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Abstract

This article provides a unifying Bayesian view on various approaches for acoustic model adaptation, missing feature,
and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The
representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden
Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an
underlying observation model that relates clean and distorted feature vectors. By identifying and converting the
observation models into a Bayesian network representation, we formulate the corresponding compensation rules. We
thus summarize the various approaches as approximations or modifications of the same Bayesian decoding rule
leading to a unified view on known derivations as well as to new formulations for certain approaches.

Keywords: Robust automatic speech recognition, Bayesian network, Model adaptation, Missing feature, Uncertainty
decoding

1 Introduction
Robust automatic speech recognition (ASR) still repre-
sents a challenging research topic. The main obstacle,
namely the mismatch of test and training data, can be
tackled by enhancing the observed speech signals or fea-
tures in order to meet the training conditions or by com-
pensating for the distorted test conditions in the acoustic
model of the ASR system.
Methods that modify the acoustic model are in general

termed (acoustic) model-based or model compensation
approaches and comprise inter alia the following sub-
categories: so-calledmodel adaptation techniques mostly
update the parameters of the acoustic model, i.e., of the
hidden Markov models (HMMs), prior to the decod-
ing of a set of observed feature vectors. In contrast,
decoder-based approaches re-adapt the HMM parame-
ters for each observed feature vector. The most common
decoder-based approaches are missing feature and uncer-
tainty decoding that incorporate additional time-varying
uncertainty information into the evaluation of the HMMs’
probability density functions (pdfs).
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Various model compensation techniques exhibit two
(more or less) distinct steps: First, the compensation
parameters need to be estimated and, second, the actual
compensation rule is applied to the acoustic model. The
compensation rules can often be motivated based on an
observationmodel that relates the clean and distorted fea-
ture vectors, e.g., in the logarithmic melspectral (logmel-
spec) or the mel frequency cepstral coefficient (MFCC)
domain.
In this article, we review and examine for several uncer-

tainty decoding [1–5], missing feature [6–9], and model
adaptation techniques [10–19] how their compensation
rules can be formulated as an approximated or mod-
ified Bayesian decoding rule. In order to illustrate the
formalism, we also present the corresponding Bayesian
network representations. In addition to the above tech-
niques, we give a Bayesian network description of the
generic uncertainty decoding approach of [20], of the
maximum a posteriori (MAP) adaptation technique [21],
and of some alternative HMM topologies [22, 23]. While
the Bayesian perspective [24, 25] and Bayesian networks
have been employed in this context before [4, 9, 20], with
this article, we present new formulations for certain of
the considered algorithms in order to fill some gaps for
a unified description. Throughout the following, feature
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vectors are column vectors and denoted by bold-face let-
ters vn with time index n ∈ {1, . . . ,N}. Feature vector
sequences are written as v1:N = (v1, . . . , vN ). The oper-
ators “exp” and “log” applied to vectors are meant to be
applied component-wise. The operator “�” denotes the
component-wise vector multiplication (Hadamard prod-
uct). Without distinguishing a random variable from its
realization, a pdf over a random variable zn is denoted by
p(zn). For a normally distributed real-valued random vec-
tor zn with mean vector μzn and covariance matrix Czn ,
we write zn ∼ N (μzn ,Czn) or

p(zn) = N (zn;μzn ,Czn). (1)

To express that all random vectors of the set {z1, . . . , zN }
share the same statistics, we write p(zn) = const. or in the
Gaussian case,

p(zn) = N (zn;μz,Cz) (2)

with time-invariant mean vector μz and covariance
matrix Cz. Finally, for a Gaussian random vector zn con-
ditioned on another random vector wn, we write

p(zn|wn) = N (zn;μz|wn ,Cz|wn), (3)

if the statistics of zn depend only on time through wn, i.e.,
if μz|wn = μz|wm and Cz|wn = Cz|wm for wn = wm and
n,m ∈ {1, . . . ,N}.
The remainder of the article is organized as fol-

lows: After summarizing the employed Bayesian view in
Section 2 and its difference to other overview articles
in Section 3, this perspective is applied to uncertainty
decoding, missing feature techniques, and other model-
based approaches in Sections 4, 5, and 6, respectively.
In Section 7, we point out the relation of the presented
techniques to deep learning-based architectures. Finally,
conclusions are drawn in Section 8.

2 The Bayesian view
We start by reviewing the Bayesian perspective on acous-
tic model-based techniques that we use in Sections 4, 5, 6,
and 7 to review different algorithms.
Given a sequence of observed feature vectors y1:N , the

acoustic score p(y1:N |W) of a sequence w of conventional
HMMs, as depicted in Fig. 1a, is given by [24]

p(y1:N |W) =
∑
q1:N

p(y1:N , q1:N ) (4)

=
∑
q1:N

{ N∏
n=1

p(yn|qn) p(qn|qn−1)

}
, (5)

where p(q1|q0) = p(q1). The summation goes over all
possible state sequences q1:N through W superseding the

explicit dependency on w at the right-hand side of (4)
and (5). Note that the pdf p(yn|qn) can be scaled by p(yn)
without influencing the discrimination capability of the
acoustic score w.r.t. changing word sequences w. We thus
define p̊(yn|qn) = p(yn|qn)/p(yn) for later use.
The compensation rules of a wide range of model

adaptation, missing feature, and uncertainty decoding
approaches can be expressed by modifying the Bayesian
network structure of a conventional HMM and applying
the inference rules of Bayesian networks [26]—potentially
followed by suitable approximations to ensuremathemati-
cal tractability.While some approaches postulate a certain
Bayesian network structure, others indirectly define a
modified Bayesian network by assuming an observed fea-
ture vector yn to be a distorted version of an underlying
clean feature vector xn, which is introduced as latent vari-
able in the HMM as, e.g., in Fig. 1b. In the latter case,
the relation of yn and xn can be expressed by an ana-
lytical observation model g(·) that incorporates certain
compensation parameters bn:

yn = g(xn,bn). (6)

Note that here it is not distinguished whether yn is the
output of a front-end enhancement process or a noisy
or reverberant observation that is directly fed into the
recognizer. By converting the observation model to a
Bayesian network representation, the pdf p(yn|qn) in (5)
can be derived exploiting the inference rules of Bayesian
networks [26]. For the case of Fig. 1b, the observation
likelihood in (5) would, e.g., become:

p(yn|qn) =
∫

p(xn, yn|qn)dxn

=
∫

p(xn|qn) p(yn|xn)dxn, (7)

where the actual functional form of p(yn|xn) depends on
the assumptions on g(·) and the statistics p(bn) of bn.
The abstract perspective taken in this paper reveals

a fundamental difference between model adaptation
approaches on the one hand and missing feature and
uncertainty decoding approaches on the other hand:
Model adaptation techniques usually assume bn to have
constant statistics over time [4, 27], i.e.,

p(bn) = const., for n ∈ {1, . . . ,N}. (8)

or to be a deterministic parameter vector of value b, i.e.,

p(bn) = δ(bn − b), (9)

where δ(·) denotes the Dirac distribution. In contrast,
missing feature and uncertainty decoding approaches
typically assume p(bn) to be a time-varying pdf [4, 27].
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Fig. 1 Bayesian network representation of a a conventional HMM and b an HMM incorporating latent feature vectors. Subfigure b is based on [20]

As exemplified in Sections 4 to 6, this Bayesian view
also allows for a convenient illustration of the underly-
ing statistical dependencies ofmodel-based approaches by
means of Bayesian networks. If two approaches share the
same Bayesian network, their underlying joint pdfs over
all involved random variables share the same decompo-
sition properties. However, some crucial aspects are not
reflected by a Bayesian network: the particular functional
form of the joint pdf, potential approximations to arrive at
a tractable algorithm, as well as the estimation procedure
for the compensation parameters.While some approaches
estimate these parameters through an acoustic front-end,
others derive them from clean or distorted data. For clar-
ity, we entirely focus in this article on the compensation
rules while ignoring the parameter estimation step. We
also disregard approaches that apply a modified training
method to conventional HMMs without exhibiting a dis-
tinct compensation step, as it is characteristic for, e.g.,
discriminative [28], multi-condition [29], or reverberant
training [30].

3 Merit of the Bayesian view
In the past decades, numerous survey papers and books
have been published summarizing the state-of-the-art in
noise and reverberation-robust ASR [27, 31–36]. Recently,
a comprehensive review of noise-robust ASR techniques
was published in [25] providing a taxonomy-oriented
framework by distinguishing whether, e.g., prior knowl-
edge, uncertainty processing or an explicit distortion
model is used or not. In contrast to [25] and previous
survey articles, we pursue a threefold goal with this article:

• First of all, we aim at classifying all considered
techniques along the same dimension by motivating
and describing them with the same Bayesian
formalism. Consequently, we do not conceptually
distinguish whether a given method employs a
time-varying pdf p(bn), as in uncertainty decoding, or
whether a distorted vector yn is a preprocessed or a
genuinely noisy or reverberant observation. Also, the
distinction of implicit and explicit observation
models dissolves in our formalism.

• As a second goal, we aim at closing some gaps by
presenting new derivations and formulations for
some of the considered techniques. For instance, the
Bayesian networks in Figs. 2b, 2c, 4, 5b, 5c, 6b, 8, 9b
representing the concepts in Subsections 4.3, 4.4, 4.6,
6.3/6.4, 6.5, 6.6, 6.8, and 6.9, respectively, constitute
novel representations. Moreover, the links to the
Bayesian framework via the mathematical
reformulations in (28), (29), (37), (38), (45), (55), (61),
(65), (71) are explicitly stated for the first time in this
paper.

• The third goal of the Bayesian description is to
provide an intuitive graphical illustration that allows
to easily overview a broad class of algorithms and to
immediately identify their similarities and differences
in terms of the underlying statistical assumptions.

By establishing new links between existing concepts,
such an abstract overview should therefore also serve as
a basis for revealing and exploring new directions. Note,
however, that the review presented in this paper does not
claim to cover all relevant acoustic model-based tech-
niques and is rather meant as an inspiration to other
researchers.

4 Uncertainty decoding
In the following, we consider the compensation rules of
several uncertainty decoding techniques from a Bayesian
view.

4.1 General example of uncertainty decoding
A fundamental example of uncertainty decoding can, e.g.,
be extracted from [1, 37–42]. The underlying observation
model can be identified as

yn = xn + bn with bn ∼ N (0,Cbn), (10)

where yn and Cbn often play the role of an enhanced
feature vector, e.g., from a Wiener filtering front-end
[40] and a measure of uncertainty from the enhancement
process, respectively. Thus, the point estimate yn can
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Fig. 2 Bayesian network representation of different model compensation techniques. Detailed descriptions of subfigures a to d are given in the text.
Subfigure d is based on [4]

be seen as being enriched by the additional reliability
information Cbn . The observation model is representable
by the Bayesian network in Fig. 2a. Exploiting the con-
ditional independence properties of Bayesian networks
[26], the compensation of the observation likelihood in (5)
leads to [26]

p(yn|qn) =
∫

p(xn|qn) p(yn|xn)dxn

=
∫

N (xn;μx|qn ,Cx|qn)N (yn; xn,Cbn)dxn

= N (yn;μx|qn ,Cx|qn + Cbn). (11)

Without loss of generality, a single Gaussian pdf
p(xn|qn) is assumed since, in the case of a Gaussian
mixture model (GMM), the linear mismatch function (10)
can be applied to each Gaussian component separately.

4.2 Dynamic variance compensation
The concept of dynamic variance compensation [2] is
based on a reformulation of the log-sum observation
model [39]:

yn = xn + log (1 + exp(̂rn − xn)) + bn (12)

with r̂n being a noise estimate of any noise tracking algo-
rithm and bn ∼ N (0,Cbn) a residual error term. Since the
analytical derivation of p(yn|qn) is intractable, an approxi-
mate pdf is evaluated based on the assumption of p(xn|yn)
being Gaussian and that the compensation can be applied
to each Gaussian component of the GMM separately [2].

According to Fig. 2a, the observation likelihood in (5), in
its scaled version p̊(yn|qn), hence becomes:

p̊(yn|qn) =
∫

p(xn|qn) p(xn|yn)p(xn)
dxn

≈
∫

p(xn|qn) p(xn|yn)dxn (13)

≈
∫

N (xn;μx|qn ,Cx|qn)N (xn;μx|yn ,Cx|yn)dxn

= N (μx|qn ;μx|yn ,Cx|qn + Cx|yn), (14)

where the approximation (13) can be justified if p(xn) is
assumed to be significantly “flatter,” i.e., of larger variance,
than p(xn|yn). The estimation of the moments μx|yn , Cx|yn
of p(xn|yn) represents the core of [2].

4.3 Uncertainty decoding with SPLICE
The stereo piecewise linear compensation for environ-
ment (SPLICE) approach, first introduced in [43] and
further developed in [44, 45], is a popular method for cep-
stral feature enhancement based on a mapping learned
from stereo (i.e., clean and noisy) data [25]. While SPLICE
can be used to derive an minimum mean square error
(MMSE) [44] orMAP [43] estimate that is fed into the rec-
ognizer, it is also applicable in the context of uncertainty
decoding [3], which we focus on in the following. In order
to derive a Bayesian network representation of the uncer-
tainty decoding version of SPLICE [3], we first note from
[3] that one fundamental assumption is

p(xn|yn, sn) = N (xn; yn + rsn ,�sn), (15)
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where sn denotes a discrete region index, rsn is its bias,
and �sn the uncertainty in that region. Exploiting the
symmetry of the Gaussian pdf

p(xn|yn, sn) = N (xn; yn + rsn ,�sn)

= N (yn − xn;−rsn ,�sn) (16)

and defining bn = yn − xn, we identify the observation
model to be

yn = xn + bn (17)

given a certain region index sn. In the general case of sn
depending on xn, the observation model can be expressed
by the Bayesian network in Fig. 2b with

p(bn|sn) = N (bn;−rsn ,�sn). (18)

This reveals that the introduction of different regions sn
is equivalent to assuming an affine model (18) with p(bn)
being a GMM instead of a single Gaussian density, as in
(10). By introducing a separate prior model

p(yn) =
∑
sn

p(sn) p(yn|sn)

=
∑
sn

p(sn)N (yn;μy|sn ,Cy|sn), (19)

for the distorted speech yn, the likelihood in (5) can be
adapted according to

p(yn|qn) =
∫

p(xn|qn) p(yn|xn)dxn

=
∫

p(xn|qn) p(xn, yn)p(xn)
dxn =

∫
p(xn|qn)

·
∑

sn p(xn|yn, sn) p(yn|sn) p(sn)∑
sn

∫
p(xn|yn, sn) p(yn|sn) p(sn)dyn dxn.

(20)

Although analytically tractable, both the numerator and
the denominator in (20) are typically approximated for the
sake of runtime efficiency [3].

4.4 Joint uncertainty decoding
Model-based joint uncertainty decoding [4] assumes an
affine observation model in the cepstral domain

yn = Aknxn + bn (21)

with the deterministic matrix Akn and p(bn|kn) =
N (bn;μb|kn ,Cb|kn) depending on the considered Gaussian
component kn of the GMM of the current HMM state qn:

p(xn|qn) =
∑
kn

p(kn) p(xn|kn). (22)

The Bayesian network is depicted in Fig. 2c implying the
following compensation rule:

p(yn|kn) =
∫

p(xn|kn) p(yn|xn, kn)dxn, (23)

which can be analytically derived analogously to (11). In
practice, the compensation parameters Akn , μb|kn , and
Cb|kn are not estimated for each Gaussian component kn
but for each regression class comprising a set of Gaussian
components [4].

4.5 REMOS
Asmany other techniques, the reverberationmodeling for
speech recognition (REMOS) concept [5, 46] assumes the
environmental distortion to be additive in the melspectral
domain. However, REMOS also considers the influence
of the L previous clean speech feature vectors xn−L:n−1
in order to model the dispersive effect of reverberation
and to relax the conditional independence assumption of
conventional HMMs. The observation model reads in the
logmelspec domain:

yn = log
(
exp(cn) + exp(hn + xn)

+ exp(an) �
L∑

l=1
exp(μl + xn−l)

)
, (24)

where the normally distributed random variables cn,hn,
and an model the additive noise components, the early
part of the room impulse response (RIR), and the weight-
ing of the late part of the RIR, respectively, and the
parameters μ1:L represent a deterministic description of
the late part of the RIR. The Bayesian network is depicted
in Fig. 3 with bn =[ cn, an,hn]. In contrast to most of
the other compensation rules reviewed in this article, the
REMOS concept necessitates a modification of the Viterbi
decoder due to the introduced cross-connections in Fig. 3.

Fig. 3 Bayesian network representation of the REMOS concept
(Subsection 4.5). The figure is based on [5]
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In order to arrive at a computationally feasible decoder,
the marginalization over the previous clean speech com-
ponents xn−L:n−1 is circumvented by employing estimates
x̂n−L:n−1(qn−1) that depend on the best partial path, i.e.,
on the previous HMM state qn−1. The resulting analyt-
ically intractable integral is then approximated by the
maximum of its integrand:

p(yn|qn, x̂n−L:n−1(qn−1))

=
∫

p(yn|xn, x̂n−L:n−1(qn−1)) p(xn|qn)dxn

≈ max
xn

p(yn|xn, x̂n−L:n−1(qn−1)) p(xn|qn).

(25)

The determination of a global solution to (25) repre-
sents the core of the REMOS concept. The estimates
x̂n−L:n−1(qn−1) in turn are the solutions to (25) at previous
time steps. We refer to [5] for a detailed derivation of the
corresponding decoding routine.
It seems worthwhile noting that the simplification in

(25) represents a variant of the MAP integral approxima-
tion, as often applied in Bayesian estimation [26]. To show
this, we first omit the dependency on x̂n−L:n−1(qn−1) for
notational convenience and define

xMAP
n = argmax

xn
p(yn|xn) p(xn|qn)

= argmax
xn

p(yn, xn|qn)
p(yn|qn) = argmax

xn
p(xn|yn, qn),

(26)

where we scaled the objective function in the second
step by the constant 1/p(yn|qn). We can now reformu-
late the Bayesian integral leading to a novel derivation
of (25)

p(yn|qn) =
∫

p(yn|xn) p(xn|qn)dxn

=
∫

p(yn|qn) p(xn|yn, qn)dxn

≈
∫

p(yn|qn) p (xn|yn, qn) δ
(
xn − xMAP

n

)
dxn

= p(yn|qn) p
(
xMAP
n |yn, qn

)
(27)

= p
(
yn|xMAP

n

)
p

(
xMAP
n |qn

)
. (28)

We see that the assumption underlying (25) is a
modified MAP approximation:

p(xn|yn, qn) ≈ p(xn|yn, qn) δ
(
xn − xMAP

n

)
, (29)

which slightly differs from the conventional MAP
approximation:

p(xn|yn, qn) ≈ δ
(
xn − xMAP

n

)
. (30)

The obvious disadvantage of (29) is that the resulting
score (25) does not represent a normalized likelihoodw.r.t.
to yn. On the other hand, the modified MAP approxima-
tion (29) leads to a scaled version of the exact likelihood
p(yn|qn), cf. (27), with the scaling factor p(xMAP

n |yn, qn)
being all the higher with increasing accuracy of the
approximation (29).

4.6 Ion and Haeb-Umbach
Similarly to REMOS, the generic uncertainty decoding
approach given in [24], and first proposed by [20], con-
siders cross-connections in the Bayesian network in order
to relax the conditional independence assumption of
HMMs. The concept, as described in [24], is an example
of uncertainty decoding, where the compensation rule can
be defined by a modified Bayesian network structure—
given in Fig. 4a—without fixing a particular functional
form of the involved pdfs via an analytical observation
model. In order to derive the compensation rule, we start
by introducing the sequence x1:N of latent clean speech
vectors in each summand of (4)

p(y1:N , q1:N )=
∫

p(y1:N , x1:N , q1:N )dx1:N

=
∫
p(y1:N |x1:N )

N∏
n=1

p(xn|qn)p(qn|qn−1)dx1:N

∼
∫ p(x1:N |y1:N )

p(x1:N )

N∏
n=1

p(xn|qn)p(qn|qn−1)dx1:N ,

(31)

where we exploited the conditional independence proper-
ties defined by Fig. 4a (respecting the dashed links) and
dropped p(y1:N ) in the last line of (31) as it represents a
constant factor with respect to a varying state sequence
q1:N . The pdf in the numerator of (31) is next turned into

p(x1:N |y1:N ) = p(x1|y1:N )

N∏
n=2

p(xn|y1:N , x1:n−1)

≈
N∏

n=1
p(xn|y1:N ), (32)

where the conditional dependence (due to the head-
to-head relation) of xn and x1:n−1 is neglected. This
corresponds to omitting the respective dashed links in
Fig. 4a for each factor in (32) separately. The denomina-
tor in (31) can also be further decomposed if the dashed
links in Fig. 4b, i.e., the head-to-tail relations in qn, are
disregarded:

p(x1:N ) ≈
N∏

n=1
p(xn). (33)
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Fig. 4 Bayesian network representations a and b of the decoding rule of [24], where the dashed links are disregarded in the different steps of the
derivation (Subsection 4.6)

With (32) and (33), the updated rule (31) is finally turned
into the following simplified form:

p(y1:N , q1:N ) ∼
N∏

n=1

∫ p(xn|y1:N )

p(xn)
p(xn|qn)dxn p(qn|qn−1)

(34)

that is given in [24]. Due to the approximations in
Fig. 4a, b, the compensation rule defined by (34)
exhibits the same decoupling as (5) and can thus be
carried out without modifying the underlying decoder.
In practice, p(xn) may, e.g., be modeled as a separate
Gaussian density and p(xn|y1:N ) as a separate Markov
process [24].

4.7 Significance decoding
Assuming the affine model (10), the concept of signif-
icance decoding [9] first derives the moments of the
posterior p(xn|yn, qn):

p(xn|yn, qn) = p(yn|xn, qn) p(xn|qn)∫
p(yn|xn, qn) p(xn|qn)dxn

= p(yn|xn) p(xn|qn)∫
p(yn|xn) p(xn|qn)dxn

= N (xn;μx|yn,qn ,Cx|yn,qn),

(35)

where the Bayesian network properties of Fig. 2a have
been exploited in the numerator and the denominator and
a single Gaussian pdf p(xn|qn) is assumed without loss of
generality. In a second step, the clean likelihood p(xn|qn)
is evaluated at μx|yn,qn after adding the variance Cx|yn,qn to
Cx|qn , cf. (36).
In terms of probabilistic notation, this compensation

rule corresponds to replacing the score calculation in (5)
by an expected likelihood, similarly to [47, 48]:

p(yn|qn) ≈ Exn|yn,qn{p(xn|qn)}

=
∫

p(xn|yn, qn) p(xn|qn)dxn

= N
(
μx|yn,qn ;μx|qn ,Cx|yn,qn+Cx|qn

)
. (36)

For the case of single Gaussian densities, the (in the
Bayesian sense) exact score p(yn|qn) is given by (11).
Extending previous work [9], we show (11) to be bounded
from above by the modified score (36):

Exn|yn,qn{p(xn|qn)} =
∫

p(xn|yn, qn) p(xn|qn)dxn

=
∫
p(yn|xn) p2(xn|qn)dxn

p2(yn|qn)︸ ︷︷ ︸
α

p(yn|qn),

(37)

where α can be evaluated exploiting the product rules of
Gaussians [26]:

α =
√
det(Cx|qn+Cbn)

det(Cx|qn)
N (y;μx|qn ,

1
2Cx|qn+Cbn)

N (y;μx|qn ,
1
2Cx|qn+ 1

2Cbn)

≥
√√√√det(Cx|qn+Cbn) det(

1
2Cx|qn+ 1

2Cbn)

det(Cx|qn) det( 12Cx|qn+Cbn)
≥ 1.

(38)

A closer inspection of α reveals that the expected like-
lihood computation scales up p(yn|qn) for large values of
Cbn , which acts as an alleviation of the (potentially overly)
flattening effect of Cbn on p(yn|qn), cf. (11).

5 Missing feature techniques
We next turn to missing feature techniques, which can
be used to model feature distortion due to a front-end
enhancement process [7], noise [49], or reverberation [50].
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5.1 Feature vector imputation
A major subcategory of missing feature approaches is
called feature vector imputation [6, 7, 27] where each
feature vector component y(d)

n , d ∈ {1, . . . ,D}, is either
classified as reliable (d ∈ Rn) or unreliable (d ∈ Un)
withRn and Un denoting the set of reliable and unreliable
components of the nth feature vector, respectively [24].
While unreliable components are withdrawn and replaced
by an estimate x̂(d)

n of the original observation y(d)
n , reliable

components are directly “plugged” into the pdf. The score
calculation in (5), in its scaled version p̊(yn|qn), therefore
becomes

p̊(yn|qn) =
∫

p(xn|qn) p(xn|yn)p(xn)
dxn

≈
∫

p(xn|qn) p(xn|yn)dxn (39)

with

p(xn|yn) =
D∏

d=1
p(x(d)

n |y(d)
n ) (40)

and [24]

p(x(d)
n |y(d)

n ) =
⎧⎨⎩ δ(x(d)

n − y(d)
n ) d ∈ R

δ(x(d)
n − x̂(d)

n ) d ∈ U
(41)

with the general Bayesian network in Fig. 5a. The approx-
imation in (39) follows the same reasoning as (13).

5.2 Marginalization
The second major subcategory of missing feature tech-
niques is called marginalization [6, 7, 27], where unre-
liable components are “replaced” by marginalizing over
a clean-speech distribution p(x(d)

n ) that is usually not

derived from the HMM but separately modeled. The pos-
terior likelihood in (41) thus becomes [24]

p(x(d)
n |y(d)

n ) =
{

δ(x(d)
n − y(d)

n ) d ∈ R
p(x(d)

n ) d ∈ U
(42)

with the general Bayesian network in Fig. 5a.

5.3 Modified imputation
The approach presented in [8] assumes the affine obser-
vation model (10) and evaluates the clean likelihood
p(xn|qn) for an enhanced feature vector given by

x̂n = argmax
xn

p(xn|qn) p(yn|xn). (43)

In order to fit this technique into our Bayesian perspec-
tive, we first consider x̂n as aMAP estimate similar to (26).
We furthermore note that for the affine model (10), we
have

p(yn|xn) = N (yn; xn,Cbn)

= N (xn; yn,Cbn) = p(xn|yn).
(44)

Starting off with the standard compensation rule follow-
ing from (10), i.e., Fig. 2a, we show for the first time that [8]
implicitly assumes p(xn|yn) to be sharply peaked around
the MAP estimate x̂n:

p(yn|qn) =
∫

p(xn|qn) p(yn|xn)dxn

=
∫

p(xn|qn) p(xn|yn)dxn

≈
∫

p(xn|qn) δ(xn − x̂n)dxn, (45)

where (45) corresponds to evaluating the clean state-
dependent likelihood at x̂n.
It seems finally interesting to note that (44) also

explains the fact that the concept of modified imputation

Fig. 5 Bayesian network representation of a different model compensation techniques, b CMLLR (Subsection 6.3) and MLLR (Subsection 6.4), and c
MAP adaptation (Subsection 6.5). Detailed descriptions are given in the text
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has been independently described in the following two
forms:

x̂n = argmax
xn

p(xn|qn) p(xn|yn)
= argmax

xn
p(xn|qn) p(yn|xn)

(46)

in [8] and [9], respectively.

6 Acoustic model adaptation and other
model-based techniques

In the following, we consider the compensation rules of
several acoustic model adaptation and other model-based
approaches from a Bayesian view.

6.1 Parallel model combination
We start with the fundamental framework of parallel
model combination (PMC) [10]. The observation model
of the PMC concept is based on the log-sum distortion
model and reads in the static logmelspec domain:

yn = log (α exp(xn) + exp(bn)) , (47)

where the deterministic parameter α accounts for level
differences between the clean speech xn and the distortion
bn. Under the assumption of stationary distortions, i.e.,

p(bn) = const., (48)

the underlying Bayesian network corresponds to Fig. 2a.
This explains the name of PMC as (47) combines two
independent parallel models: the clean-speech HMM and
the distortion model p(bn). Since the resulting adapted
pdf

p(yn|qn) =
∫

p(xn|qn) p(yn|xn,bn) p(bn)d(xn,bn)

(49)

cannot be derived in an analytical closed form, a vari-
ety of approximations to the true pdf p(yn|qn) have been
investigated [10]. For nonstationary distortions, [10] pro-
poses to employ a separate HMM for the distortion bn
leading to the Bayesian network representation of Fig. 2d.
Marginalizing over the distortion state sequence q̃1:N as
in (5) reveals the acoustic score to become

p(y1:N |W)=
∑
q1:N
q̃1:N

p(y1:N , q1:N , q̃1:N )

=
∑
q1:N
q̃1:N

{ N∏
n=1

p(yn|qn, q̃n) p(qn|qn−1) p(̃qn |̃qn−1)

}
,

(50)

where

p(yn|qn, q̃n) =
∫

p(xn|qn) p(yn|xn,bn) p(bn |̃qn)d(xn,bn).

(51)

The overall acoustic score can be approximated by a
3D Viterbi decoder, which can in turn be mapped onto a
conventional 2D Viterbi decoder [10].

6.2 Vector Taylor series model compensation
The concept of vector Taylor series (VTS) model compen-
sation is frequently employed in practice yielding promis-
ing results [25]. Its fundamental idea is to linearize a
nonlinear distortion model by a Taylor series [11, 51, 52].
The standard VTS approach [51] is based on the log-sum
observation model:

yn = log (exp(hn + xn) + exp(cn)) , (52)

where p(hn) = N (hn;μh,Ch) captures short convolu-
tive distortion and p(cn) = N (cn;μc,Cc) models additive
noise components. The Bayesian network is represented
by Fig. 2a with bn =[hn, cn]. Note that in contrast to
uncertainty decoding, p(bn) is constant over time. As the
adapted pdf is again of the form of (49) and thus ana-
lytically intractable, it is assumed that (52) can, firstly,
be applied to each Gaussian component p(xn|kn) of the
GMM

p(xn|qn) =
∑
kn

p(kn)p(xn|kn) (53)

individually and, secondly, be approximated by a Tay-
lor series around [μx|kn ,μh,μc], where μx|kn denotes the
mean of the component p(xn|kn). There are various exten-
sions to the VTS concept that are omitted here. For amore
comprehensive review of VTS, we refer to [25].

6.3 CMLLR
Constrained maximum likelihood linear regression
(CMLLR) [12, 53] can be seen as the deterministic coun-
terpart of joint uncertainty decoding (Subsection 4.4)
with the observation model

yn = Aknxn + bkn (54)

and deterministic parameters Akn ,bkn . The adaptation
rule of p(yn|kn) has the same form as (23) with

p(yn|xn, kn) = δ(yn − Aknxn − bkn). (55)

With this reformulation, we identified the underlying
Bayesian network to correspond to Fig. 5b, where the use
of regression classes is again reflected by the dependency
of the observation model parameters on the Gaussian
component kn (cf. Subsection 4.4). The affine observation
model in (54) is equivalent to transforming the mean vec-
tor μx|kn and covariance matrix Cx|kn of each Gaussian
component of p(xn|kn):

μy|kn = Aknμx|kn + bkn , (56)

Cy|kn = AknCx|knAT
kn . (57)
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CMLLR represents a very popular adaptation technique
due to its promising results and versatile fields of appli-
cation, such as speaker adaptation [53], adaptive training
[54] as well as noise [55] and reverberation-robust [56]
ASR.

6.4 MLLR
The maximum likelihood linear regression (MLLR) con-
cept [13] can be considered as a generalization of con-
strained maximum likelihood linear regression (CMLLR)
as it allows for a separate transform matrix Bkn in (57):

μy|kn = Aknμx|kn + bkn , (58)

Cy|kn = BknCx|knBT
kn . (59)

In practice, however, MLLR is frequently applied to the
mean vectors only [57–60] while neglecting the adapta-
tion of the covariance matrix:

Cy|kn = Cx|kn . (60)

This principle is also known from other approaches
that are applicable to both means and variances but are
often only carried out on the former (e.g., for the sake of
robustness) [10, 61].
If applied to the mean vectors only, MLLR can in turn

be considered as a simplified version of CMLLR, where
the observation model (54) and the Bayesian network in
Fig. 5b is assumed while the compensation of the vari-
ances is omitted.
The Bayesian network representation in Fig. 5b also

underlies the general MLLR adaptation rule (58) and (59).
In this case, however, it seems impossible to identify a
corresponding observation model representation without
analytically tying Akn and Bkn .

6.5 MAP adaptation
We next describe the MAP adaptation applied to any
parameters θ of the pdfs of an HMM and present a new
formulation highlighting that these parameters are implic-
itly considered as Bayesian, i.e., random variables that are
drawn once for all times as depicted in Fig. 5c [26]. As
a direct consequence, any two observation vectors yi, yj
are conditionally dependent given the state sequence. The
predictive pdf in (4) therefore explicitly depends on the
adaptation data that we denote as yM:0, M < 0, and
becomes

p(y1:N , q1:N |yM:0) =
∫

p(y1:N , q1:N , θ |yM:0)dθ

=
∫

p(y1:N , q1:N |θ , yM:0) p(θ |yM:0)dθ

≈ p(y1:N , q1:N |θMAP, yM:0),
(61)

where the posterior p(θ |yM:0) is approximated as Dirac
distribution δ(θ − θMAP) at the mode θMAP:

θMAP = argmax
θ

p(θ |yM:0) (62)

= argmax
θ

p(yM:0|θ) p(θ).

An iterative (local) solution to (63) is obtained by the
expectation maximization (EM) algorithm. Note that due
to the MAP approximation of the posterior p(θ |yM:0),
the conditional independence assumption is again fulfilled
such that a conventional decoder can be employed.

6.6 Bayesian MLLR
As mentioned before, uncertainty decoding techniques
allow for a time-varying pdf p(bn), while model adap-
tation approaches, such as in Subsections 6.1, 6.2, and
6.6.1, mostly set p(bn) to be constant over time. In both
cases, however, the “randomized” model parameter bn is
assumed to be redrawn in each time step n as in Fig. 6a.
In contrast, Bayesian estimation—as mentioned before—
usually refers to inference problems, where the random
model parameters are drawn once for all times [26] as in
Fig. 6b.
Another example of Bayesian model adaptation, besides

MAP, is Bayesian MLLR [14] applied to the mean vector
μx|qn of each pdf p(xn|qn):

μy|qn = Aμx|qn + c (63)

with b =[A, c] being usually drawn from a Gaussian dis-
tribution [14]. Here, we do not consider different regres-
sion classes and assume p(xn|qn) to be a single Gaussian
pdf since, in the case of a GMM, the linear mismatch
function (63) can be applied to each Gaussian compo-
nent separately. The likelihood score in (4) thus becomes
(in contrast to (61), we do not explicitly mention the
dependency on the adaptation data yM:0 for notational
convenience):

∑
q1:N

p(y1:N , q1:N ) =
∑
q1:N

∫
p(y1:N , q1:N ,b)db (64)

=
∑
q1:N

∫
p(y1:N , q1:N |b) p(b)db.

This score can, e.g., be approximated by a frame-
synchronous Viterbi search [62]. Another approach is to
apply the Bayesian integral in a frame-wise manner and
use a conventional decoder [63]. In this case, we can
establish an interesting link to the Bayesian network per-
spective by approximating the integral in (64) as follows:
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Fig. 6 Bayesian networks representing a typical uncertainty decoding and model adaptation with probabilistic parameter bn and b Bayesian model
adaptation

∫
p(y1:N , q1:N |b) p(b)db

=
∫ N∏

n=1
p(yn|qn,b) p(qn|qn−1) p(b)db

≈
N∏

n=1

∫
p(yn|qn,b) p(qn|qn−1) p(b)db,

(65)

where the original assumption of b being identical for all
time steps n was relaxed to the case of b being identically
distributed for all times steps n. The approximation in (65)
can be interpreted as the conversion of the Bayesian net-
work in Fig. 6b to the one in Fig. 6a with constant pdf
p(bn) = p(b) for all n.

6.6.1 Reverberant VTS
Reverberant VTS [15] is an extension of conventional VTS
(Subsection 6.2) to capture the dispersive effect of rever-
beration. Its observation model reads for static features in
the logmelspec domain:

yn = log
( L∑

l=0
exp(xn−l + μl) + exp(bn)

)
(66)

with bn being an additive noise component modeled
as normally distributed random variable and μ0:L being
a deterministic description of the reverberant distor-
tion. For the sake of tractability, the observation model
is approximated in a similar manner as in the VTS
approach. This concept can be seen as an alterna-
tive to REMOS (Subsection 4.5): While REMOS tailors
the Viterbi decoder to the modified Bayesian network,
reverberant VTS avoids the computationally expensive
marginalization over all previous clean-speech vectors by

averaging—and thus smoothing—the clean-speech statis-
tics over all possible previous states and Gaussian com-
ponents. Thus, yn is assumed to depend on the extended
clean-speech vector xn = [ xn−L, . . . , xn], cf. Fig. 7a vs. 7b.

6.7 Convolutive model adaptation
Besides the previously mentioned REMOS, reverberant
VTS, and reverberant CMLLR concepts, there are three
related approaches employing a convolutive observation
model in order to describe the dispersive effect of rever-
beration [16–18]. All three approaches assume the follow-
ing model in the logmelspec domain:

yn = log
( L∑

l=0
exp(xn−l + μl)

)
, (67)

where μ0:L denotes a deterministic description of the
reverberant distortion that is differently determined by
the three approaches. The observation model (67) can be
represented by the Bayesian network in Fig. 3 without
the random component bn. Both [16] and [18] use the
“log-add approximation” [10] to derive p(yn|qn), i.e.,

μy|kn = log
(
exp(μx|kn + μ0) +

L∑
l=1

exp(μx|qn−l + μl)

)
,

(68)

where μy|kn and μx|kn denote the mean of the kn-th Gaus-
sian component of p(yn|qn) and p(xn|qn), respectively.
The previous means μx|qn−l , l > 0 are averaged over all
means of the corresponding GMM p(xn−l|qn−l). On the
other hand, [17] employs the “log-normal approximation”
[10] to adapt p(yn|qn) according to (67). While [16] and
[17] perform the adaptation once prior to recognition and
then use a standard decoder, the concept proposed in [18]
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Fig. 7 Bayesian network representation of reverberant VTS (Subsection 6.6.1) a before and b after approximation via an extended observation
vector. The figure is based on [15]

performs an online adaptation based on the best partial
path [15].
It should be pointed out here that there is a vari-

ety of other approximations to the statistics of the log-
sum of (mixtures of ) Gaussian random variables (as seen
in Subsections 4.2, 4.5, 6.1, 6.2, 6.6.1), ranging from
different PMC methods [10] to maximum [64], piece-
wise linear [65], and other analytical approximations
[66–70].

6.8 Takiguchi et al.
In contrast to the approaches of Subsections 6.6.1 and
6.7, the concept proposed in [19] assumes the reverberant
observation vector yn−1 at time n− 1 to be an approxima-
tion to the reverberation tail at time n in the logmelspec
domain:

yn = log (exp(h + xn) + exp(α + yn−1)) , (69)

where h and α are deterministic parameters modeling
short convolutive distortion and the weighting of the
reverberation tail, respectively. We link this approach to

Fig. 8 Bayesian network representation of [19] (Subsection 6.8)

the Bayesian framework by rewriting each summand in (4)
according to (69):

p(y1:N , q1:N ) =
N∏

n=1
p(yn|qn, yn−1) p(qn|qn−1) (70)

with the Bayesian network of Fig. 8. It seems interesting
to note that (69) can be analytically evaluated as yn−1 is
observed and, thus, (69) represents a nonlinear mapping
g(·) of one random vector xn: yn = g(xn) with

p(yn|qn, yn−1) = p(xn|qn)
det(Jyn(g−1(yn))

, (71)

where xn = g−1(yn) and Jyn denotes the Jacobian w.r.t. yn.

6.9 Conditional HMMs [22] and combined-order HMMs
[23]

We close this section by broadening the view and pointing
to two model-based approaches that cannot be classified
as “model adaptation” as they postulate different HMM
topologies rather than adapting a conventional HMM.
Both approaches aim at relaxing the conditional inde-
pendence assumption of conventional HMMs in order to
improve the modeling of the inter-frame correlation.
The concept of conditional HMMs [22] models the

observation yn as depending on the previous observations
at time shifts ψ = (ψ1, . . . ,ψP) ∈ N

P . Each summand in
(4) therefore becomes

p(y1:N , q1:N ) =
N∏

n=1
p(yn|yn−ψ1 , . . . , yn−ψP , qn) p(qn|qn−1)

(72)

according to Fig. 9a. Such HMMs are also known as
autoregressive HMMs [26].
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Fig. 9 Bayesian network representation of a conditional and b combined-order HMMS (Subsection 6.9). Subfigure a is based on [26]

In contrast to conditional HMMs, combined-order
HMMs [23] assume the current observation yn to
depend on the previous HMM state qn−1 in addition to
state qn:

p(y1:N , q1:N ) =
N∏

n=1
p(yn|qn, qn−1) p(qn|qn−1) (73)

according to Fig. 9b, which can be thought of as a con-
ventional first-order HMM with a second output pdf per
state.
While conditional HMMs represent the statistically

more accurate model for correlated speech feature vec-
tors, combined-order HMMs circumvent the mathemati-
cally more complex inference step by a larger number of
HMM parameters [23].

7 Relevance for DNN-based ASR
Before concluding this article, we build the bridge of
the discussed model-based techniques for GMM-HMM-
based ASR systems to the recent deep learning-based
architectures.
The most immediate approach of exploiting conven-

tional model-based techniques is within the framework
of bottleneck or tandem systems [25]. There, deep neural
networks (DNNs) are used for feature extraction while the
ASR system’s acoustic model is based on GMM-HMMs.
For such systems, the presented approaches could—in
principal—be applied in the same way as for conven-
tional GMM-HMMs. However, the definition of meaning-
ful observation models seems less intuitive as the features
undergo various nonlinear transforms before being pre-
sented to the GMM-HMM system.
A popular alternative to bottleneck and tandem sys-

tems are the DNN-HMM hybrid approaches [71], which
are often used along with logmelspec features (and their
derivatives) as input domain [72, 73]. While—from a
Bayesian perspective—the network representations of
GMM-HMM and DNN-HMM systems are the same, cf.
Fig. 1a, their decisive difference is the definition of the
state-dependent output pdfs, which read in the case of
DNN-HMMs:

p(xn|qn) = p(qn|xn) p(xn)
p(qn)

∼ p(qn|xn)
p(qn)

(74)

with p(qn|xn) being the qnth output node of the DNN,
p(qn) being the prior probability of each HMM state
(senone), estimated from the training set, and p(xn) being
independent of the word sequence and thus to be ignored
[71].
There are various approaches for adapting a DNN-

HMM to changing acoustic environments or speaker
characteristics. Most of them aim at either adapting cer-
tain weights of the DNN itself, such as in [74–76], or
at presenting transformed/enriched input features to the
DNN, as in [72, 77]. In the following, we will briefly dis-
cuss the application of the Bayesian perspective, taken on
in this article, to DNN-HMMs. Analogously to the previ-
ous sections, we start with the definition of an exemplary
observation model:

xn = yn + bn, (75)

where bn can again be a deterministic or random variable
and, in contrast to the previous sections, the observa-
tion model is resolved for xn. With (75) and Fig. 1b, the
adaptation of the qnth output node of a DNN yields:

p(qn|yn) =
∫
p(yn, xn|qn)dxn p(qn)

p(yn)

=
∫
p(xn|qn) p(yn|xn, qn)dxn p(qn)

p(yn)

=
∫ p(qn|xn)p(xn)

p(qn) p(yn|xn)dxn p(qn)
p(yn)

=
∫

p(qn|xn) p(xn|yn)dxn, (76)

where p(xn|yn) is defined through (75). In theory, any of
the previously discussed observationmodels could thus be
directly applied to a DNN-HMMas long as resolving them
for xn is feasible. In practice, however, both the parameter
estimation step as well as the compensation step (76) can
become complex.
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In case of bn being a random variable, the solution
of (76) yields an interesting interpretation, which can be
revealed by considering the qn-th output node of the DNN
as a transform f (·) of xn,

p(qn|xn) = fqn(xn) = zqn , (77)

and exploiting the fundamental property of variable trans-
form in expectation operators:

p(qn|yn) =
∫

fqn(xn) p(xn|yn)dxn = E{fqn(xn)|yn}

= E{zqn |yn} =
∫

zqn p(zqn |yn)dzqn . (78)

In other words, the DNN adaptation (76) corresponds
to deriving the mean of the transformed random variable

zqn = fqn(xn)
(75)= fqn(yn + bn) (79)

given the observation yn, which can, e.g., be achieved by
numerical or deterministic integral approximations [78].
In case of bn being a deterministic parameter, (76)

simplifies to evaluating the DNN for the transformed
observation:

p(qn|yn) =
∫

p(qn|xn) p(xn|yn)dxn

=
∫

p(qn|xn) δ(̂xn − xn)dxn

= fqn (̂xn)
(75)= fqn(yn + bn). (80)

If the transform parameters (here: bn) are estimated
irrespectively of the ASR system’s acoustic model, (80)
can be seen as a “conventional” feature enhancement
step. If the transform parameters are discriminatively esti-
mated using error back-propagation through the DNN,
(80) could also be considered as adaptation of the DNN’s
input layer weights.

8 Conclusions
In this article, we described the compensation rules
of several acoustic model-based techniques employ-
ing the Bayesian formalism. Some of the presented
Bayesian descriptions are already given in the origi-
nal papers and others can be easily derived based on
the original papers (cf. Subsections 4.3, 4.4, 4.6, and
6.9). Beyond this, however, the links of the decoding
rules of the concepts of REMOS (Subsection 4.5), sig-
nificance decoding (Subsection 4.7), modified imputa-
tion (Subsection 5.3), CMLLR/MLLR (Subsections 6.3
and 6.4), MAP (Subsection 6.5), Bayesian MLLR (Sub-
section 6.6), and Takiguchi et al. [19] (Subsection 6.8)
to the Bayesian framework via the mathematical refor-
mulations in (28), (37), (45), (55), (61), (65), and (71),
respectively, are explicitly stated for the first time in this
paper.

As a byproduct of the Bayesian formalism, the consid-
ered concepts are represented here as Bayesian networks,
which both highlights and hides certain crucial aspects.
Most importantly, neither the particular functional form
of the joint pdf nor potential approximations to arrive at
a tractable algorithm nor the provenance of (i.e., the esti-
mation procedure for) the compensation parameters are
reflected.
On the other hand, the Bayesian network description

provides a convenient representation to immediately and
clearly identify some major properties:

• The cross-connections depicted in Figs. 3, 4, 7a, 8, and
9 show that the underlying concept aims at improving
the modeling of the inter-frame correlation, e.g., to
increase the robustness of the acoustic model against
reverberation. If applied in a straightforward way,
such cross-connections would entail a costly
modification of the Viterbi decoder. In this paper, we
summarized some important approximations that
allow for a more efficient decoding of the extended
Bayesian network, cf. Subsections 4.5, 4.6, 6.6.1, and
6.7. Some of these typically empirically motivated or
just intuitive approximations, especially neglected
statistical dependencies, become obvious from a
Bayesian network, as shown in Figs. 4 and 7.

• The approaches introducing instantaneous (here:
purely vertical) extensions to the Bayesian network,
as in Figs. 2a–c and 5c, usually aim at compensating
for nondispersive distortions, such as additive or
short-ranging convolutive noise.

• The arcs in Figs. 2c and 5b illustrate that the observed
vector yn does not only depend on the state qn (or
mixture component kn) through xn. As a
consequence, one can deduce that the compensation
parameters do depend on the phonetic content, as in
Subsections 4.4, 6.3, and 6.4.

• The graphical model representation also succinctly
highlights whether a Bayesian modeling paradigm is
applied, as in Figs. 5c and 6b, or not, as in Figs. 5a, b.

• The existence of the additional latent variable xn in
most of the presented Bayesian network
representations expresses that an explicit observation
model or an implicit statistical model between the
clean and the corrupted features is employed. In
contrast, the graphical representations in Figs. 5c and
9 show that—instead of a distinct compensation
step—a modified HMM topology is used.

In summary, the condensed description of the various
concepts from the same Bayesian perspective shall allow
other researchers to more easily exploit or combine exist-
ing techniques and to relate their own algorithms to the
presented ones. This seems all the more important as
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the recent acoustic modeling approaches based on DNNs
raise new challenges for the conventional robustness tech-
niques [25].
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