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Abstract

We treat the phase retrieval (PR) problem of reconstructing the interest signal from its Fourier magnitude. Since the
Fourier phase information is lost, the problem is ill-posed. Several techniques have been used to address this problem
by utilizing various priors such as non-negative, support, and Fourier magnitude constraints. Recent methods exploiting
sparsity are developed to improve the reconstruction quality. However, the previous algorithms of utilizing sparsity prior
suffer from either the low reconstruction quality at low oversampled factors or being sensitive to noise. To address these

sparsity-based algorithms in terms of reconstruction quality.

issues, we propose a framework that exploits sparsity of the signal in the translation invariant Haar pyramid (TIHP) tight
frame. Based on this sparsity prior, we formulate the sparse representation regularization term and incorporate it into
the PR optimization problem. We propose the alternating iterative algorithm for solving the corresponding non-convex
problem by dividing the problem into several subproblems. We give the optimal solution to each subproblem, and
experimental simulations under the noise-free and noisy scenario indicate that our proposed algorithm can obtain a
better reconstruction quality compared to the conventional alternative projection methods, even outperform the recent
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1 Introduction

In science and engineering fields, such as crystallography,
neutron radiography, astronomy, signal processing, and
optical imaging [1, 2], it is difficult to design sophisticated
measuring setups to allow direct recording of the phase,
which carries the critical structural information of the test
object or signal [1]. Interestingly, an alternative mean
called algorithmic phase retrieval is arising in these fields.
The goal of phase retrieval (PR) algorithms is to retrieve
the signal only through its Fourier spectrum magnitude
that can be obtained by the sensors. However, since the
global phase shift, conjugate inversion, spatial shift on the
interest signal can lead to the same Fourier magnitude,
the PR problem is ill-posed. Therefore, prior information
on the underlying signal is incorporated into the recovery
process to enable its recovery.

In the past decades, alternative projection strategy
pioneered by Gerchberg and Saxton [3] for PR is popu-
lar. The object magnitude constraint and Fourier mag-
nitude constraint are utilized in the Gerchberg-Saxton
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(GS) algorithm, which addresses the problem of recov-
ering a complex object from its Fourier magnitude via
projecting onto the constrained sets alternatively.
Instead of the magnitude constraint of the GS algorithm
in object domain, Fienup [4] in 1978 suggested a PR
algorithm called hybrid-input output (HIO) algorithm,
which incorporates the non-negativity and support
constraint into the PR process. Further study of alterna-
tive projection strategy [5—7] can be regarded as the
modification or extension of the HIO algorithm and the
GS algorithm.

Recently, the sparsity prior for PR is focused by
researchers [8—12]. Theoretically, the sparsity prior can
be incorporated into the object constraint of any alter-
native projection algorithm to improve the perform-
ance. Mukherjee et. al. proposed the so-called Max-K
algorithm [8], which incorporates sparsity into the
object constraint of alternative projection strategy via
solving the sparse coding subproblem; Loock et. al. [9]
incorporated the sparsity constraint into relaxed averaged
alternating reflectors (RAAR) algorithm and proposed a
shearlet soft thresholding procedure for PR from near-
field sampled data, namely Fresnel magnitude. Another
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sparsity-based strategy for PR is based on greedy strategy,
including greedy sparse phase retrieval (GESPAR) [10]
and nonlinear basis pursuit [11]. It has been shown that
GESPAR could achieve lower computational complexity
compared to the alternative projection algorithm with
sparsity constraints [10].

In the image PR field, the image regularization, such as /;
regularization [13, 14], is focused by researchers. They
often formulate the non-convex /; minimization problem
and solve the problem by alternating directions method of
multipliers (ADMM) [15], which can obtain a suboptimal
solution to the non-convex problem. Inspired by this idea,
in this paper, we extend the spatial sparsity prior to trans-
form sparsity prior based on translation invariant Haar
pyramid (TIHP) [16] for PR. The proposed regularization
is based on the assumption that the underlying image can
be represented sparsely in TIHP tight frame. The assump-
tion is natural for a wide class of natural images. Indeed,
TIHP tight frame have been shown to provide suitable
results for image restoration [16, 17]. We formulate the
sparse representation regularization term and incorporate
it into the PR optimization problem combining with the
support and Fourier magnitude constraint. Due to the non-
convexity of the objective function, the optimal solution to
the corresponding problem is difficult to obtain. Neverthe-
less, ADMM technique, which can obtain a satisfied solu-
tion to the PR problem [13, 14], is utilized in this paper.

Our contributions can be summarized as follows:

1. We propose a sparse representation regularization
term based on the TIHP tight frame for phase
retrieval. We combine the sparse representation
regularization term with the data consistency term
and object constraint term of utilizing the indicator
function to formulate a new phase retrieval problem.
The sparse representation regularization term of
utilizing TIHP tight frame is helpful to retrieve the
missing phase as well as recover the image at low
oversampled factors. Moreover, additional spatial
priors of the image can be incorporated into the
object constraint via enforcing the spatial priors in
the constraint set, specially support prior and the
intensity constraint of the underlying image are
utilized in this paper;

2. The alternative iterative algorithm of utilizing
ADMM technique for solving the formulated
optimization problem is proposed via dividing the
formulated problem into several subproblems. We
give the optimal solution to each subproblem
theoretically, and experimental results demonstrated
the better convergence behavior of this approach;

3. We demonstrate the sparsity measure of utilizing /;
norm can obtain better reconstruction than /, norm
for our framework heuristically. Experimental results
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indicate that our proposed algorithm can obtain
better reconstruction quality compared with the
alternative projection algorithms of utilizing the
same sparsity prior. Additionally, our algorithm is
robust to noise, which is demonstrated empirically.

The structure of this paper is as follows. To begin
with, the PR prior work is reviewed in Section 2. Then,
in Section 3, we formulate our new PR problem and
introduce our alternative iterative algorithm in detail.
Section 4 presents our experimental simulations. Finally,
concluding remarks and directions for future research are
presented in Section 5.

2 Related work

2.1 The alternative projection strategy

Let M={xeR"| |[Fx|=b} (here, Fe CV*N accounts for
the discrete Fourier transform matrix, be RV is the
observed Fourier magnitude, and & represents the
underlying signal) be the Fourier magnitude constraint,
which is a set of the signals whose Fourier magnitude
spectrum matches with the measured Fourier magni-
tude of the underlying signal, and S={x(r)| x(r)=
0 for some re D and x(r) =0 for r¢ D} be the support
constraint set that indicates the set of signals have the
non-zero support in D. The PR problem can be formu-
lated as the following feasible problem

findxeMnS. (1)

The alternative projection algorithms are utilized for
solving the above problem, and the popular algorithm
among them is the Fienup’s HIO algorithm [4], which
starts with an initial guess and bounces between the
above constraint sets until the terminated condition is
reached. Given a parameter f5, the HIO algorithm for
updating x can be described as

x(t“)(r) _ [Par(x))(r), if reD;
X (r)=B[Par(x)](r), otherwise.

Where Py (x) = F! (b@ %) (E! represents the in-

verse Fourier transform and © denotes element-wise
product, t is the iteration number. Mathematically, the
above formulation is equivalent to

X0(r) = [((1 + BIPsPus + 1-Ps-BPw)xY] (1)
(3)
Here, Ps is the projection onto S. To solve the problem

(1), Luke [7] proposed RAAR algorithm, which can be
described as
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X (r) = [(ZﬁP&PM + BI-pPs, + (1—2ﬁ)Pm)x(t)] (r)-
(4)

Here, S, = {x(r)|x(r) > 0 for some r€ D and x(r) = 0 for
r& D} represents the support and non-negative con-
straint set. Indeed, under the same constraint, the
RAAR algorithm equals to the HIO algorithm when /5 =
1. To further improve the performance of RAAR, Loock
et. al. [9] utilized shearlet sparsity prior to recover the
phase from the Fresnel magnitude data, namely near-
field data. Instead of the projection operator Pg, (¢) in

(4), they utilize P(si) (¢) defined as

P (o) = [F'Te(Fy(v))] . (5)

with [¢], = max{Re(+),0}. Here T.(¢) =sign(e) - max(|
+| —¢0) is a soft thresholding operator, moreover, F
represents the shearlet transform matrix, and Fs‘l
represents the inverse shearlet transform matrix. The
experimental simulations in [9] show that the RAAR
algorithm with shearlet sparsity constraint outper-
forms the support constraint and similarly as the
support plus non-negative constraint under the near-
field scenario.

2.2 ADMM for the PR optimization problem

Differ from the PR feasible problem, the PR problem
can also be formulated as a minimum problem that
can be solved by the optimization theory. Additional
constraints can be incorporated into the correspond-
ing PR minimum problem by way of indicator func-
tions. Theoretically, the feasible problem (1) can
be regarded as the following minimum problem
approximately

x = argmin{|||Fx|-bl| % +Is(x)}. (6)

The first term of problem (6) is the data consistency,
which enforces the Fourier magnitude constraint. The
second term represents the real-space or object con-
straint, such as support or positive, onto the underlying
signal; here, I is an indicator function

Is(x) 0 xeS; )
X) =
s + oo otherwise.

Yang et. al. incorporated the [; regularization for PR
(14]

x = argmin{||[Ex|-b|| 5 +A|x]| 1}. (8)
The above problem is a non-convex problem, Yang et. al.

[14] suggested ADMM technique to solve the problem and
obtained a better reconstruction. Yang’s algorithm suffers
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from the limit of recovering the image that is sparse in
spatial domain; when it comes to recover the images that
are non-sparse in spatial domain, it fails to reconstruct.
However, most of the natural images are non-sparse in
spatial domain; Yang’s algorithm cannot enable to retrieve
the phase of these images. Moreover, the previous alterna-
tive projection algorithms of utilizing sparsity prior suffer
from either the relatively low reconstruction quality at low
oversampled factors or being sensitive to noise. To address
these issues, we propose a framework of utilizing TIHP
tight frame, and experimental results indicate its efficiency
for natural images.

3 The proposed approach

3.1 Problem formulation

We study the PR optimization problem of recovering
the image from its Fourier magnitude also known as the
far-field data. Few decades have witnessed a great inter-
est in image regularization, especially the sparse repre-
sentation regularization for solving inverse problems.
As a special inverse problem, it is essential to exploit a
fine sparse representation for PR problem. The fine ana-
lytical transform or sparsifying basis for sparse repre-
sentation regularization is critical for recovering the
signal. In this paper, we propose utilizing TIHP tight
frame for PR. The sparse representation regularization
term of utilizing the TIHP tight frame is incorporated
into the PR minimum problem and yields the following
optimization problem

x = argmin{[|[Ex|-b|| 3 + AIWx|| 1 +Is(x)}.  (9)

Where xe RV is the interest signal, W represents the
TIHP tight frame admits W'W =1 (here I is an identify
matrix), and A is the regular parameter. The first term of
problem (9) is the data consistency, and the second term
represents sparse representation regularization term in
the TIHP tight frame. For the sparse representation
regularization term, both the /; norm and /, norm can be
considered to promote sparsity. In the simulations section
(Subsection 4.1), we demonstrate that the reconstruction
obtained by /; norm is better than utilizing /, norm in
terms of reconstruction quality. The third term is an indi-
cator function that can combine some additional con-
straints, such as support or non-negative constraint, into
PR process.

3.2 The proposed phase retrieval method

Problem (9) is a non-convex optimization problem due to
the presence of the magnitude operator, thus, solving it
efficiently is a challenge. We attempt to solve it by using
ADMM technique, and problem (9) can be recast as
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{x,y.2} = argmin{|||z|-b|| ;

Xx,y,z

+A|Wx|| 1+Is(y)}, st Fx = z,y = x.
(10)

The above problem can be rewritten as the following
Lagrangian form that can be solved by ADMM

{%,y,2,4,, 1} = argmin{|||z|-b|| 3+[Wx]| 1

X,y,z,u;,uy
+Is(y) + py | [Ex-z + wy || 5 + po|ly-x
+ w3}

(11)

Here, uy, u, represent the scaled dual variables. We
solve the above problem by attacking the following x, y, z
subproblems and following the updating of scale dual vari-
ables finally. The optimal solution to each subproblem is
derived, to the ¢ th iteration:

1. x subproblem

With y, z, u;, u, fixed, problem (11) is corresponding
to the x subproblem

(t-1

X = argmin{p, | [Ex-2 + ul )| 3+ p, Iy x

V)| 32 W] 1} (12)

The above problem can be recast as

X = argmin { (p, + p,)|)x

~ (P + pn D) /oy + py)I| 3+ MWK 1+ C}.
(13)

Here, m*-1) = F# (z(t‘l)—ugt_l)), n(-D =y 4 ugt_m

, C is a constant independent of x. The objective function
of problem (13) is a convex function with the unique
solution

X = WIT{W[(pm ) + o0 D) (o, +p,)| b (14)

Here, Te(-) is a soft thresholding operator with ¢
=A/(2 x (p1 + p2)). The hard thresholding operator T (w)

= {W’ l(f w > VA/(Pler?);} instead of the soft

, otherwise
thresholding operator is utilized in (14) under the
scenario that the [, norm is exploited for promoting

sparsity.

2. z subproblem
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With «, y, u;, u, fixed in problem (11), the z
subproblem is

2 = argmin {||[2]-b|| 3 + py[[Ex) 2

a3 "
Let w9 = Ex® + u{'"™", thus
2% = argmin {H\z|—b|| 5+ pyllw 2| %} (16)

The first term is the Fourier magnitude constraint,
and the second term indicates that the underlying vector
is close to the known vector. To obtain the optimal solu-

tion of problem (16), the phase of z and w* must be
guaranteed to equal
pha(z) = pha (wm). (17)

Here, pha(s) represents the operator that extracts the
phase. To solve problem (16), we can only consider the
following optimization problem with respect to |z|

#91 = argmin {Ila-bl1 3 + pulIw |-l 3. (19

Consider the cost function of problem (18) is a differen-
tiable function with respect to |z|, and the least squares
solution to problem (18) is

20| = (b+p1\w“>|)/(1 +pl). (19)

Therefore, the optimal solution to problem (16) is given

by
) = [(b + py W D J(1+ pll)] O exp [j - pha <w(t))} .
(20)

3. y subproblem

With x, z, uy, u, fixed in problem (11), the y subprob-
lem is

. -1
¥ = argmin{py|ly-x" +uf V| 3+ Ls(y)}.  (21)
Y

Note that the first term of the above problem indi-
cates the underlying vector is close to the known vector

(x(t)—u(zH)) in Euclidean norm, and the second term is
an indicator function; the optimal solution to the above
problem is
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y® = Pg (x“)—ug_l)). (22)
Where Pg(+) represents the projection operator onto
the constraint set S.
Finally, update the scaled dual variables of ADMM

) = ugH) + y(Fx(t) —z(t))
ug) _ ug_l) + y(y(t) _x(t))

Here, ye(O, (\/§+ 1) /2) can guarantee the conver-
gence for the convex problem [18]. There is no theoretical
guarantee that ADMM can obtain the optimal solution to
the non-convex problem. Nevertheless, ADMM method
can obtain a satisfied solution for the non-convex PR
problem [14, 19]. To give a better convergence for our al-
gorithm, we incorporate the parameter y, which can be
adjusted heuristically, into ADMM. So far, all issues in the
process of handing problem (11) have been solved. We
update the variable «, z, y at the tth iteration by solving
subproblems (12), (15), and (21), and update mu,, u,
by (23) iteratively. To monitor the convergence of our
algorithm, we utilize the relative residual norm de-
fined by [19]

(23)

res = [[[Fx|-b|| »/|[b]| ». (24)

The iteration is terminated until the relative residual
norm res < 7 for some small 7> 0, or the maximum iter-
ation number is reached under the noise-free case, and
only the latter terminated condition is utilized for the
noisy case. To illustrate our algorithm with sparse repre-
sentation regularization utilized tight frame in detail,
Table 1 provides the proposed algorithm.

4 Experimental simulations

In our experiments, we use two standard gray scale images
with size 512 x 512, including “Lena” and “Fruits.” The
Fourier transform of the testing image is oversampled by
various factors for comparison, and we call the factor as
oversampled factor [19]. For example, the image is cropped

Table 1 Complete description of our proposed algorithm

Input: the Fourier magnitude b;

Initialization: t= 1, initial estimated image X9, error tolerance 7> 0, parameters
AY, P10

Repeat

Update image x by (14);

Update 29 y® by (20) and (22), respectively;

Update the scaled dual variables u(]r), ugr) by (23);
t=t+1;

Until maximum iteration number is reached or res <1

Output: final estimated image
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with size 314 x 314, namely, the 314 x 314 pixels of the ori-
ginal image in Fig. 1 are retained, and the other part of it is
excluded. The cropped testing images are padded with
zeros to create the 512 x 512 image; under this scenario,
the oversampled factor is 1.63 (512/314). Theoretically, the
lower the oversampled factor is, the more difficult to
reconstruct the image. We compare the /o norm and /4
norm for promoting sparsity in our approach firstly. Then,
the algorithm is compared with other existing algorithms
and is evaluated of reconstruction quality and robustness
to noise. All simulations were performed in MATLAB
R2012a on the computer with AMD Athlon (tm) II X2 255
processor (3.11 GHz), 1.75 G memory, and Windows XP
operator system.

4.1 Parameter setup

To demonstrate the effectiveness of the sparsity in our al-
gorithm, we compared our algorithm with the alternative
projection algorithm without sparsity constraint, and the
HIO algorithm is chosen as the benchmark algorithm
under the noise-free case. The non-negative constraint S,
is utilized in the HIO algorithm, and the HIO MATLAB
codes can be downloaded from https://github.com/leeneil/
ghio-matlab. We also incorporated the state-of-the-art
sparsity-based algorithms such as the Max-K algorithm [8]
and RAAR framework with shearlet sparsity method [9]
for comparison. The Max-K algorithm can be regarded as
a parameterized relaxation with respect to RAAR [8] of
utilizing K sparse constraint; therefore, we chose the RAAR
method with sparsity constraint in the TIHP tight frame
for comparison. Due to the /, norm that is incorporated to
promote sparsity, we termed this algorithm as RAAR-/,
algorithm, which is also introduced in [8]. For RAAR-/,
algorithm, the sparsity level K is set to 0.4 N, where N is
the total number of the measurements, and f=0.99.
Moreover, the proposed RAAR-based algorithm in [9] is
selected for comparison. We utilize the sparsity in TIHP
tight frame instead of shearlet sparsity for reconstruction
from the far-field data. The /; norm is utilized in [9] to
promote sparsity; thus, the corresponding algorithm is
called RAAR-/; algorithm. It is difficult to give the

Fig. 1 Images with 512 x 512 pixels for our experiments. a Lena.

b Fruits
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theoretical guarantee for the choice of the parameters for
PR algorithms. In general, these parameters are tuned
heuristically. To give a better performance for the RAAR-/;
algorithm, we suggest a rule of updating thresholding &
empirically: € = C; + Cy/t (here C; and C, are some con-
stants that need to be tuned empirically). The thresholding
¢ of the RAAR-/; algorithm is decreasing in dependence of
the iteration number ¢, which gives a promising result that
has been demonstrated in [9]. Each parameter in the
RAAR-/; algorithm was evaluated by varying one param-
eter at a time while keeping the rest fixed based on the
principle of obtaining the higher peak signal to noise ratio
(PSNR). We tried several choices of 5, Cy, and C, for this
algorithm at oversampled factor 1.58, and experimental re-
sults show that 5=0.99, ¢ = 1.5 + 8/t are suitable parameter
choices.

The projection operator Py; utilized in RAAR-/;, and
RAAR-/; algorithms is defined as [7]

o |Ex| 2 |Ex| 2 + 27
PM X :I—F 712—1:) @ 72FX
™ H(Fx 24 p2)Y } Lm 24 p2)% ]}
(25)

with #=10""%, both the RAAR-l, and RAAR-/; algo-
rithms utilize the RAAR framework with TIHP sparsity
constraint; the difference between the two algorithms is
the object domain constraint, which yields the different
projection operator Pg, (+) in (4). Concretely, the RAAR-
lo algorithm utilizes the following projection operator

P () = B{PS[WT Tc(W(-))]} (26)

Here, Ti{+) represents the operator that retains the K
largest coefficients, and B(e) = max(min(e,255),0) de-
notes as the pixel intensities constraint. The projection
Pg(+) represents projection onto the support constraint.
Differing from the RAAR-/, algorithm, the RAAR-/;-
algorithm incorporates P5(s) = B{Ps[W' T, (W(s))]}
into (4). The maximums of iterations for all algorithms
in the experiments are set to 3000.

For TIHP tight frame, the transform and its inverse
transform can be downloaded from http://www.io.csic.es/
PagsPers/JPortilla/software/file/4-10-abs-deblur-pack. The
lo norm and /; norm are all considered to promote spars-
ity, and the corresponding algorithm utilizing TIHP tight
frame is termed PR-TIHP-/, and PR-TIHP-/;. The Pg uti-
lized in our algorithm is defined as

Py(x) {B(x)ifxeS;

(27)
0 otherwise.

Note that an initial guess is important for PR, we utilize
x9 = PgP,,(v) as the initial guess for all algorithms; here, v
is a random image. We tune the parameters of the
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proposed two algorithms finely, heuristically, we set the
dyadic scales 7, and p; =p,=0.01,y=0.5,7=0.01 for the
two algorithms. For the parameter A, we set PR-TIHP-/,
and PR-TIHP-/; to 0.1 and 0.05, respectively.

We compare the proposed PR-TIHP-/, and PR-TIHP-
/; at various oversampled factors. In Fig. 2, we give the
reconstructed image “Lena” at oversampled factor 1.63
and 1.62, namely, containing 314 x 314 pixels (the first
row) and 316 x 316 pixels (the second row), respect-
ively. Moreover, the corresponding non-negative sup-
port regions in the center of the 512 x512 padded
image are shown in Fig. 2. Since the global phase factor
exists in the reconstructed images, the reconstructions
can be flipped or shifted. In this case, we aligned the
reconstruction with the original image to give a clear
comparison. Moreover, the part of the reconstructed
image that padding zeros to create the oversampled dif-
fraction pattern is excluded. One can see that the
nearly perfect reconstructions in first row are achieved
by the two algorithms; however, the PR-TIHP-/,
algorithm fails to reconstruct as the decreasing of the
oversampled factor. One can see our PR-TIHP-/
algorithm can provide the perfect reconstruction at these
oversampled factors. Indeed, for image “Lena”, the mini-
mum oversampled factor for perfect reconstitution of our
PR-TIHP-I; algorithm is 1.58 (contains 324 x 324 pixels),
but the reconstruction of our PR-TIHP-/, algorithm is
extremely worse than PR-TIHP-/; algorithm at this over-
sampled factor. Therefore, we utilize /; norm to promote
sparsity for comparison in next subsection.

4.2 Phase retrieval from noise-free oversampled
diffraction pattern

We performed the proposed algorithm and the three
benchmark algorithms for various images at oversampled
factor 1.58. In this simulation, the non-negative support
region is simply the window with size 324 x 324 in the
center of the 512 x 512 padded image.

We used the same initial guess for all algorithms for
fairness. Figures 3 and 4 show the comparisons of the re-
construction performance for the two testing images. Note
that the reconstructed image may be flipped for the global
phase factor in its Fourier transform; the translation has
been removed for clear comparison. The original images
are shown in Figs. 3a and 4a. From the reconstructions of
the four algorithms presented in Figs. 3 and 4, it is easy to
see that our PR-TIHP-/; produced high-quality recon-
structions regardless of the images (see Figs. 3e and 4e).
From the reconstructions in Figs. 3b and 4b, one can see
that the HIO algorithm cannot give a visible reconstruc-
tion at this oversampled factor. The RAAR-/, algorithm
produced a better reconstruction than HIO, but many tex-
ture and detail information are lost, such as the texture of
the hat in image “Lena” (see Fig. 3¢) is lost; moreover, the
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Support
—————512 pixels———————

314 pixels

12 pixels:
314 pixels

316 pixels

316 pixels

\

PR-TIHP-/,

Fig. 2 The reconstructed “Lena” images by PR-TIHP-l, and PR-TIHP-/; with various oversampled factors and their corresponding non-negative support
fields. “Lena” with 314 x 314 pixels (the first row, oversampled by the factor of 1.63), 316 x 316 pixels (the second row, oversampled by the factor of 1.62)

PR-TIHP- /,

spots of the apple in image “Fruits” (see Fig. 4c) are also
lost. The RAAR-/; reconstruction is not visibly good for
image “Lena” (see Fig. 3d), and most details are also lost in
image “Fruits” (see Fig. 4d). Interestingly, a nearly perfect
reconstruction for image “Lena” is achieved by our PR-
TIHP-/; algorithm. As for the “Fruits” reconstruction,
the spots of the apple in our reconstruction is preserved
(see Fig. 4e), which shows our reconstruction is better
than the reconstructed images obtained by the bench-
mark algorithms. The utilization of TIHP tight frame
and ADMM technique should account for the consider-
able results obtained by our algorithm.

Although our proposed PR-TIHP-/; algorithm could
obtain a suboptimal solution to the non-convex prob-
lem (11) as well as a better reconstruction, the global
convergence is difficult to be proved rigorously, which
is the results of the non-convexity of the objective func-
tion. Empirically, our PR-TIHP-/; algorithm converges
to a stable point as the iteration increases. Figure 5
gives the plot of res, namely the relative residual norm
defined in (24), versus iterations for the image “Lena” and
“Fruits” at the oversampled factor 1.58. It is observed in
Fig. 5 that the three benchmark algorithms are easy to
strap into stagnation at this oversampled factor. One can
see our PR-TIHP-/; algorithm can circumvent this issue
and become flat and stable ultimately, indicating good con-
vergence property. As the non-convex optimization prob-
lem may yield some perturbations in the convergent

curves, one can see some perturbations in our stable
curves.

To show the computational cost, we present the running
time of our PR-TIHP-/; algorithm and the benchmark
algorithms in Table 2. In the table, the “average” means the
average running time of processing the two testing images.
From Table 2, one can see our proposed algorithm results
in faster imaging speed compared to the sparsity-based
benchmark algorithms. The high computational cost of the
projection operator P,; and Pg should account for the
slower imaging speed of the RAAR-/, algorithm and the
RAAR-/; algorithm. However, from Table 2, one can see
our algorithm is slower than the HIO algorithm in terms
of the average running time. The TIHP transform and its
inverse transform should account for the higher average
running time of our algorithm compared to the HIO algo-
rithm. Interestingly, for image “Fruits,” our algorithm is
faster than the HIO algorithm. Since different image con-
tains different component, the running time for the two
testing images is different. Indeed, for image “Fruits,” our
algorithm only needs 605 iterations, which results in a fas-
ter imaging speed. From the results and the analysis of the
running time, one can see our algorithm outperforms the
RAAR-/, algorithm and the RAAR-/; algorithm in terms of
both reconstruction quality and imaging speed. Although
the average time of the HIO algorithm is less, the recon-
struction quality of the HIO algorithm is extremely worse
than our algorithm at low oversampled factors.
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Fig. 3 The reconstructed “Lena” images with 324 x 324 pixels. Top-row (left to right): a The original image. b The reconstructed image by HIO;
Bottom row (left to right), the reconstructed images by: ¢ RAAR-l,. d RAAR-/;. @ PR-TIHP-/,
A

4.3 Phase retrieval from noisy oversampled diffraction
pattern

We simulated a noisy diffraction pattern from the image
“Lena” at oversampled factor 1.74. Under the noisy data
case, we incorporate the oversampling smoothness (OSS)
algorithm [20], which produces consistently better recon-
struction than the HIO algorithm under the noisy scenario,
instead of the HIO algorithm for comparison. The OSS
code can be downloaded from the author’s homepage and
the maximum iterations for OSS we set is also 3000. Note
that the random phase without support constraint is suit-
able for OSS, we utilized its initial method for initial guess
of OSS; moreover, the same initialization is as described in

Section 4.1 for the other algorithms. We added the random
noise n on the true oversampled diffraction pattern to gen-
erate the noisy measurement data bygise = b + n.. The noise
n is scaled so that the Ry defined by R,uie=||b -
b.oisel |1/]|P| |1 is ranging from 5-20 %. For each noise level,
we performed 20 independent runs and calculated the R,
[20]: Ryen = ||X? = x||1/||x]]1 to evaluate the reconstruction
quality.

The Gaussian noise is added on the true oversampled
diffraction pattern to characterize the effects of different
noise levels on the reconstructions. The average R, of the
three benchmark algorithms and our algorithm as a func-
tion of the noise levels are presented in Fig. 6. From Fig. 6,

Fig. 4 The reconstructed “Fruits” images with 324 x 324 pixels. Top-row (left to right): a The original image. b The reconstructed image by HIO;
Bottom row (left to right), the reconstructed images by: ¢ RAAR-l,. d RAAR-/,. @ PR-TIHP-/,
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Fig. 5 Comparisons of the convergence behaviors of HIO, RAAR-l,, RAAR-/;, and PR-TIHP-/;. The relative residual norm (res) versus iterations:
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Table 2 Time (s) for phase retrieval of our PR-TIHP-/; algorithm
and the benchmark algorithms

Testing image HIO RAAR-Iy RAAR-/; PR-TIHP-/;
Lena 269.00 3403.06 1559.63 79727
Fruits 268.52 342363 157853 159.94
Average 268.76 341334 1569.08 478.60

one can see our algorithm always shows a smaller R, ..,
which indicates that the best reconstructions are achieved
by our algorithm. To further verify that our algorithm can
obtain a better reconstruction, the best reconstruction,
namely the reconstruction with the smallest R,.,, of each
algorithm under the Gaussian noise case with R, s = 10 %
is presented in Fig. 7 (the original image is presented in
Fig. 7a). Visually, the RAAR-/, algorithm produces the
worst reconstruction (see Fig. 7c). The OSS algorithm is
better than the RAAR-/, algorithm, but it suffers from
much artifacts and loses much details (see Fig. 7b).
Although the RAAR-/; algorithm outperforms the other
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Fig. 6 R, as a function of the noise levels for the reconstruction of image “Lena”

two benchmark algorithms in terms of the reconstruction
quality, much details are still lost in the reconstruction of
the RAAR-/; algorithm (see Fig. 7d). One can see our
reconstruction in Fig. 7e not only reduces the artifacts but
also preserves much details compared with the other three
benchmark algorithms. The results demonstrate that our
algorithm is robust to noise.

5 Conclusions
In this paper, we have introduced a framework for PR
based on translation invariant Haar pyramid. Our main

idea is to formulate sparse representation regularization
term of utilizing TIHP tight frame for PR. We incorpo-
rated the formulated regularization term into the PR
problem, which yields a new non-convex optimization
problem. ADMM technology was utilized for solving the
resulting problem, and a satisfied solution is obtained.
We demonstrated the /; norm that promoted sparsity
can obtain better reconstruction than [, norm for our
approach heuristically. Moreover, experimental simula-
tions showed that our proposed approach considerably
outperforms the previous PR algorithms in terms of

0.1846). d RAAR-/; (Rreas = 0.0473). @ PR-TIHP-/; (Rreq = 0.0391)

Fig. 7 The reconstructed “Lena” images with 294 x 294 pixels from the Gaussian noisy oversampled diffraction pattern. Top-row (left to right): a
The original image. b The reconstructed image by OSS (R.eq = 0.094); bottom row (left to right), the reconstructed images by: ¢ RAAR-ly (Rreal =
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reconstruction quality at low oversampled factors. The
Gaussian noise with various noise levels was added on
the true oversampled diffraction pattern to evaluate the
reconstruction quality of our algorithm showing robust
to noise. In this paper, TIHP tight frame is chosen for
our approach to retrieval phases as well as recover im-
ages. Exploiting finer tight frame to improve the recon-
struction quality is our future work.
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