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Abstract

In this paper, we propose an environment-dependent denoising autoencoder (DAE) and automatic environment
identification based on a deep neural network (DNN) with blind reverberation estimation for robust distant-talking
speech recognition. Recently, DAEs have been shown to be effective in many noise reduction and reverberation
suppression applications because higher-level representations and increased flexibility of the feature mapping
function can be learned. However, a DAE is not adequate in mismatched training and test environments. In a
conventional DAE, parameters are trained using pairs of reverberant speech and clean speech under various acoustic
conditions (that is, an environment-independent DAE). To address the above problem, we propose two
environment-dependent DAEs to reduce the influence of mismatches between training and test environments. In the
first approach, we train various DAEs using speech from different acoustic environments, and the DAE for the
condition that best matches the test condition is automatically selected (that is, a two-step environment-dependent
DAE). To improve environment identification performance, we propose a DNN that uses both reverberant speech and
estimated reverberation. In the second approach, we add estimated reverberation features to the input of the DAE
(that is, a one-step environment-dependent DAE or a reverberation-aware DAE). The proposed method is evaluated
using speech in simulated and real reverberant environments. Experimental results show that the
environment-dependent DAE outperforms the environment-independent one in both simulated and real reverberant
environments. For two-step environment-dependent DAE, the performance of environment identification based on
the proposed DNN approach is also better than that of the conventional DNN approach, in which only reverberant
speech is used and reverberation is not blindly estimated. And, the one-step environment-dependent DAE
significantly outperforms the two-step environment-dependent DAE.

Keywords: Speech recognition, Dereverberation, Denoising autoencoder, Environment identification, Distant-talking
speech

1 Introduction
In a distant-talking environment, channel distortion dras-
tically degrades speech recognition performance because
of mismatches between the training and test environ-
ments. There are two different approaches, namely,
front- and back-end-based methods, for dealing with
this problem [1]. Many front-end-based approaches [1–8]
have been proposed to reduce the effect of reverberation
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in the observed speech signal. The back-end-based meth-
ods, on the other hand, attempt to modify the acoustic
model and/or decoder to suit the respective reverberant
environment [9, 10]. In this paper, we focus on front-end-
based approaches for distant-talking speech recognition.
Many single- and multi-channel dereverberation

methods have been proposed to suppress reverberation
[2–4, 11–14]. Single-channel dereverberation approaches
are much easier and cheaper to implement in real
applications than multi-channel ones. In this paper,
dereverberation is performed using a single-channel
speech signal. Cepstral mean normalization (CMN) can
be considered the most general single-channel approach
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[15–17]. Having been extensively examined, it has been
shown to be a simple and effective way of reducing
reverberation by normalizing cepstral features. However,
the dereverberation of CMN is not completely effective
in environments with late reverberation. Several studies
have focused onmitigating this problem [3, 4, 12]. A rever-
beration compensation method for speaker recognition
using spectral subtraction [18], where late reverbera-
tion is treated as additive noise, was proposed in [3]. A
method based on multi-step linear prediction (MSLP)
was proposed for both single and multiple microphones
[4, 12]. The method first estimates late reverberations
using long-term MSLP, and then suppresses these with
subsequent spectral subtraction. Wolfel proposed a joint
compensation of noise and reverberation by integrating
an estimate of the reverberation energy derived by an
auxiliary model based on MSLP, into a framework, which
so far, tracks and removes nonstationary additive distor-
tion by particle filters in a low-dimension logarithmic
power frequency domain [19].
Neural network (NN)-based approaches have been pro-

posed for feature transformation [20, 21]. Bottleneck fea-
tures extracted by a multi-layer perceptron (MLP) can
be used for nonlinear feature transformation [20]. How-
ever, deep networks of MLPs with many hidden layers
have a high computational cost, the lower layers in a DNN
architecture are hard to train because of vanishing gra-
dients. Deep belief networks, which employ an unsuper-
vised pre-training method using a restricted Boltzmann
machine (RBM), have been proposed to train better ini-
tial values of deep networks [22]. Deep neural networks
(DNNs) with pre-training have been shown to achieve
better performance than the conventional MLP without
pre-training [22]. There are many DNN, recurrent neu-
ral network (RNN) and long short-term memory (LSTM)
[23–29] based speech enhancement and feature enhance-
ment approaches that have been proposed for speech
enhancement for human listening and robust speech
recognition and that have shown good performance for
the REVERB challenge task [40]. Recently, the denoising
autoencoder (DAE), one type of DNN, has been shown to
be effective in many noise reduction applications because
higher-level representations and increased flexibility of
the feature mapping function can be learned [30–33]. Ishii
et al. applied a DAE to spectral-domain dereverberation
resulting in improved word accuracy of large-vocabulary
continuous speech recognition (LVCSR) [34]. Previously,
we found that cepstral domain DAE-based dereverber-
ation is efficient for distant-talking speech recognition
[35]. As shown in [35], DAE worked well especially with
strong reverberation. However, the results of DAE with
small reverberation are not good compared to othermeth-
ods. Typically, in the training of a DAE [26, 34, 35], data
incorporating various environmental conditions are used.

Although this training method is suitable for training
models in various environments, the nonlinear transfor-
mation ability of DAE training using various conditions
that do not match those of the test data is lower for certain
acoustic conditions of the test set. Thus, the performance
of a DAE cannot be sufficiently improved for an unknown
test reverberant condition.
To improve robustness of speech recognition, the idea

of using side information from the environment as addi-
tional features, such as speaker-specific side information
(e.g., i-vectors) and room information etc. has been pro-
posed previously [36–38]. In this paper, two environment-
dependent DAEs are proposed to reduce the influence of
mismatches between training and test environments, that
is, DAEs are trained and used corresponding to the dif-
ferent environments. In the first approach, various DAEs
are trained using speech from different acoustic envi-
ronments, and the DAE with the condition that best
matches the test condition is automatically selected using
a DNN (that is, a two-step environment-dependent DAE).
The performance of our proposed two-step environment-
dependent DAE is dependent on the precision of the
automatic environment identification. In this paper, to
achieve higher environment identification performance,
a DNN using both reverberant speech and reverbera-
tion estimated by MSLP is also proposed. In the second
approach, reverberation features estimated by MSLP are
directly used as an input of the DAE (that is, a one-step
environment-dependent DAE or a reverberation-aware
DAE). By simultaneously estimating and suppressing
the environment-dependent reverberation with a one-
step environment-dependent DAE (that is, reverberation-
aware DAE), the mismatch between the training data
and test data will be reduced. Therefore, better estima-
tion of the clean speech can be expected. In previous
work, conventional DAE was trained using speech data
under various environments, and the test reverberant
speech is transformed using a conventional environment-
independent DAE that cannot deal with environmen-
tal variation when there is limited training data. In
the proposed approach, the test reverberant speech is
transformed using an environment-dependent DAE that
can estimate the environment-dependent reverberation.
Thus, the environment-dependent DAE is more robust
to environmental changes than a conventional DAE. The
proposed methods are evaluated in both simulated and
real reverberant environments.
The remainder of this paper is organized as follows:

Section 2 describes the DAE for cepstral-domain dere-
verberation. The methods for one-step and two-step
environment-dependent DAEs are described in Section 3,
while the experimental results and a discussion thereof
are presented in Section 4. Finally, Section 5 summarizes
the paper.
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2 Denoising autoencoder for cepstral-domain
dereverberation

2.1 Topology of DAE
An autoencoder is a type of artificial neural network (NN),
whose output is reconstruction of input, and is often used
for dimensionality reduction. DAEs share the same struc-
ture as autoencoders, but input data are a noisy version
of the teacher signal. In this paper, we use the clean ref-
erence speech signal as teacher signal. Autoencoders use
feature mapping to convert noisy input data into clean
output and have been used for noise removal in the field
of image processing [30]. Ishii et al. applied a DAE for
spectral-domain dereverberation [34]. However, the sup-
pressed spectral-domain feature needs to be converted to
a cepstral-domain feature, and this improvement is not
sufficient. In this paper, we apply a denoising autoen-
coder for cepstral-domain dereverberation because there
are many LVCSR systems that adopt a cepstral-domain
feature as the direct input.
Given a pair of speech samples, clean speech and corre-

sponding reverberant speech, DAE learns the non-linear
conversion function that converts reverberant speech fea-
tures into clean speech. In general, reverberation is depen-
dent on both current and several previous observation
frames. In addition to the vector of the current frame,
vectors of past frames are concatenated to form input.
For cepstral feature Xi of observed reverberant speech

of the i−th frame, cepstral features ofN−1 frames before
the current frame are concatenated with the current frame
to form a cepstral vector of N frames. Output Oi of the
non-linear transformer based on the DAE is given by

Oi = fL(. . . fl(. . . f2(f1(Xi,Xi−1, . . . ,Xi−N+1))) (1)

where fl is the non-linear transformation function in layer
l and N is the number of frames to be used as the input
features.
Topology of the cepstral-domain DAE for dereverber-

ation is shown in Fig. 1. In this paper, the number of
hidden layers is set to three. In Fig. 1, Wi(i = 1, 2)
shows the weighting of the different layers, andWT

i shows
the transposition of Wi1. That is to say, W1 and W2 are
the encoder matrices and WT

1 and WT
2 are the decoder

matrices, respectively.

2.2 Training of DAE
2.2.1 Restricted Boltzmannmachine
To train a deep neural network, deep belief networks
(DBNs) [22] are used for pre-training because they can
obtain accurate initial values of the deep-layer neural
networks.
RBM is a bipartite graph shown in Fig. 2. It has a

visible and hidden layer in which visible units that rep-
resent observations are connected to hidden units that
learn to represent features using weighted connection. An

Fig. 1 Topology of a stacked denoising autoencoder for
cepstral-domain dereverberation

RBM is restricted such that there are no visible-visible or
hidden-hidden connections. Different types of RBMs are
used in the case of binary or real-valued input. Bernoulli-
Bernoulli RBMs are used to convert binary stochastic vari-
ables to binary stochastic variables. Gaussian-Bernoulli
RBMs are used to convert real-valued stochastic variables
to binary stochastic variables. Details of RBM are obtained
in [22].
To obtain a pre-trained RBM, we trained all the hidden

layers by using the Bernoulli-Bernoulli RBM. DBNs are
hierarchically configured by connecting these pre-trained
RBMs. Here, W1 and W2 are learned automatically, and
WT

1 andWT
2 are generated fromW1 andW2 in Fig. 1.

2.2.2 Backpropagation algorithm
After pre-training, a backpropagation algorithm was
applied to adjust the parameters. Backpropagation modi-
fies the weights of the network to reduce the error of the
teacher signal and the output value when a pair of sig-
nals (input signal and the ideal teacher signal, the cepstral

Fig. 2 Graphical representation of the RBM
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feature of clean speech) are given. We scaled the cep-
stral feature value of the input data and teacher signal to
between 0 and 1 using a sigmoid function. The minimiza-
tion in this paper is carried out by minimizing the cross
entropy using conjugate gradients [22].

3 Environment-dependent denoising
autoencoder

A conventional DAE trained using data under various
acoustic conditions is effective for noise reduction and
dereverberation. However, it is impossible to deal with
mismatched conditions of the training and test data or
unseen data with limited training data. We deal with
this problem by two approaches. In the first approach,
multiple DAEs for each environment are trained and
selectively used. However, the reverberation environment
is unknown in the test stage. Here, we use a DNN for
environment identification because it is more effective
than other classifiers such as the Gaussian mixture model
(GMM) and support vector machine for audio classifica-
tion [39]. In the second approach, reverberation features
estimated by MSLP are directly used as an input of the
DAE (that is, a one-step environment-dependent DAE or
a reverberation-aware DAE). In the following, we describe
the proposed environment-dependent DAE.

3.1 Environment-independent and
environment-dependent DAEs

For a conventional DAE (environment-independent
DAE), parameters are trained using pairs of reverberant
speech and clean speech under various acoustic condi-
tions. The environment-independent DAE is not robust
for mismatches between training and test conditions.
To address this problem, we propose two environment-
dependent DAEs to mitigate the influence of mismatch in
the training and test environments. In the first approach
of environment-dependent DAE (that is, two-step
environment-dependent DAE), various DAEs are trained
using speech from different acoustic environments, and
the DAE with the condition that best matches the test
condition is automatically selected as shown in Fig. 3.
In the second approach (that is, one-step environment-
dependent DAE), we add the environmental information
(e.g., estimated reverberation features) to input of DAE
as shown in Fig. 4. These approaches are expected for
reducing the influence of mismatch between training and
test environment, and improving LVCSR performance.

3.2 Two-step environment-dependent DAE
3.2.1 Environment identification
First, we divide the training data according to the envi-
ronment. This is performedmanually because the training
data environment is known. Next, each DAE, with its
respective data and the environment identification model,

Fig. 3 Two-step environment-dependent DAE

is trained. The training approach for the environment
identification model is the same as that for the DAE with
the exception of the input data and giving the rever-
beration environment as the correct label. In the DAE,
the second half of weights of DAE is generated from

Fig. 4 DNN structure using reverberation estimated by MSLP for
environment identification and one-step environment-dependent
DAE. The teacher signal is the label of environment for environment
identification and MFCC of clean speech for the one-step
environment-dependent DAE, respectively
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transposition of first half of it. However, in the environ-
ment identification DNN, the second half of weights of
DNN is not a transposition of the first half of it and is
trained by RBM.
Although reverberant speech features are used as input

in the training of a DAE, this is not sufficient in the
training of the identification model. As shown in Fig. 4,
reverberation is estimated from reverberant speech, with
reverberation features also used as input. By doing this, we
can expect the performance of environment identification
to be improved. In this paper, estimation of reverbera-
tion is based on MSLP [12]. The original MSLP algorithm
estimates the reverberation from reverberant speech and
suppresses reverberation in the spectral domain. In this
study,MSLP is used for reverberation estimation only, and
reverberation suppression is not performed.

y(n) =
N−1∑

p=0
w(p)y(n − p − D) + e(n) (2)

where y(n) is the observed signal, D is the step size, N is
the filter length, w(p) are prediction coefficients, and e(n)

is the prediction error. Prediction filter w(n) is estimated
by minimizing the mean square energy of the prediction
error. Late reverberation is estimated using reverberant
speech and the estimated prediction coefficients.

3.2.2 Combination of environment-dependent DAE and
automatic environment identification

Figure 5 shows the flowchart for environment-dependent
dereverberation using the environment identification
technique and multiple DAEs. First, we identify the rever-
beration environment of the input speech by applying an
identification model to the speech. Here, the reverbera-
tion features estimated by MSLP are used as input for the
model as well as for the training thereof. Next, the DAE
corresponding to the identified environment is selected,

Fig. 5 Flowchat of environment-dependent DAE and automatic
environment identification

and dereverberation is applied by it. Since dereverbera-
tion is applied by a DAE suited to the environment of the
speech, we expect an improvement in performance.

3.3 One-step environment-dependent DAE
The second approach is almost the same as that
for the environment identification in Section 3.2.1.
In this approach, estimated reverberation and rever-
berant speech are directly used as inputs of the
reverberation-aware (DAE) as shown in Fig. 4. The
one-step environment-dependent DAE can estimate and
suppress the environment-dependent reverberation auto-
matically. So, it is expected to reduce the influence
of mismatches between training and test environments.
On the other hand, the conventional DAE does not
use environment-dependent reverberation, so its perfor-
mance will not be robust for mismatches between training
and test conditions.

4 Experiments
4.1 Experimental setup
4.1.1 Training dataset
We used the training dataset provided by the “REVERB
challenge” (reverberant voice enhancement and recogni-
tion benchmark) [40]. This dataset consists of the clean
WSJCAM0 [41] training set and a multi-condition (MC)
training set. Reverberant speech is generated from the
clean WSJCAM0 training data by convolving the clean
utterances with measured room impulse responses and
adding recorded background noise. The reverberation
times of the measured impulse responses range from
approximately 0.1 to 0.8 s. The training data of the
“REVERB Challenge” were used to train the environment
identification DNN. The environment labels depended on
room type and the distance between the microphone and
speaker. The training data include three types of rooms
and two types of distances between the microphone and
speaker, so in total, six types of environments with distinct
rooms and distances were used. This training dataset were
also used to train the DAEs and acoustic models.
It should be noted that the recording rooms used for the

multi-condition training data and test data were different.

4.1.2 Development and evaluation test sets
It is important to note that the proposed dataset con-
sists of real recordings (RealData) and simulated data
(SimData), part of which has similar characteristics to the
RealData in terms of reverberation time and microphone-
speaker distance. This setup allowed us to perform eval-
uations in terms of both practicality and robustness of
various reverberant conditions. Specifically, the develop-
ment (Dev.) and final evaluation (Eval.) test sets each con-
tained the following SimData and RealData; SimData was
generated from the WSJCAM0 corpus [41], and RealData
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from the MC-WSJ-AV corpus [42]. This development
dataset was used to determine the optimal parameters
for dereverberation and speech recognition. Details of the
training and test datasets are given in Tables 1 and 2.

4.1.3 Experimental conditions for LVCSR and
dereverberation

In this study, Mel-frequency cepstral coefficients
(MFCCs) were used as features for LVCSR. The dimen-
sion of the MFCCs was 39 including 12 MFCCs plus
power and their Delta and Delta-Delta coefficients.
MFCC features were normalized using the mean of the
entire multi-condition training set. DAE training was
carried out using mini-batch conjugate gradients with
a mini-batch size of 128 samples. In this paper, the
number of hidden layers is set to three. The number of
units in each layer is 512, and each unit uses a sigmoid
function as an activation function. Because reverberation
affects multiple frames, we supply multiple frames at
the same time as the input and teacher signals of the
DAE. The dimensions of the input data and output are
39 (the dimensions of MFCC per frame) * 9 (the number
of segments to supply at the same time) = 351. These
parameters were empirically determined. Please refer to
[35] for a more detailed description. Fifty epochs with
a learning rate of 0.002 were used for all layers during
pre-training, and 100 epochs with a learning rate of 0.1
were used for all layers during fine-tuning. Training of
the environment identification model architecture was
almost the same as for the DAEs. The number of hidden
layers is 5, the number of units in each layer is 1024, and
20 epochs were used for all layers during fine-tuning.
The number of classes (the number of units at the final
softmax layer) is 6, which is determined by the number of
environments in the training data (i.e., Room 1, Room 2,
and Room 3, each with near and far conditions).
The MSLP algorithm generates an inverse filter through

the prediction coefficients to estimate the inverse sys-
tem [12].We estimated the late reverberation components
using the inverse filter and applied dereverberation by
power spectral subtraction. For MSLP-based dereverber-
ation, the step size and the order of linear prediction
were set to 500 and 750, respectively. We used MSLP to
estimate the late reverberation of both the training and

test data with the same parameters as for MSLP-based
dereverberation.
We used a subspace GMM with maximum mutual

information-based discriminative training (MMI-SGMM)
[43] and a cross-entropy training DNN for the acoustic
model. The KALDI toolkit [44] was used as a decoder for
LVCSR. In this study, the numbers of hidden layers and
units were set to 3 and 1024 for the DNN acoustic model.
The final results were obtained from a confusion net-
work combination of MMI-SGMM with 7000 states and
DNN-HMMwith 2500 states. Details can be found in [44].
StandardWall Street Journal 5000-word trigram language
model was used for decoding. We used word error rate
(WER) to evaluate the speech recognition performance
for each method.

4.2 Experimental results
4.2.1 Results of environment-dependent DAE
In this section, we compare the following four dereverber-
ation methods:

• CMVN: Cepstral mean and variance normalization
• MSLP: Multi-step linear prediction
• DAE: Environment-independent denoising

autoencoder (conventional DAE)
• Two-step environment-dependent DAE:

environment-dependent DAE selected by an
estimated environment

• One-step environment-dependent DAE:
reverberation-aware DAE using reverberant speech
features and late reverberation features estimated by
MSLP

Using three types of acoustic models:

• SGMM: MMI-SGMM
• DNN: cross-entropy training DNN-HMM
• SGMM+DNN: system combination of MMI-SGMM

and DNN-HMM.

Tables 3 and 4 show the speech recognition results for
each method on the Dev. and Eval. datasets, respectively.
For the Dev. dataset, DAE-based cepstral-domain dere-
verberation shows a remarkable improvement when com-
pared with CMVN- and MSLP-based dereverberation.

Table 1 Amount of data for the Dev. and Eval. sets of SimData and RealData and for the training dataset1

SimData RealData
Training Data

Dev. Eval. Dev. Eval.

# of sentences
1484 2176 179 372 7861

(∼ 3 h) (∼ 4.8 h) (∼ 0.3 h) (∼ 0.6 h) (∼ 17.5 h)

# of speakers 10 28 5 10 92

1The clean and multi-condition training datasets are the same size
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Table 2 Details of data set of SimData and RealData

Speech Corpus

Reverberant time
Signal-to-noise

ratio

Distance between the microphones

Room 1 Room 2 Room 3 Near Far

SimData WSJCAM0 0.25 s 0.5 s 0.7 s 20 dB 50 cm 200 cm

RealData MC-WSJ-AV 0.7 s - - - 100 cm 250 cm

The DAE works especially well with strong reverberation,
i.e., far-field microphone in "Room 2" and "Room 3" of
SimData. The cepstral domain environment-independent
DAE outperformed CMN and MSLP under almost all
conditions. Although the performance of the two-step
environment-dependent DAE is better than the conven-
tional environment-independent DAE in some environ-
ments, it is worse in some environments. The reason may
be that the performance of environment identification and
environment special DAE depended on the training data,
environment label, and also the environment of test data.
The proposed one-step environment-dependent DAE
(that is, reverberation-aware DAE) outperformed the con-
ventional environment-independent DAE and two-step
environment-dependent DAE on both SimData and Real-
Data in the Dev. and Eval. datasets using SGMM, DNN,

and SGMM+DNN. The improvement of the one-step
environment-dependent DAE under large reverberation
conditions is greater than that under small reverberation
conditions. The reason is that the conventional DAE is
not effective enough when there are large environmental
mismatches between the training and test conditions, and
the one-step environment-dependent DAE can reduce the
influence of mismatch by estimating the late reverbera-
tion and adding it to the input DAE. For SimData in the
Dev. dataset, using the one-step environment-dependent
DAE with reverberation features estimated by MSLP, the
average WER was reduced from 6.36% with the conven-
tional DAE to 5.77% using SGMM+DNN, i.e., a relative
error reduction rate of 9.28%. For RealData in the Dev.
dataset, the average WER was reduced from 27.46% with
the conventional DAE to 26.66% using SGMM+DNN,

Table 3 Word error rate of different dereverberation methods for Dev. dataset (%)

Dereverberation Acoustic
SimData RealData

method model Room 1 Room 2 Room 3
Ave.

Room 1
Ave.

Near Far Near Far Near Far Near Far

CMVN

SGMM 3.83 5.51 6.33 12.60 7.72 14.71 8.45 42.92 44.77 43.85

DNN 5.43 6.88 6.73 13.73 9.05 16.37 9.70 41.30 43.20 42.25

SGMM
3.86 5.21 5.62 11.63 7.20 13.30 7.80 41.42 42.58 42.00

+DNN

MSLP

SGMM 5.17 5.39 6.77 10.95 7.93 15.90 8.69 36.22 38.08 37.15

DNN 5.74 6.30 6.91 12.02 8.19 16.56 9.29 37.43 36.97 37.20

SGMM
4.01 5.04 5.23 10.25 5.93 12.17 7.11 35.50 36.91 36.21

+DNN

DAE

SGMM 4.30 5.41 5.45 9.71 5.24 10.63 6.79 26.51 30.08 28.30

DNN 5.41 6.69 6.24 10.67 6.50 11.55 7.84 28.70 29.19 28.95

SGMM
4.20 4.87 5.23 9.24 4.87 9.74 6.36 26.08 28.84 27.46

+DNN

Two-step
environment-dependent

DAE

SGMM 3.79 5.90 4.91 9.22 6.08 8.85 6.46 28.45 31.24 29.84

DNN 5.01 6.91 5.45 10.38 6.87 11.35 7.66 28.95 31.99 30.47

SGMM
3.76 4.89 4.63 8.48 6.26 9.20 6.20 27.45 29.12 28.28

+DNN

One-step
environment-dependent

DAE

SGMM 4.08 4.67 4.61 8.80 4.70 8.75 5.94 28.95 27.61 28.28

DNN 4.97 6.47 5.72 10.13 5.98 9.40 7.11 28.95 27.20 28.08

SGMM
3.88 4.79 5.10 7.94 4.60 8.28 5.77 25.83 27.48 26.66

+DNN
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Table 4 Word error rate of different dereverberation methods for Eval. dataset (%)

Dereverberation Acoustic SimData RealData

method model Room 1 Room 2 Room 3
Ave.

Room 1
Ave.

Near Far Near Far Near Far Near Far

CMVN

SGMM 5.47 5.88 6.59 12.68 8.29 16.77 9.28 44.84 44.53 44.69

DNN 6.05 6.71 7.89 13.29 9.13 17.74 10.14 43.82 43.55 43.69

SGMM
4.90 5.39 6.33 11.77 7.68 15.57 8.61 43.40 42.98 43.19

+DNN

MSLP

SGMM 7.05 7.95 8.42 14.34 10.46 19.70 11.32 42.45 43.65 43.05

DNN 7.95 9.10 9.48 15.98 11.72 21.39 12.60 43.50 44.80 44.15

SGMM
4.71 5.18 5.95 9.95 7.32 14.45 7.93 35.52 36.09 35.81

+DNN

DAE

SGMM 5.07 5.51 6.11 9.53 7.64 12.11 7.66 32.26 32.58 32.42

DNN 5.86 6.45 7.06 10.85 7.92 12.78 8.49 31.62 32.88 32.25

SGMM
4.79 5.40 5.64 9.00 7.06 10.85 7.12 30.02 31.09 30.56

+DNN

Two-step
environment-dependent

DAE

SGMM 4.61 6.73 5.47 10.01 7.83 12.32 7.83 30.57 33.05 29.84

DNN 5.57 8.37 6.16 10.90 7.85 13.14 8.66 31.49 33.59 30.47

SGMM
4.25 6.32 5.19 8.95 7.08 11.50 7.22 29.16 31.03 30.10

+DNN

One-step
environment-dependent

DAE

SGMM 4.93 5.30 5.82 8.47 7.25 10.47 7.04 28.65 28.66 28.66

DNN 5.29 6.05 6.43 8.81 7.20 10.97 7.46 27.95 28.26 28.11

SGMM
4.54 5.05 5.37 7.62 6.50 9.40 6.41 26.38 27.28 26.83

+DNN

i.e., a relative error reduction rate of 2.91%. For the
Eval. dataset, a similar trend was observed. The pro-
posed one-step environment-dependent DAE (that is,
reverberation-aware DAE) with reverberation features
estimated by MSLP outperformed all the other methods.
For SGMM+DNN acoustic model, compared with the
conventional DAE, relative error reduction rates of 9.97%
for SimData and 12.21% for RealData were achieved. The
results show that the proposed one-step environment-
dependent DAE is also robust to variations of speaker and
speech context.

4.2.2 Comparison of different environment identification
models

In this section, we investigate the effect of the environment
identification method for the two-step environment-
dependent DAE. We compare the performance of the

environment identification model, using and not using
reverberation estimated by MSLP, for training.
Table 5 shows the speech recognition results on the

Dev. dataset for these two methods. The results are
based on a system combination of MMI-SGMM and
DNN. Bigram training was used for the language model.
These results indicate that the performance of envi-
ronment identificat7ion is improved by using estimated
reverberation in training the DNN. By blindly using
reverberation estimated by MSLP, the DNN can identify
an unknown test environment precisely. Without using
the estimated reverberation, the two-step environment-
dependent DAE performs worse than the conventional
environment-independent one owing to poor environ-
ment identification performance. That is to say, the
two-step environment-dependent DAE is sensitive to the
environment identification performance.

Table 5 Effect of environment identification method for two-step environment-dependent DAE. WER of Dev. dataset (%)

Use reverberation SimData RealData
estimated by MSLP Room 1 Room 2 Room 3

Ave.
Room 1

Ave.
Near Far Near Far Near Far Near Far

No 5.16 7.23 7.32 16.79 7.05 20.35 10.65 42.30 41.90 42.10

Yes 5.01 8.24 6.78 11.78 7.54 13.72 8.85 32.13 33.42 32.78
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Table 6 The average WERs (%) of Eval. dataset for the single channel dataset comparing with other teams. Multi-condition training
dataset and the trigram language model were used for all teams

Team Acoustic Feature Dereverberation SimData RealData Ave.
model method

REVERB-challenge GMM MFCC CMVN 25.27 47.48 36.38
baseline

J. Alam et al. [45] DNN MFCC
maximum likelihood inverse

11.1 32.4 21.8
filtering-based dereverberation

Y. Tachioka et al. [46] MMI-SGMM MFCC and PLP

Single-channel dereverberation

10.05 28.06 19.01with estimation of

reverberation time

This paper MMI-SGMM MFCC

One-step environment-

7.04 28.66 17.85dependent

DAE

This paper DNN MFCC

One-step environment-

7.46 28.11 17.79dependent

DAE

This paper
MMI-SGMM

+DNN MFCC

One-step environment-

6.41 26.83 16.62dependent

DAE

4.2.3 Comparisonwith results of the other participants in
the REVERB-challenge

We compared our results with those of the other partici-
pants under the same conditions for the training data and
language model. A single-channel dataset provided by the
REVERB-challenge was used.
Table 6 shows the speech recognition results using

the trigram language model for each participant. The
WER of Alam et al. [45] was 11.1% on SimData and
32.4% on RealData. Tachioka et al. [46] achieved a WER
of 10.05% on SimData and 28.06% on RealData. In
our study, for the Eval. dataset, WER was 7.04% on
SimData and 28.66% on RealData using MMI-SGMM,
and 6.41% on SimData and 26.83% on RealData using
SGMM+DNN.
The results indicate that the performance of

our proposed environment-dependent DAE is
better than almost all the other participants’ meth-
ods using the same training data and language
model.

5 Conclusions
In this paper, we proposed two environment-dependent
DAE for robust distant-talking speech recognition.
The proposed method was evaluated using simu-
lated and real distant-talking speech. DAE-based
cepstral-domain dereverberation achieved a remarkable
improvement compared with CMN- and MSLP-based

dereverberation in both environments. Furthermore,
speech recognition performance was improved by the
environment-dependent DAE compared with the con-
ventional environment-independent DAE. For SimData
in the Eval. using the one-step environment-dependent
DAE with reverberation features estimated by MSLP,
the average WER was reduced from 7.12% with the
conventional DAE to 6.41% using SGMM+DNN, i.e.,
a relative error reduction rate of 9.97%. For RealData
in the Eval. dataset, the average WER was reduced
from 30.56% with the conventional DAE to 26.83%
using SGMM+DNN, i.e., a relative error reduction
rate of 12.21%. The results of our proposed derever-
beration method are better than almost all of those
of the other participants in the REVERB-challenge for
single-channel speech and trigram language model
conditions.

Endnote
1Wi andWiT1

correspond to fL in Eq. 1.
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