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Adaptive filters: stable but divergent
Markus Rupp

Abstract

The pros and cons of a quadratic error measure in the context of various applications have often been discussed. In
this tutorial, we argue that it is not only a suboptimal but definitely the wrong choice when describing the stability
behavior of adaptive filters. We take a walk through the past and recent history of adaptive filters and present 14
canonical forms of adaptive algorithms and even more variants thereof contrasting their mean-square with their
l2−stability conditions. In particular, in safety critical applications, the convergence in the mean-square sense turns
out to provide wrong results, often not leading to stability at all. Only the robustness concept with its l2−stability
conditions ensures the absence of divergence.

Keywords: Adaptive gradient-type filters, l2-stability, Mean squared error, Small-gain theorem, Contraction mapping,
Error bounds, Neural networks, Backpropagation, Proportionate normalized least-mean-square

1 Introduction: some historical background on
adaptive-filter stability

The basic concept of a quadratic error measure whose
minimum can simply be found by differentiating and
solving a resulting set of linear equations, invented by
C.F.Gauss in 1795, has been the tool of choice for about
200 years. In [1], many arguments were demonstrated to
question the usefulness of the mean squared error (MSE)
in image and audio processing due to our complex human
perception and these arguments were nicely supported by
many practical examples and observations.
Such a quadratic error measure has also been employed

in adaptive-filter theory as a practical means to derive
convergence in the mean-square sense, starting with
Ungerböck in 1972 [2] who applied the technique onto
Widrow and Hoff ’s famous least-mean-square (LMS)
algorithm [3]1. He also introduced the so-called inde-
pendence assumption that is not well argued for [4]
but a necessity once MSE techniques are being applied.
The concept was to evaluate not only the mean of the
parameter-error vector w̃k = w − wk (also known as
weight error vector) but also the mean-square of it, typ-
ically in terms of the parameter-error vector covariance
matrix E

[
w̃kw̃H

k
]
. Although originally derived in the con-

text of machine learning, the LMS algorithm is a stan-
dard gradient-type algorithm mostly applied for system
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identification (see Algorithm 1). Many other applications,
such as linear prediction or active noise control [5], can
be brought into such framework. Note that we refer to
the estimates of the time-invariant reference w by wk ,
that is, time-variant estimates. This paper sticks with
the estimation of time-invariant systems; to describe the
tracking behavior of learning systems, another notation
would be required. Figure 1 depicts a typical setup for
system identification. For the LMS algorithm, simply set
F = I. Note that we describe Algorithm 1 in terms of a
finite impulse-response (FIR) filter. There are also other
filter structures possible, e.g., infinite impulse-response
(IIR) filters described in the next section or linear input
combiners in which the input sequence uk is completely
defined by instantaneous input vectors uk with typical
applications in adaptive antenna beamforming [6].

ALGORITHM 1. LMS ALGORITHM

input: uk = [
uk ,uk−1, . . . ,uk−M+1

]T
reference: dk = uTkw + vk
error: ẽa,k = dk − uTkwk−1
update: wk = wk−1 + μku∗

k ẽa,k
robustness: global
MSE-stability: 0 < μ < 1

tr
(
E
[
ukuHk

])
MSE-stability: 0 < μ < 2

3tr
(
E
[
ukuTk

])
(real-valued input)
l2-stability: 0 < μk < 2

‖uk‖22
0 < μ < min{uk} 2

‖uk‖22
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Fig. 1 Filtered error LMS algorithm. Adaptive algorithm structure for system identification with linear filter in the error path. For a classic LMS
algorithm, set F = I, for Feintuch’s algorithm, set F = 1/[1 − A]

Notation: Note that we use a short notation for the lin-
ear time-invariant operator F = F(q−1) = ∑M

i=0 fiq−i

with the unit-delay operator q−1xk = xk−1. Analogously,
F(e−j�) = ∑M

i=0 fie−ji� denotes the Fourier transform
of the impulse response {fi}. FR denotes the corre-
sponding backward operator, that is FR = FR(q−1) =
q−(M+1) ∑M

i=0 fM−iqi. For IIR filters, B = B(q−1) =∑M
i=0 biq−i denotes the FIR part and A = A(q−1) =∑M
i=1 aiq−i the recursive part. Matrices are denoted in

capital boldface letters; F > 0 means that all eigenvalues
of F are positive. Table 1 lists the most commonly used
variable names and their meaning.
This paper provides a historical overview of adaptive-

filter theory spanning the past 50 years. In Section 2, we
review the problems of filters including filtered errors as
they emerged in the 1970s. In Section 3, we formally intro-
duce the two different concepts of stability, MSE, and
l2−stability, and compare their properties. Section 4 then
continues our historical walk into the 1990s including
newer and older algorithms that exhibit stability problems
which were not observed at the time of their proposal.
We even address adaptive algorithms for blind channel
estimation and show their robustness. We further exploit
the robustness concept and l2−stability in Section 5 by
a recently proposed singular-value-decomposition (SVD)-
based method that is better suited to detect the insta-
bility of adaptive systems. We also provide an example
of the so-called proportionate normalized LMS algorithm
(PNLMS) which shows that an adaptive-filter algorithm
can be MSE stable but still exhibit divergence. Based on
this new framework, we investigate in Section 6 the stabil-
ity of adaptive algorithms whose error signals are linearly
coupled. As shown in Section 7, this sets the framework
for all cascaded adaptive algorithms and allows us finally
to describe the stability behavior of such an algorith-
mic family. Eventually, some open issues are addressed in
Section 8. Altogether, we discuss 14 different adaptive-
filter algorithms and many of their variants in terms of
stability and robustness.

2 First stability problems found
Employing the MSE method as the favorite and satisfy-
ing tool of most researchers in the field of adaptive filters,
Feintuch introduced in 1976 an adaptive algorithm [7] (see
Algorithm 2) that exhibited first obstacles. He proposed
the estimation of IIR filter coefficients (A,B), rather than
the conventional FIR (B) coefficients, located in the fil-
ter weights wk . Usually, when a stability issue in adaptive
filters occurs, practitioners recommend to lower the step-
sizeμk , thus buying increased stability with the expense of

Table 1 Most commonly used variables and parameters

Variable Meaning

uk Input sequence

uk Vector with input sequence

xk Vector with alternative input sequence

Alternative regression vector

w Unknown system (impulse response)

wk Estimate ofw

g Unknown system 1st. partition

gk Estimate of g

h Unknown system 2nd. partition

hk Estimate of h

a Unknown IIR system recursive partition

ak Estimate of a

b Unknown IIR system forward partition

bk Estimate of b

dk Desired, observed noisy output

yk Desired, undistorted output

yk Vector of undistorted outputs

ŷk Vector with estimated outputs

vk Additive noise

M Filter order
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slower convergence. However, this method did not work
for Feintuch’s algorithm.

ALGORITHM 2. FEINTUCH’S ALGORITHM

input: xk = [
uk , . . . ,uk−M+1, yk−1, . . . , yk−M

]T
= [

uTk , y
T
k
]

regression: x̂k = [
uk , . . . ,uk−M+1, ŷk−1, . . . , ŷk−M

]T
= [

uTk , ŷ
T
k
]

memory: ŷk = [
ŷk−1, ŷk−2, . . . , ŷk−M

]T
reference: dk = yTka + uTkb + vk = xTkw + vk
output error: ẽo,k = dk − ŷTkak − uTkbk = dk−x̂Tkwk−1
update: wk = wk−1 + μk x̂∗

k ẽo,k
robustness: no
l2-stability: if 1 − A SPR then 0 < μk <

2γmin(1−A)

‖x̂k‖22

Immediate responses [8, 9] after this publication showed
that the MSE argumentation must be wrong even though
the originating author with help by others valiantly
defended his MSE-based argument. Soon after the notion
of strict positive real (SPR) [10] was introduced (see
Table 2). A linear time-invariant filter F is called SPR if
for all frequencies −π ≤ � ≤ π the transfer func-
tion Re{F(e−j�)} > 0. Derived in the context of so-called
hyperstability, it now became obvious that adaptive IIR fil-
ters —nomatter if updated with a gradient-type algorithm
or a more complex Gauss-Newton-type algorithm—all
share a common fate; the output error signal used for
updating the filter weights passes first through a linear
filter ẽo,k = vk + 1

1−A
[
x̂Tkw̃k−1

]
(set filter F = 1/[1−A] in

Fig. 1). If this filter exhibits the SPR property, a step-
size small enough can be found to ensure convergence
of the algorithm, while if such property is not satisfied,
sequences can be found for which the filter not only does
not converge but indeed diverges for all step-sizes (that
are nonzero). It now became obvious why some situations
worked for this algorithm and others did not. Once the
recursive part of the coefficients in 1 − A does not satisfy
the desired SPR condition, the algorithm is doomed to be
unstable. The history of this development is nicely sum-
marized in [11] and the interested reader is recommended
to read it.
In fact, Feintuch’s adaptive IIR filter algorithm is a spe-

cial case of a so-called filtered-error-type algorithm (see
Algorithm 4). A very simple instantiation of such filtered-
error-type of algorithm is the so-called LMS algorithm

Table 2 Equivalent SPR conditions of linear operators

γmin(F) = min� Re
{
F
(
ej�

)}
> 0

min�

{
F
(
ej�

) + F
(
e−j�

)}
> 0

γmin(F) = minx �=0 Re
{
xHFx

}
> 0

minx �=0
{
xH

[
F + FH

]
x
}

> 0

min eig
[
F + FH

]
> 0

with delayed updates (DLMS) [12–14]. It occurs if the
error filter is a simple delay, which can easily happen
if a pipelined chip structure for the LMS algorithm is
designed that requires to introduce a delayed version of
the error signal. If the error signal appears delayed by, say
K > 0 steps, the filter F(e−j�) = e−jK� cannot be SPR
and thus a pipelined LMS algorithm can become unstable.
However, the cure for this algorithm is simply obtained by
also delaying the regression vector byK steps and applying
an older estimate, as shown in Algorithm 3.

ALGORITHM 3. DELAYED UPDATE LMS ALGORITHM

input: uk = [
uk ,uk−1, . . . ,uk−M+1

]T
reference: dk = uTkw + vk
error: ẽa,k = dk − uTkwk − 1
update: wk = wk−K−1 + μku∗

k−K ẽa,k−K
robustness: global
l2-stability: 0 < μk < 2

‖uk−K‖22

If the filter F is known and non-SPR, a cure can be rather
simple by applying an additional backward filter FR to the
filtered error. This results in an SPR part F∗F = |F|2 and
a pure delay e−jM� that can be treated by delaying the
regression vector uk in a similar way to the DLMS cure in
Algorithm 3. Note, however, that such treatment usually
results in a rather slow update rate as the error signal is
severely delayed now.

ALGORITHM 4. FILTERED-ERROR LMS ALGORITHM

input: uk = [
uk ,uk−1, . . . ,uk−M+1

]T
reference: dk = uTkw + vk
error: ẽa,k = dk − uTkwk−1
update: wk = wk−1 + μku∗

kF
[
ẽa,k

]
robustness: if F SPR then global
l2-stability: if F SPR 0 < μk <

2γmin(1/F)

‖F[uk ]‖22

Such a behavior was also detected in the context of
active noise control, where the linear filter F is not defined
by the unknown recursive part of an IIR filter but by an
acoustic-electrical transfer function, defined also by the
mechanical construction of the concatenation of loud-
speaker, free-space, and microphone system [15]. Dif-
ferent from the adaptive IIR filter, however, in acoustic
noise control, the filter F can be observed and its impulse
response identified first and then compensated for. An
alternative idea that avoids applying the backward fil-
ter was proposed by applying the error filter F on the
regression vector. Many algorithms being derivatives of
this so-called Filtered-X-LMS algorithm (see Algorithm 5)
have been proposed during the 1980s to overcome the
SPR condition, once F is known. The essential idea is to
compensate the impact of the filtered error by an identi-
cal filter on the regression vector (in this case Gk[.]= 1).
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In [16], robustness conditions for the Filtered-X-LMS
algorithm were analyzed and it was found that, although
placing F on the regression vector has a beneficial behav-
ior, the algorithm is in general only locally robust. The
Filtered-X-LMS algorithm was then reformulated in the
form of a filtered-error-type; however, now, a new, time-
variant linear operator 1/ [1 − μkCk] applies on the fil-
tered error. The coefficients of this time-variant operator
Ck depend on linearly filtered versions of the input sig-
nal uk as well as on the algorithm’s step-size. As the
coefficients of μkCk are proportional to the step-size μk ,
sufficiently small step-sizes can ensure that 1 − μkCk is
SPR, however, with the price of a slowed down adap-
tation. Only if a particular time-variant linear operator
Gk = Go = 1

1+μkCk
is additionally applied on the filtered

error term, this can be compensated for and the algorithm
can be sped up considerably.

ALGORITHM 5. FILTERED-X LMS ALGORITHM

input: uk = [
uk ,uk−1, . . . ,uk−M+1

]T
reference: dk = uTkw + vk
error: ẽa,k = dk − uTkwk−1
update: wk = wk−1 + μkF

[
u∗
k
]
GkF

[
ẽa,k

]
robustness: global for small μk
l2−stability: Gk = 1 0 < μk <

2γmin(1−μkCk)
‖F[uk ]‖22

Gk = Go 0 < μk < 2
‖F[uk ]‖22

The Filtered-X LMS algorithm has experienced a renais-
sance during the past years as it appears to be the right
choice for vibration control in car engines [17–20]. A
novel aspect here is that car engines can be controlled
without sensors as the engine speed is known. The input
signal uk can thus be generated artificially out of weighted
sine and cosine terms of the car’s rotation frequency� and
multiples thereof. A compact notation of this algorithm
results in a complex-valued Filtered-X LMS algorithm.
However, due to physical reasons, the error signal must
be real-valued and therefore a complex-valued LMS algo-
rithm is run only by a real-valued error fraction. In [21], it
was shown that this variant behaves indeed in a robust way
while an alternative variant employing a complex-valued
error and a real-valued regressor does not. Both variants
show identical MSE behavior though.

3 Stability of adaptive filters
After so much disturbing news on potential instability, it
is time now to take a closer look into the stability of adap-
tive filters as we need to understand the various notions of
stability.
MSE-stability: is based on minimizing E[ |ẽa|2] with

respect to the parameter estimateswk [2, 22–26]. Depend-
ing on the application, a minimal remaining error energy
can be desired (signal adaptation), but also the correct

knowledge of the parameters w may be desired (system
adaptation). In the classical MSE analysis, the parame-
ter vector error-covariance matrix Pk = E

[
w̃kw̃H

k
]
is

studied—requiring the so-called independence assump-
tions on the participating processes uk and vk—and
step-size conditions are derived to guarantee tr(Pk) to
decrease. Due to this procedure, MSE-stability always
includes some form of convergence. If an additive station-
ary noise process vk is assumed, the algorithm converges
into a nonzero steady-state.
l2−stability: is based on robustness terms originating

from control theory [27, 28] in the form of l2-norms of
instantaneous regression vectors rather than their expec-
tation values. In the context of adaptive filters, it was
introduced in 1993 by Kailath, Sayed, and Hassibi [29].
Further work over the next 10 years [25, 30–33] showed
that more and more adaptive filters exhibit such prop-
erty. In loose words, l2−stability simply says that if the
input sequence has a bounded Euclidean norm, so does
the output sequence. Note that, different from common
treatment, inputs of the scheme are now additive noise vk
as well as the initial parameter-error vector w̃0 = w − w0,
outputs are the undistorted a-priori error sequence
ea,k = uTkw̃k−1 and possibly the a-posteriori parameter-
error vector w̃k = w − wk . The driving sequence uk
only influences the algorithmic mapping from input to
output.
Different from MSE-stability, the robustness concept

leading to l2−stability does not require any simplifying
assumptions on the signals and formulates the adaptive
learning process in terms of a feedback filter structure
with an allpass (unitary transformation) that is lossless in
the feedforward path and a feedback path that usually con-
tains all important signal and system properties as well as
free parameters such as the step-size. A typical structure
of this for the standard LMS algorithm with time-variant
step-size μk is shown in Fig. 2.
As the stability result depends on the small-gain

theorem [27, 28], the resulting step-size bound is conser-
vative. While for the classic LMS algorithm, the obser-
vation coincides very sharply with the predicted bounds,
for many other algorithms, the bound obtained is indeed
conservative.
In the context of robustness, the question about worst-

case sequences was posed the first time: what sequences
{w0, v0, v1, . . . , vN } can be envisaged for the worst behav-
ior of the LMS algorithm, i.e.,

max{w0,v0,v1,...,vN }
‖w̃N‖22 + ∑N

k=1 μk|ea,k|2
‖w̃0‖22 + ∑N

k=1 μk|vk|2
≤ γ ? (1)

For gradient-type algorithms it was concluded that, if
the noise sequence compensates the undistorted error, i.e.,
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Fig. 2 Gradient-type method described as feedback structure with allpass (lossless) in the forward path and lossy feedback path

vk = −ea,k , the algorithms do not update and their max-
imum robustness level γ is obtained with identity, thus
such sequences were considered to cause worst-case situa-
tions. Surprisingly, there was no worst condition imposed
on the driving sequence uk as long as 0 < μk < 2μ̄k =

2
‖uk‖22

. The reason for this may be in the fact that the
method itself aims for a convergence of the undisturbed
error sequence ea,k = uTkw̃k−1 → 0, rather than the
parameter-error vector w̃k . Not surprisingly, signal condi-
tions only came up when requiring that not only the error
energy of |ea,k|2 tends to zero but also that the parameter-
error vector w̃k−1 = w−ŵk−1, i.e., the difference between
the true system impulse response and its estimate, con-
verges strongly (in norm) to zero. If the latter is also
required, the driving signal vectors uk need to be persis-
tent exciting, i.e., consecutive vectors need to span the
space of dimensionM, ifM denotes the filter order.
A consequence of the l2−stability property is that

an energy-bounded input sequence (noise vk and initial
parameter-error vector w̃0) causes a bounded output of
undistorted errors ea,k . If the input sequence is a Cauchy
sequence, so is the output. If, on the other hand, such
bound γ cannot be guaranteed, it is likely that an input
sequence exists that causes divergence. Convergence in
this context means that a range of step-size parameters (or
alternative design parameters) exist, for which even under
worst-case sequences, no divergence occurs.
The concept of l2−stability is thus very different from

MSE-stability as the existence of a single worst-case
sequence (e.g., one among an infinite amount) still would
guarantee MSE-stability (an infinite amount of working
sequences outweigh the single worst-case sequence) but
not vice versa. The idea of l2−stability is thus more
restricting and to be preferred in cases where security is of
utmost importance (smart cities, smart grids, transporta-
tion flow, automatically controlled cars, flight control,

and so on), while MSE-stability might only be sufficient
for typical applications in telecommunications where cor-
rupted data transmissions can be corrected by differ-
ent means. We can conclude that for bounded random
sequences, l2-stability leads toMSE-stability but not to the
opposite.

ALGORITHM 6. GAUSS-NEWTON ALGORITHM

input: uk = [
uk ,uk−1, . . . ,uk−M+1

]T
reference: dk = uTkw + vk
error: ẽa,k = dk − uTkwk
n. step-size: μ̄k = 1

uTkPku∗
k

covariance: Pk = 1
λk

[
Pk−1 − Pk−1u∗

k−1u
T
kPk−1

λk
βk

+ 1
μ̄k

]
,

update: wk = wk−1 + μkPku∗
k ẽa,k

robustness: global

l2−stability:

∣∣∣∣∣∣
1− μk

μ̄k√
1− βk

μ̄k

∣∣∣∣∣∣ < 1

The robustness framework was even able to handle
such different algorithms as the Gauss-Newton-type
Algorithm 6, of which the recursive least squares (RLS)
algorithm is its most famous special form, but also single-
layer neural network adaptations. The global robustness
and l2−stability of the RLS algorithm was shown [34],
corresponding results for the entire Gauss-Newton algo-
rithmic family with time-variant forgetting factor 0 <

λk < 1 as well as memory factor 0 < βk ≤ 1 are reported
in [35], special results for least squares (LS) estimators
including Kalman filters appeared in [36]. The real-valued
Perceptron learning algorithm (PLA), see Algorithm 7,
was shown to be l2−stable in [37]. Even more complicated
single-layer structures, such as the so-called Narendra
and Parthasarathy structure, that include feedback with
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memory could be analyzed and l2−stable conditions were
provided.

ALGORITHM 7. PERCEPTRON LEARNING ALGORITHM

input: uk = [
uk,1,uk,2, . . . ,uk,M

]T
reference: dk = f

[
uTkw + vk

]
error: ẽa,k = dk − f

[
uTkwk

]
update: wk = wk−1 + μku∗

k ẽa,k
robustness: global
l2−stability: μk ≤ 2max f ′[·]

‖uk‖22

4 Recently discovered evidence
Until here, the occurrence of a linear filter in the error
path may have been regarded as some curiosity in the
many variations of adaptive-filter algorithms and applica-
tions that simply set an exemplary exception, requiring
a different treatment while the majority of adaptive-filter
algorithms work accurately according to an MSE-based
theory. The developed robustness description allows
to define stability conditions for all those cases very
accurately.
Back to our historical walk. In the 1990s, adaptive fil-

ters for neural networks and particular fast versions of
LS techniques were in the focus, so called Fast-RLS algo-
rithms. Their theory is also based on minimum MSE
(MMSE) but, due to their deterministic nature, indepen-
dence assumptions were not required. To include them
in practical applications, their LS nature was often sacri-
ficed, and time-variant step-sizes were introduced. With
such step-sizes, however, their nature was more along the
stochastic, gradient-type algorithms. One of these RLS
derivatives is the affine projection (AP) algorithm [38] that
speeds up convergence when compared to its simpler gra-
dient counterpart by taking P past regression directions
into account. A fast version of this [39, 40] is the basis
for millions of copies of such algorithms running today
in electric echo cancellation devices to reduce the echoes
of long-distance call telephone cables. Unlike the origi-
nal algorithm, they use a sophisticated step-size control
to prevent instable behavior in double-talk situations [41],
that is when both talkers are active. The resulting algo-
rithm is called pseudo affine projection (PAP) algorithm,
see Algorithm 8, as with a moderate step-size the origi-
nal property is lost. Recently, it has been shown [42] that
depending on the correlation of the input signal, such
PAP algorithm can become unstable and that, depend-
ing on the input signal statistic, situations exist in which
even small step-sizes do not result in stable behavior but
larger ones are required; thus depending on the steady-
state of the predictor coefficients ak (correspondingly
denoted here as linear operatorA(q−1)), lower normalized
step-sizes αmin may exist as well as upper bounds αmax.

ALGORITHM 8. PAP ALGORITHM

input: uk = [
uk ,uk−1, . . . ,uk−M+1

]T
reference: dk = uTkw + vk
error: ẽa,k = dk − uTkwk
memory: UP,k = [

uk−1,uk−2, . . . ,uk−P
]
,

prediction: ak =
[
UH
P,kUP,k

]−1
UH
P,kuk,

regression: φk = uk − UP,kak,
update: wk = wk−1 + α

‖φk‖φ∗
k ẽa,k

robustness: if SPR global
l2−stability if A/ [1 − (1 − α)A] SPR then

αmin(A) < α < αmax(A)

However, this is not the only algorithm for which sta-
bility problems remained undiscovered for a long time.
A well-known adaptive algorithm for zero forcing (ZF)
equalization is the gradient algorithm by Lucky [43], see
Algorithm 9. In the well-known text book by Proakis [44]
we can read:
“The peak distortion has been shown by Lucky (1965)

to be a convex function of the coefficients. That is, it
possesses a global minimum and no relative minima. Its
minimization can be carried out numerically, using, for
example, the method of steepest descent”.
The argumentation sounded very convincing until the

algorithmic behavior was analyzed throughly in [45] and
it was found that indeed there exist channel conditions
and data sequences that cause the algorithm to diverge,
even for smallest step-sizes. Based on the channel impulse
response {hi}, step-size conditions only for MSE-stability
can be derived. See also [46] for alternative non-robust ZF
equalizer algorithms.

ALGORITHM 9. ZF EQUALIZER ALGORITHM
reference: dk = sTkh + vk
input: rk = [

rk , rk−1, . . . , rk−M+1
]T

error: ẽa,k = sk−τ − rTkwk−1
update: wk = wk−1 + μks∗k ẽa,k
robustness: no
MSE-stability: conditioned on channel h

Such examples may corroborate the suspicion that they
all may be related to a linear filter in the error path of some
form and thus depend on an SPR condition. Note, how-
ever, that neither for the ZF algorithm nor for the PAP
algorithm, any SPR condition appears in the error path;
thus, they do not fall under the existing knowledge of the
early 1990s, their l2− stability behavior being much dif-
ferent from their MSE behavior. In the meantime, they
were, however, correctly analyzed by the now existing
robustness techniques [42, 45].
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Moreover, also other problems can cause stability trou-
ble, when the driving signal is of persistent excitation.
Once we consider algorithms with matrix inverses such
as RLS algorithms, it is well understood that with a lack
of persistent excitation, a null space in the solution opens
up that offers the algorithm a wide space to diverge. Also
in applications, such as stereo hands-free telephones [47],
null-spaces can occur as part of the solution and cause
adaptive filters to diverge. In such cases, regularization
and leakage factors are often applied to force the null
spaces out of the obtained estimates.
But the existence of null-spaces is not necessarily a rea-

son for a lack of robustness. It may thus come as a surprise
that there exists an adaptive algorithm for blind channel
estimation [48, 49] that is indeed robust [46, 50], although
it is known that most of the blind methods are non-robust
[51]; see Algorithm 10 for details. It is the classical two-
channel path setup as depicted in Fig. 3, in which the
task of the algorithm is to estimate both channels, g and
h, denoted here as concatenated vector wk = [

gTk ,h
T
k
]T.

This result, however, does not mean that all blind algo-
rithms are robust; some more comments on this topic are
provided in Section 8.

ALGORITHM 10. ADAPTIVE ALGORITHM FOR BLIND
CHANNEL ESTIMATION

inputs: r(1)k , r(2)k
reference: dk = RT

kw + VT
kw = 0

memory: Rk =
[
r(1)k , . . . , r(1)k−M,

−r(2)k , . . . ,−r(2)k−M

]
error: ẽa,k = dk − RT

kwk−1
update: wk = wk−1 + μkRk ẽa,k
robustness: global
l2−stability: 0 < μk < 1

max λ
(
R∗
kR

T
k
)

5 A converse approach: worst-case scenarios that
lead to divergence

While for many known adaptive filters, it was now possi-
ble to show robustness conditions; for some of them, the
problem remained unsolved as they cannot be brought
into the feedback structure as depicted in Fig. 2. Typi-
cally, these problematic adaptive filters employ the general
update form:

wk = wk−1 + μkx∗
k ẽa,k , (2)

that is directions xk are applied, different (not parallel)
from driving process vector uk that constitutes the error
ẽa,k = ea,k + vk = uTkw̃k−1 + vk . We refer to these
algorithms in the following as asymmetric in contrast
to symmetric algorithms, such as LMS or RLS. Equiv-
alently speaking, it remained unclear for those adaptive
filters of general asymmetric structure whether worst-case
sequences exist that could cause divergence no matter
what the step-size (μk > 0) is.
A more general view that encompasses also the driv-

ing processes uk into the worst-case scenarios and
aims directly at the convergence or divergence of the
parameter-error vector w̃k is proposed in [52] where a
similar argument to robustness is employed but instead
of using the small-gain theorem, the sub-multiplicative
property of norms in the context of SVD is applied.
The idea is the following: assume for simplicity the

noiseless case and consider the parameter-error vector
w̃k−1. An arbitrary gradient method may use its update
error ea,k = uTkw̃k−1 and update the parameter-error
vector through

w̃k = Bkw̃k−1 = [
I − μkx∗

ku
T
k
]
w̃k−1, (3)

that is, not necessarily into direction uk but xk . Applying
the update several times results in a product of matrices∏

Bk whose largest singular value should remain bounded
to preserve stability. This is equivalent to requiring a norm
on Bk to remain bounded and as ‖ ∏

Bk‖ ≤ ∏ ‖Bk‖
for many norms (sub-multiplicative property), we can

Fig. 3 Blind channel estimation: if hk = αg and gk = αh, the outcome is zero
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conclude that l2−stability can be guaranteed as long as
the largest singular value σmax(Bk) ≤ 1. This condition
is—similar to the small-gain theorem that was applied
before—a conservative condition. However, due to the
linear operators involved, it is now simpler to analyze con-
verse conditions, i.e., bounds for instability rather than
stability. Note that for the above example, the largest sin-
gular value turns out to be larger than one if xk �= αuk ,
that is if these vectors are not parallel.
If observation noise is added again, compared to (1),

now, conditions of the form

max{w0,v0,v1,...,vN }
‖w̃N‖22

‖w̃0‖22 + ∑N
k=1 μ̃k|vk|2

≤ γ̃ (4)

are obtained, which are obviously weaker than the original
ones as the terms of the undistorted errors

∑N
k=1 μk|ea,k|2

are missing. Similarly, to the robustness method of the
previous section, stability conditions for the step-size μk
and boundedness conditions on additive noise can be
derived now. However, the so obtained bounds appear to
be tighter (or equivalent) when compared to the previ-
ous ones based on robustness. If the largest singular value
of the mapping Bk is larger than one, γ̃ will not remain
bounded for N, growing to infinity, and thus robustness is
potentially lost.
A good first example is the LMS algorithm, i.e,

Algorithm 1. The classic robustness scheme showed
l2−stability as long as μk < 2/‖uk‖22. But, how much
larger can μk become until the algorithm really diverges?
Due to the conservatism of the small-gain theorem, we
cannot answer this. The SVD method, on the other hand,
allows to derive the worst-case sequence uk so that diver-
gence can be guaranteed [52] and indeed for μk >

2/‖uk‖22 divergence can be ensured that is, sequences that
cause divergence can always be found. The stability bound
of the LMS algorithm is thus tight as both methods deliver
the same bound. While the SVD-based method provides
an identical bound in this case; in many other algorithms,
larger bounds could be identified.
Note, however, that the condition of having a singular

value larger than one and thus the loss of robustness does
not necessarily mean that the system must behave in an
unstable manner. In order to cause instability, the driv-
ing signal must ensure that with every update step (or the
majority of update steps), the condition is violated and
not just once. As sometimes additional constraints are
imposed to the adaptive filter, this potential worst-case
sequence may not exist, and the algorithm may behave
in a robust manner although one singular value is larger
than one. Limitations of worst-case sequences typically
occur with additional constraints due to the filter applica-
tion and structure. A linear combiner with input uk from
an arbitrary alphabet is very likely to cause a worst-case
sequence leading to divergence, while an adaptive filter

of FIR structure allows only one degree of freedom per
iteration, as all other elements of the update vectors are
already given. If the driving sequence is further restricted
by originating from a limited alphabet, say binary phase
shift keying (BPSK), it can very well happen that a singular
value larger than one exists, but the excitation can never
work in direction of its corresponding vector. A systematic
example is provided further ahead in the context of the
PNLMS algorithm. This brings us to the question of sys-
tematically finding worst-case sequences. For the above
mentioned example, this is equivalent to requiring

max
xk ,uk

σmax
(
I − μkx∗

ku
T
k
) ≤ 1

for some positive range of step-sizes, for example 0 <

μk < ‖xk ,uk‖. Indeed for arbitrary vectors xk ,uk , it is rel-
atively straightforward to find such sequences and prove
divergence. However, as soon as xk = f (uk) and the appli-
cation imposes more restrictions, finding the sequences
can become challenging.
It is very illustrative to view in this context the so-called

proportionate normalized LMS (PNLMS) algorithm as a
second example. Originally derived by Duttweiler [53] in
2000, the algorithm can be viewed as a time-variant coun-
terpart of the algorithm by Makino [54]; both variants are
shown in Algorithm 11. During the next 10 years the algo-
rithm became very popular as a clever control of the diag-
onal step-size matrix can cause a significant speed up of
the algorithm [55]. Note that time-invariant matrix step-
sizes that are positive definite or exhibit SPR properties
are shown to be robust in [32, 42], ensuring l2−stability
of Makino’s algorithm. This can easily be shown as the
product of consecutivematricesBk is equivalent to Eq. (5).

(
I − μkLu∗

ku
T
k
) (

I − μk−1Lu∗
k−1u

T
k−1

)
. . .

(
I − μ1Lu∗

1uT1
)
w̃0 (5)

= L
1
2
(
I − μkL

1
2 u∗

ku
T
kL

1
2
) (

I − μk−1L
1
2 u∗

k−1u
T
k−1L

1
2
)

. . .
(
I − μ1L

1
2 u∗

1uT1L
1
2
)
L− 1

2 w̃0.

The asymmetric form of matrix Bk can thus be made
symmetric and standard theory can be applied. Duttweiler
replaced L by a time-variant diagonal matrix Lk for which
such symmetry correction in the style of (5) does not
work any more. He showed his algorithm to be mean-
square convergent. First attempts for showing robustness,
however, turned out to require further rather limiting con-
ditions on Lk [56]. In [57], it finally is shown that the
PNLMS algorithm can indeed become non-robust even if
the positive definite entries of Lk are fluctuating only little.



Rupp EURASIP Journal on Advances in Signal Processing  (2015) 2015:104 Page 9 of 15

ALGORITHM 11. PNLMS ALGORITHM

input: uk = [
uk ,uk−1, . . . ,uk−M+1

]T
reference: dk = uTkw + vk
error: ẽa,k = dk − uTkwk−1
diagonal weights: Lk = f (wk−1)
update: wk = wk−1 + μkLku∗

k ẽa,k
robustness: global for time-invariant L
MSE-stability: if Lk > 0 then 0 < μk < 2

uHk Lkuk
l2−stability: if L > 0, then 0 < μk < 2

uHk Luk

6 Linearly-coupled and partitioned adaptive
filters

We are further interested in understanding the stabil-
ity of adaptive filters with asymmetric update forms. To
this end, we apply the SVD-based method to so-called
linearly-coupled adaptive filters where two adaptive filters
use linear combinations of their error terms, that is

⎡
⎣ μg,k ẽg,k

μh,k ẽh,k

⎤
⎦ =

⎡
⎣ ν1,k ν2,k

ν3,k ν4,k

⎤
⎦

⎡
⎣ dg,k − uTkgk−1

dh,k − xTkhk−1

⎤
⎦ . (6)

Such a coupling may be undesired and caused by imple-
mentation or desired to achieve particular convergence
properties [58]. In case of two coupled adaptive filters, the
four coupling factors ν1,k , ν2,k , ν3,k , ν4,k can also consume
the step-sizes so that only four degrees of freedom remain.
Figure 4 depicts the setup. This structure turns out to be

the vehicle to analyze cascaded and partitioned adaptive
algorithms and is thus of high interest.
In a partitioned algorithm, the input vector is split up

into one or more sections that run with a different (indi-
vidual) step-size. This can facilitate parallel implemen-
tation and/or improved convergence speed. To simplify
matters, let us thus envisage a simple form of a gradient
algorithm in which we use two partitions with different
step-sizes μg,k and μh,k . We split the entire parameter-
error vector into two parts, say g and h, and correspond-
ingly we use two partitions, say uk and xk , as regression
vectors. The so obtained Bipartite PNLMS algorithm is
summarized in Algorithm 12.

ALGORITHM 12. BIPARTITE PNLMS ALGORITHM
input: uk = [

uk ,uk−1, . . . ,uk−M+1
]T

xk = [
xk , xk−1, . . . , xk−M+1

]T
= [

uk−M ,uk−M−1, . . . ,uk−2M+1
]T

reference: dk = uTkg + xTkh + vk
error: ẽa,k = dk − uTkgk−1xTkhk−1
update: gk = gk−1 + μg,ku∗

k ẽa,k
hk = hk−1 + μh,kx∗

k ẽa,k
robustness: no
MSE-stability: 0 < μg,k‖uk‖22 + μh,k‖xk‖22 < 2

Based on such an algorithmic formulation, we recog-
nize that the bipartite PNLMS algorithm is of the same
kind as linearly-coupled adaptive filters with the special
step-size/coupling factor choice: ν1,k = ν2,k = μg,k and

Fig. 4 Two adaptive filters with their a-priori output errors ẽg,k and ẽh,k coupled by the multiplicative coupling factors {ν1,k , ν2,k , ν3,k , ν4,k}
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ν3,k = ν4,k = μh,k . Even if the two step-sizes are not iden-
tical, the update error is still linearly dependent for both
partitions, causing one singular value to be larger than
one, thus violating robustness. Only the weaker MSE-
stability remains. In the following, we demonstrate this
behavior on a simple example in which we first run the
PNLMS algorithm with worst-case sequences rather than
random sequences.
Bipartite PNLMS simulation example: we simulate the

Bipartite PNLMS algorithm for a filter of length M = 10
and average over 20 Monte Carlo (MC) runs. We vary
the filter structure {linear combiner, FIR} as well as the
input symbols {Gaussian, bipolar}. We choose a diagonal
matrix

μkLk = μk

[
1 0
0 ρk

]
⊗I = μk

[
I 0
0 ρkI

]

=
[

μg,kI 0
0 μh,kI

]
(7)

which nicely reveals the chimera character of the algo-
rithm, being of PNLMS-type with a time-variant diagonal
matrix Lk as well as being of partitioned structure. If we
further add the error terms, we recognize that

μkLk ẽa,k=
[

μg,kI 0
0 μh,kI

] [
dk − uTkgk−1 − xTkhk−1

]

=
[

μg,kI μg,kI
μh,kI μh,kI

] [
dk/2 − uTkgk−1

dk/2 − xTkhk−1

]
(8)

which also reveals the linearly-coupled nature of the
algorithm. We apply a small normalized step-size of
μk = 0.1/

[‖xk‖22 + ρk‖uk‖22
]
for which all analyzed cases

exhibit MSE-stability. In the first case, we set ρk = ρ = 2
and refer this to the fixed matrix L in Fig. 5, while in the
second case, we select ρk to be a random process uni-
formly distributed between zero and two and refer this
to the random matrix Lk in Fig. 6. While for a fixed
matrix, the system mismatch has some potential to grow
initially, it cannot keep growing and runs into a steady-
state. Note that for bipolar driving signals as well as FIR
filter structures, the worst-case sequences are relatively
simply found as only a finite space has to be exhaustively
searched through. For a uniform input (in [−10,10]) and
a linear combiner structure, a more sophisticated search
is required though. As we recognize in Fig. 6, employ-
ing FIR filters restricts the search space for worst-case
sequences dramatically and the filter converges despite its
largest singular value being larger than one. This is dif-
ferent from a general PNLMS algorithm with arbitrary Lk

Fig. 5 The worst-case learning behavior of the Bipartite PNLMS algorithm (fixed matrix) under various conditions: FIR filter vs. linear combiner and
bipolar vs. Gaussian input. The algorithm always becomes l2−stable even though the relative system mismatch initially rises
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Fig. 6 The worst-case learning behavior of the Bipartite PNLMS algorithm (randommatrix) under various conditions: FIR filter vs. linear combiner
and bipolar vs. Gaussian input. The PNLMS algorithm is potentially unstable, but by restricting the filter structure to FIR and the input alphabet to
BPSK, the algorithm can become l2−stable

where we observe that having FIR filter structures is usu-
ally not a sufficient constraint to ensure robustness. The
PNLMS algorithm with its time-variant diagonal matrix
Lk is thus an excellent example for an adaptive algo-
rithm that is MSE stable but can behave in a divergent
manner.

7 Cascaded adaptive algorithms
Cascaded or concatenated structures of adaptive filter
algorithms have attracted many researchers in the past.
The motivation can be as simple as dividing a long
filter in shorter autonomous parts or owing to struc-
tural purposes [59, 60]. In the context of the identifica-
tion of non-linear power amplifiers of large bandwidth, a
concatenation of linear filter parts with memory and non-
linear parts without memory is very common. Depend-
ing on whether the linear filter comes first or not, we
distinguish so-called Wiener or Hammerstein models
[61, 62].
We pick here the Wiener filter structure as an illus-

trative example. The architecture is depicted in Fig. 7.
A linear filter g is followed by a nonlinear filter h.
The coefficients in h are linear weights to nonlinearly
mapped instantaneous outputs of g, which serve as the

input of h. Typically polynomial families with orthonor-
mal properties such as Hermite or Legendre polynomi-
als are applied. Consider a polynomial base {pi(x)}; i =
1, 2, . . . ,M. The gradient-type procedure is provided as
Algorithm 13. In [62], only local robustness is shown
for these algorithms. In [63], the algorithm is identi-
fied as a bipartite form of the PNLMS algorithm, as
addressed in the previous section. We thus conclude that
cascaded algorithms in general are potentially non-robust
algorithms.

ALGORITHM 13. ADAPTIVE ALGORITHM WITH
CASCADED WIENER STRUCTURE

input: uk = [
uk ,uk−1, . . . ,uk−M+1

]T
regression: pk(x) = [

p1(x), p2(x) . . . , pM(x)
]T

reference: dk = pT(xk)h + vk
xk = uTkg

error: ẽa,k = dk − pT(x̂k)hk−1
x̂k = uTkgk−1

update: gk = gk−1 + μg,ku∗
k ẽa,k

hk = hk−1 + μh,kp∗(x̂k)ẽa,k
robustness: local
MSE-stability: 0 < μg,kμh,k < μmax,k
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Fig. 7Wiener adaptive-filter structure. A cascade of a linear FIR filter with memory and a nonlinear memory-free adaptive filter

Let us take a closer look at the uncorrupted update error
based on the reference model pT(xk)h:

ea,k = pT(xk)h − pT(x̂k)hk−1

= [
pT(xk) − pT(x̂k)

]
h + pT(x̂k)

[
h − hk−1

]
= [

xk − x̂k
]
dTkh + pT(x̂k)

[
h − hk−1

]
. (9)

We introduce a new vector dk =
[
p′
1(x), p

′
2(x), . . . ,

p′
M(x)

]T
whose entries are simply the values of p′

i(x) =[
pi(xk) − pi(x̂k)

]
/
[
xk − x̂k

]
for each position i =

1, 2, . . . ,M of this matrix. According to the mean-value
theorem, this value is given by the derivative of pi(.) eval-
uated at the argument in the range between xk and x̂k2.
Recalling now that xk = uTkg and x̂k = uTkgk−1 we find
eventually:

ea,k = pT(xk)h − pT(x̂k)hk−1

= dTkhu
T
k
[
g − gk−1

] + pT(x̂k)
[
h − hk−1

]
. (10)

In Eq. (10), we recognize the linearly-coupled error term
from Eq. (6) with ν1,k = μg,kdTkh, ν2,k = μg,k , ν3,k =
μh,kdTkh, and ν4,k = μh,k , a common property of cas-
caded filter structures. An extension toward more than
two cascaded stages is straightforward but not changing
the essential properties. As the update error is identi-
cally applied in both stages (in all stages if the filter chain
comprises more partitions), the update errors are linearly
dependent, only different by potentially different step-
sizes. For this particular case of linearly dependent error
terms, we find no robustness possible, in particular, as
long as dTkh is not exactly known. Recent results on this
are provided in [64]. Cascaded structures also appear in
multiple-input, multiple-output form in the context of Big
Data [65, 66].

8 Outlook and conclusions
It may thus be surprising that indeed many practically rel-
evant adaptive algorithms are non-robust although they

are MSE stable. While in everyday situations, they appear
to work very properly, input sequences can be found that
cause the algorithm to diverge. Once such a sequence is
present and no step-size control can cure it.
Are all adaptive filters well understood now? No, there

certainly still are white spots left that are not as clear as
they could be. Take for example the well-known back-
propagation algorithm [67–69] (see Algorithm 14), an
extension of the PLA into several layers. Early investiga-
tions [70] only showed that the algorithm is locally but not
globally robust. Single-layer PLAs, however, are globally
robust.

ALGORITHM 14. BACKPROPAGATION ALGORITHM

input: u(1)
k = û(1)

k =
[
u(1)
k,1 . . . ,u(1)

k,m

]T
memory: u(l)

k =
[
û(l)
k,1, . . . , û

(l)
k,m

]T
reference at layer l: u(l+1)

k,m = f
[
u(l)T
k w(l)

m
]

; l = 1, 2, . . . , L−1
estimated reference: û(l+1)

k,m = f
[
û(l)T
k w(l)

k−1,m

]
error: ẽa,k = û(L)

k − f
[
û(L)T
k w(L)

k−1

]
update: w(l)

k,m = w(l)
k−1,m + μ

(l)
k û(l)∗

k,mẽa,k
robustness: local

But, also the search for worst-case sequences in asym-
metric algorithms that exhibit singular values larger than
one, can remain inconclusive. Once such a sequence is
found, non-robustness follows, but if the search space is
too large and no sequence is found in a random or some-
how sophisticated search, it remains unclear whether
such sequence does not exist or if we simply cannot
find it.
Once we need to rely on the algorithms, we should thus

turn to the few robust algorithms rather than pray for sta-
bility in the mean-square sense. An open question in this
contest remains, however:
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Is the MSE really the trouble maker, or is it the indepen-
dence assumption?
As the mean-square analysis typically comes with the

independent assumption, both are not easy to separate.
The few known cases for which an analysis is known with-
out the independence assumption [71, 72] are valid for the
LMS algorithm only (either for very short or infinitely long
filters) and this is as we know a very robust algorithm of
symmetrical form.
There are indeed many more algorithms that are worth

mentioning. They cannot all be named due to limited
space. Let us, however, shortly refer to the notion of
stable in probability (almost sure convergence), as it pro-
vides another means of describing stable or unstable fil-
ter behavior. In [73], the LMS algorithm was analyzed
in terms of almost sure convergence, showing that sub-
stantially larger step-sizes can be employed than those
obtained fromMSE analysis. Such methods were success-
fully applied to the constant modulus algorithm (CMA)
[74] and the least mean fourth (LMF) algorithm [75],
showing that indeed divergence of the algorithms can be
readily obtained when modifying the signal properties of
noise [76] and input [77, 78], respectively. Extensions to
higher than four exponents can be found in [79].

Endnotes
1It is worth mentioning in a historical context that

there were earlier algorithmic proposals by
Robbins-Monro [80] and Kiefer-Wolfowitz [81] in the
direction of stochastic gradient algorithms.

2For a complex-valued xk , some alternative definition is
required.
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