) = Xk (ω0(i)) + nk(i), k = 1, 2, . . . , 14, (84)

where ω0(i) is the state vector of the entire interconnected
system and Xk(ω0(i)) is a nonlinear measurement func-
tion of bus k. The quantity nk(i) is the measurement error
with mean equal to zero and which corresponds to bus k.
Initially, we focus on the linearized DC state estimation

problem. The state vector ω0(i) is taken as the voltage
phase angle vector ω0 for all busses. Therefore, the non-
linear measurement model for state estimation (84) is
approximated by

dk(i) = ωH
0 xk(i) + nk(i), k = 1, 2, . . . , 14, (85)

where xk(i) is the measurement Jacobian vector for bus k.
Then, the aim of the distributed estimation algorithm is to
compute an estimate of ω0, which can minimize the cost
function given by

Jk(ωk(i)) = E|dk(i) − ωH
k (i)xk(i)|2. (86)

We compare the proposed algorithms with the M-CSE
algorithm [4], the single-link strategy [39], the standard
diffusion RLS algorithm [38], and the standard diffusion
LMS algorithm [2] in terms of MSE performance. The
MSE comparison is used to determine the accuracy of

Fig. 14 IEEE 14-bus system for simulation
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Fig. 15MSE performance curves for smart grids

the algorithms and compare the rate of convergence. We
define the IEEE 14-bus system as in Fig. 14.
All busses are corrupted by additive white Gaussian

noise with variance σ 2
n,k ∈ [0.001, 0.01]. The step size for

the standard diffusion LMS [2], the proposed ES-LMS,
and SI-LMS algorithms is 0.15. The parameter vectorω0 is
set to an all-one vector. For the diffusion RLS, ES-RLS, and
SI-RLS algorithms, the forgetting factor λ is set to 0.945
and δ is equal to 0.001. The sparsity parameters of the SI-
LMS/RLS algorithms are set to ρ = 0.07 and ε = 10. The
results are averaged over 100 independent runs. We simu-
late the proposed algorithms for smart grids under a static
scenario.
From Fig. 15, it can be seen that ES-RLS has the best

performance and significantly outperforms the standard
diffusion LMS [2] and the M–CSE [4] algorithms. The
ES-LMS is slightly worse than the ES-RLS, which out-
performs the remaining techniques. The SI-RLS is worse
than the ES-LMS but is still better than SI-LMS, while the
SI-LMS remains better than the diffusion RLS, LMS, and
M-CSE algorithms and the single-link strategy.

6 Conclusions
In this paper, we have proposed the ES-LMS/RLS and SI-
LMS/RLS algorithms for distributed estimation in appli-
cations such as wireless sensor networks and smart grids.
We have compared the proposed algorithms with existing
methods. We have also devised analytical expressions to
predict their MSE steady-state performance and tracking
behavior. Simulation experiments have been conducted

to verify the analytical results and illustrate that the pro-
posed algorithms significantly outperform the existing
strategies, in both static and time-varying scenarios, in
examples of wireless sensor networks and smart grids.
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