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Abstract

To reduce data storage for speaker adaptive (SA) models, in our previous work, we proposed a sparse speaker
adaptation method which can efficiently reduce the number of adapted parameters by using Euclidean projection
onto the L1-ball (EPL1) while maintaining recognition performance comparable to maximum a posteriori (MAP)
adaptation. In the EPL1-based sparse speaker adaptation framework, however, the adapted Gaussian mean vectors
are mostly concentrated on dimensions having large variances because of assuming unit variance for all dimensions.
To make EPL1 more flexible, in this paper, we propose scaled norm-based Euclidean projection (SNEP) which can
consider dimension-specific variances. By using SNEP, we also propose a new sparse speaker adaptation method which
can consider the variances of a speaker-independent model. Our experiments show that the adapted components of
mean vectors are evenly distributed in all dimensions, and we can obtain sparsely adapted models with no loss of
phone recognition performance from the proposed method compared with MAP adaptation.

Keywords: Euclidean projection onto the L1-ball, MAP adaptation, Scaled norm-based Euclidean projection, Sparse
speaker adaptation

1 Introduction
In these days, modern server-based speech recognition
systems (SRSs) serve millions of users. For this reason,
reducing data storage for speaker adaptive (SA) acoustic
models becomes an important issue when considering
speaker adaptation to enhance speech recognition per-
formance. There are various adaptation methods for
Gaussian mixture model-hidden Markov model (GMM-
HMM)-based SRS [1–5]. Among those methods, max-
imum a posteriori (MAP) speaker adaptation is the most
conventional and powerful method when relatively large
amount of adaptation data that is about 20 min to 10 h
long is available [6, 7].
SA models obtained by MAP adaptation require the

data storage as much as a speaker-independent (SI)
model needs, and the SI model typically has billions of
parameters. Olsen et al. showed that most of the adapted
parameters obtained by MAP adaptation are not closely
related to speech recognition performance [6, 7]. To
restrict the redundant parameter adjustments, they pro-
posed sparse MAP (SMAP) adaptation in which a typical

MAP problem is maximized with certain sparse con-
straints. In the SMAP approach, two sets of optimization
parameters need to be controlled. The first set of the
optimization parameters are related to parameter
regularization which is used for typical MAP adaptation.
The second set of the parameters are used to restrict the
redundant parameter adjustments. However, the more
parameters we have, the harder it becomes to tune those
parameters because the parameters are empirically
chosen to show the best recognition performance.
To resolve the aforementioned problem, in our previous

work, we first reinterpreted the MAP adaptation as a con-
strained optimization problem with an L2 norm-based
constraint [8, 9]. To obtain sparsely updated SA models,
we replace the L2 norm-based constraint with an L1
norm-based constraint. From the modification, we pro-
posed a sparse adaptation method based on Euclidean
projection onto the L1-ball (EPL1) [10], which only
requires a single control parameter. By using the proposed
sparse adaptation method, we showed that less data stor-
age for SA models can be obtained with almost no loss of
phone recognition performance than the SMAP adapta-
tion method. Although the number of control parameters
can be dramatically reduced, EPL1-based speaker

* Correspondence: cleanthink@kaist.ac.kr
School of Electrical Engineering, Korea Advanced Institute of Science and
Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon 305-701, South Korea

© 2015 Kim et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Kim et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:102 
DOI 10.1186/s13634-015-0290-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-015-0290-2&domain=pdf
mailto:cleanthink@kaist.ac.kr
http://creativecommons.org/licenses/by/4.0/


adaptation still has a limitation that variances cannot be
considered. Because of the limitation, parameters having
large variances are only adapted during the adaptation
step. However, we believe that parameters with small vari-
ances can also reflect speaker characteristics. Thus, in this
paper, we propose scaled norm-based Euclidean projec-
tion (SNEP) which is a generalized version of EPL1, utiliz-
ing dimension-specific variances. From the SNEP
framework, we also propose a new sparse speaker adapta-
tion method. From our experiments, it is shown that the
proposed SNEP-based speaker adaptation method can
sparsely adapt the SI model (only about 9 % of the total
number of parameters) with no loss of phone recognition
performance against MAP adaptation.
The rest of this paper is organized as follows. In Section 2,

we introduce EPL1 and a piecewise root finding (PRF)
method which is a well-known solver for EPL1 [11, 12]. In
Section 3, from the derivation of EPL1, we describe the
modified optimization problem and how to find the opti-
mal solution of SNEP. In Section 4, we briefly review MAP-
and EPL1-based speaker adaptation. In Section 5, we
describe our SNEP-based sparse speaker adaptation
method using the variances of the SI model. In Section 6,
we analyze our experimental results on adapted mean vec-
tors and speech recognition performance. We conclude this
paper in Section 7.

2 Euclidean projection onto the L1-ball
Euclidean projection onto the L1-ball (EPL1) is widely
used for gradient projection methods [13–18] which are
used to find the optimal sparse solution of a constrained
optimization problem which is given by

min
x∈ℝD

ℒ xð Þ s:t: xk k1≤c ð1Þ

where ℒ :ℝD→ ℝ is a convex and differentiable loss
function, || ⋅ ||1 indicates an L1 norm operator enforcing
the sparse solution, and c is a constant for controlling
regularization and sparsity, meaning how many zeros are
in the optimal solution vector. Gradient projection with
Nesterov’s method [19–22] is an optimal first-order
black-box method and can find the optimal solution of
(1) by generating a sequence {xk} which is obtained from

xkþ1 ¼
Y

L1
sk−ηk∇ℒ sk

� �� � ð2Þ

where sk = xk + αk(x
k − xk − 1), αk, and ηk are learning rates

selected by certain rules [23], ∇ℒ(sk) is the gradient of
ℒ(⋅) at sk, and

Q
L1

yð Þ is the EPL1 problem defined as

minv
1
2

v−yk k22 s:t: vk k1≤c ð3Þ

where jj⋅jj22 is squared L2 norm operator. In practice, (3)

is modified into another constrained optimization prob-
lem which is given by

minu
1
2

u−zk k22 s:t: uk k1≤c; u≽0 ð4Þ

where z is composed of absolute values of components in
y, ≽ denotes component-wise inequality, and 0 is a vector
with all zero components. The optimal solution of (3) can
be obtained by

v� ¼ sign yð Þ⊙u� ð5Þ
where sign(ρ) returns the vector whose components are
signs of all components in ρ, ⊙ is component-wise
multiplication of two vectors, and u* is the optimal solu-
tion of (4) which can be solved by Lagrangian function
given by

Lðu; λÞ ¼ 1
2
∥u−z∥2

2 þ λð∥u∥1−cÞ−κTu ð6Þ

where λ and κ are the Lagrangian multipliers. We
assume that optimal value λ* is known and ||z||1 > c.
Since the components in (6) can be decoupled, the
closed form solution is as follows [10]:

u�i ¼ max 0; zi−λ�ð Þ; i ¼ 1;…;D: ð7Þ
According to the optimal vector u*, i is the component
index; the constraints of (4) can be expressed as

XD
i¼1

max 0; zi−λ�ð Þ ¼ c: ð8Þ

To find the optimal value of λ, a piecewise linear func-
tion [11, 12] is used, which is given by

f λð Þ ¼
XD
i¼1

max 0; zi−λð Þ−c ¼
X
i∈Rλ

zi− Rλj jλ−c ð9Þ

where Rλ = {i|i ∈ {1,…,D}, zi > λ} and |R| is the number of
elements in the set R. Figure 1 shows an illustration of f(λ)
and a first-order gradient-based iterative method called
piecewise root finding (PRF) [12] for the optimal value of λ.
With the PRF method, we can generate a sequence {λk} via

λk ¼

X
i∈R

λk−1

zi−c

Rλk−1
�� �� ð10Þ

until f(λk) = 0 is satisfied. As shown in Fig. 1, each λk for
k ≥ 1 represents the root of a tangent line. To determine
the set Rλk , every component of z needs to be compared
with λk. If we set an initial value of λ to 0, the sequence
{λk} could have a non-decreasing property. According to
the property, in the kth step, we can skip the comparing
operations for the components decided as less than λk − 1.
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3 Scaled norm-based Euclidean projection
Basically, L2 and L1 norm for EPL1 can be interpreted as
a multivariate Gaussian distribution with unit variance
and a multivariate Laplace distribution with unit stand-
ard deviation [24]. Hence, every component in EPL1 is
equally treated for optimization without considering any
scaling parameters such as dimension-specific variances
and standard deviations. For this reason, we propose a
scaled norm-based Euclidean projection (SNEP) method
which is a more generalized version of EPL1. The pro-
posed constrained optimization problem for SNEP is
given by

minu
1
2

XD
i¼1

ui−zið Þ
σ2;i

� �2

s:t:
XD
i¼1

ui
σ1;i

≤c; u≽0 ð11Þ

where σ2,i and σ1,i denote scaling parameters for L2 and
L1 norm, respectively. As shown in (11), we can apply
any dimension-specific scaling parameters to the SNEP
framework. The Lagrangian function of (11) and its dif-
ferentiation with respect to ui are given by

LSNEPðu; λÞ ¼ 1
2

XD
i¼1

ðui−ziÞ
σ2;i

� �2

þ λ
XD
i¼1

ui
σ1;i

−c

 !
−κTu ð12Þ

dLSNEP λ;uð Þ
dui

¼ ui−zi
σ22;i

þ λ

σ1;i
−κi: ð13Þ

By setting dLSNEP(λ, u)/dui = 0 and considering the
complementary slackness KKT condition, the optimal
value u�i is given by

u�i ¼ max 0; zi−
σ2
2;i

σ1;i
λ�

 !
; i ¼ 1;…;D ð14Þ

with optimal value λ*. By using (14), the piecewise linear
function for SNEP is given by

f SNEP λð Þ ¼ dLSNEP λ;uð Þ
dλ

¼
XD
i¼1

ui
σ1;i

−c

¼
XD
i¼1

1
σ1;i

max 0; zi−
σ22;i
σ1;i

λ

0
@

1
A−c

¼
X

i∈RSNEP
λ

zi
σ1;i

−
σ22;i
σ21;i

λ

0
@

1
A−c

ð15Þ

where RSNEP
λ ¼ i i∈ 1;…;Df g; zi > λσ2

2;i=σ1;ig
���n . By setting

fSNEP(λ) = 0, the sequence {λk} from fSNEP(λ) is generated
as

λk ¼

X
i∈RSNEP

λk−1

zi
σ1;i

−c

X
i∈RSNEP

λk−1

σ22;i
σ21;i

ð16Þ

, and the PRF method can also be used to find the opti-
mal solution of SNEP with the initial condition, λ0 = 0.

4 Previous work for speaker adaptation
For better understanding, our previous sparse speaker
adaptation, MAP-based speaker adaptation is described
first. Let Φ = {π, A, Θ} be the whole parameter set of
HMMs, where π is the initial state distribution, A is the
transition probability matrix, and Θ is the set of GMMs
for every state. The GMM distribution of state s is given
as follows:

pðx
�����ΘsÞ ¼

XM
g¼1

wg;sNðx;μg;s;Σg;sÞ ð17Þ

where N ⋅ð Þ is a normal distribution, M is the number of
Gaussian components, and wg,s, μg,s, and Σg,s are the
weight, mean vector, and covariance matrix of Gaussian
component g, respectively. In this paper, Σg,s is set as
diagonal matrix whose diagonal components are repre-
sented as [(σ1,g,s)

2, (σ2,g,s)
2,…, (σD,g,s)

2]T. Since MAP adap-
tation is typically performed on single state to adjust
GMM parameters, we will omit the state index s and
describe every procedure in terms of GMM framework.
Since, in addition, it is well known that adapting mixture
weights and variances is not helpful for recognition per-
formance, we focus on how to adapt mean vectors only.
In order to adapt mean vectors of the SI model, the MAP

adaptation process is composed of two major stages. In the

Fig. 1 Illustration of f(λ) and piecewise root finding method with an
initial condition λ0 = 0. z(i) is the ith smallest component of a
vector z
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first stage, mean vectors based on maximum likelihood
(ML) criterion are computed for each mixture component
of the SI model. Let X = {x1, x2,…, xN} be a set of acoustic
feature vectors extracted from utterances of a target
speaker. The a posteriori probability of Gaussian compo-
nent g for SI model is given by

pðg
�����xnÞ ¼ wSI

g Nðxn;μSI
g ;Σ

SI
g ÞXM

g′¼1

wSI
g′Nðxn;μSI

g′;Σ
SI
g′Þ

: ð18Þ

With the probability of Gaussian component g, we
then compute the ML mean vector:

μML
g ¼ 1

ng

XN
n¼1

pðg
�����xnÞxn ð19Þ

where ng ¼ ΣN
n¼1p gjxnð Þ which is called posterior sum.

In the second stage, μML
g is used to obtain the adapted

mean vector from the SI model, which is given by

μMAP
g ¼ ngμML

g þ τμSI
g

ng þ τ
ð20Þ

where τ is called the relevance factor which controls the
balance between μML

g and μSI
g . By modifying (20), we can

obtain

μMAP
g ¼ ðμML

g −μSI
g Þ

ng
ng þ τ

þ μSI
g ¼ φMAP

g þ μSI
g : ð21Þ

From (21), it is noticeable that φMAP
g is same as the op-

timal solution of the following constrained optimization
problem, which is given by

minφg

1
2
∥φg−ðμML

g −μSI
g Þ∥2

2

s:t: ∥φg∥2≤∥μML
g −μSI

g ∥2
ng

ng þ τ
:

ð22Þ

This constrained optimization problem is described in
Fig. 2 from a geometric perspective. The shaded region
implies the constraint part of (22), and the outer circle
indicates the constraint when ng goes to infinity. As also
shown in Fig. 2, the L2 norm-based constraint can cause
most of the small and redundant adjustments which can
be negligible in terms of speech recognition performance.
By replacing the constraint part of (22) with an L1 norm-
based constraint, we can efficiently restrict the redundant
adjustments. The modified constrained optimization prob-
lem is given by

minφg

1
2
∥φg−ðμML

g −μSI
g Þ∥2

2

s:t: ∥φg∥1≤∥μML
g −μSI

g ∥1
ng

ng þ τ
:

ð23Þ

The constrained optimization problem in (23) is
exactly same as EPL1 except for the constraint part. As
you can see in (23), the right-hand side of the constraint
part is not the constant c in previous section but vari-
ables depending mostly on ng and τ. The posterior sum
ng is naturally determined by the amount of adaptation
data. Also, ng is used for considering the asymptotic
property of adaptation, which means relaxation of
regularization effect including sparsity as adaptation data
increase. Thus, the parameter τ takes charge of control-
ling the sparsity and regularization instead of parameter
c for speaker adaptation. Figure 3 shows how the opti-
mal solution can have sparse vectors indicated by the

Fig. 2 Geometric interpretation for MAP-based speaker adaptation

Fig. 3 Geometric interpretation for EPL1-based sparse
speaker adaptation
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red cross. Before finding the optimal solution of (23), we
first define a vector which is given by

ψg ¼ jμML
g −μSI

g j ð24Þ
where |ρ| returns the vector of absolute values in ρ. To
find the optimal solution of (23), we use ψg for the fol-
lowing steps. The Lagrangian form of (23) is given by

LSA�EPL1ðφg ; λÞ ¼
1
2
∥φg−ψg∥

2
2 þ λ ∥φg∥1−∥ψg∥1

ng
ng þ τ

0
@

1
A

þκTφg :

ð25Þ
As described in Section 2, after being decoupled, the

closed form solution of (23) with the optimal value λ*,
and the piecewise linear function in terms of λ are given
by

φSA‐EPL1
i;g ¼ max 0; ψi;g−λ

�
� �

; i ¼ 1;…;D ð26Þ

f SA�EPL1ðλÞ ¼
X

i∈RSA�EPL1
λ

ψi;g−jRSA�EPL1
λ jλ−∥ψg∥1

ng
ng þ τ

ð27Þ
where RSA‐EPL1

λ ¼ iji∈ 1;…;Df g;ψi;g > λ
n o

. As also de-
scribed in Section 2, λ* can be obtained by the sequence
{λk} from fSA ‐ EPL1(λ), which is given by

λk ¼

X
i∈RSA�EPL1

λ

ψi;g−∥ψg∥1
ng

ngþτ

jRSA�EPL1
λ j ð28Þ

when f(λk) = 0 is satisfied. Thus, the final adapted mean
vector from EPL1-based sparse speaker adaptation is
given as follows:

μSA�EPL1
g ¼ signðμML

g −μSI
g Þ⊙φSA�EPL1

g þ μSI
g : ð29Þ

5 SNEP-based sparse speaker adaptation
In GMM-HMM SRS, each dimension of Gaussian com-
ponents typically has different variance denoting the dy-
namic range of each component. In Section 4, we
describe the procedure for EPL1-based speaker adapta-
tion which is unable to consider the dimension-specific
variances. As a result, the adapted dimensions of mean
vectors are mostly concentrated on the dimensions hav-
ing large variances. Without considering the variances,
the mean vectors adapted by EPL1 are not able to fully
represent speaker-specific variability, which may cause
loss of recognition performance. In this paper, we
propose a new sparse speaker adaptation method using
SNEP which can apply the variances of the SI model.
Again, the proposed method utilizes ψg in all steps. The

proposed constrained optimization problem for sparse
speaker adaptation is given by

minφg

1
2
ðφg−ψgÞT ðΣSI

g Þ−1ðφg−ψgÞ

s:t:
XD
i¼1

φi;g

σSIi;g
≤

ng
ng þ τ

XD
i¼1

ψi;g

σSIi;g
; φg≽0:

ð30Þ

In (30), note that the same standard deviation σSI
i;g is

shared by the objective function and the sparse con-
straint. The Lagrangian function of (30) is given by

LSA�SNEPðφg ; λÞ ¼
1
2
ðφg−ψgÞT ðΣSI

g Þ−1ðφg−ψgÞ

þλ
XD
i¼1

φi;g

σSIi;g
−

ng
ng þ τ

XD
i¼1

ψi;g

σSIi;g

0
@

1
A−κTφg :

ð31Þ

As described in Section 4, the closed form solution of
(30) is

φSA‐SNEP
i;g ¼ max 0; ψi;g−σ

SI
i;gλ

�
� �

; i ¼ 1;…;D: ð32Þ

Next, the piecewise linear function and the sequence
{λk} are given as follows:

f SA‐EPL1 λð Þ ¼
X

i∈RSA‐SNEP
λ

ψi;g

σ i;g
−λ

0
@

1
A−

ng
ng þ τ

XD
i¼1

ψi;g

σSIi;g

¼
X

i∈RSA‐SNEP
λ

ψi;g

σ i;g
− RSA‐SNEP

λ

�� ��λ− ng
ng þ τ

XD
i¼1

ψi;g

σSIi;g

ð33Þ

λk ¼

X
i∈RSA‐SNEP

λk−1

ψi;g

σSIi;g
− ng

ngþτ

XD
i¼1

ψi;g

σSIi;g

RSA‐SNEP
λk−1

��� ��� ð34Þ

where RSA‐SNEP
λ ¼ iji∈ 1;…; nf g; zi > σSIi;gλ

n o
. Since the

objective function and the constraint share the same
standard deviations, (32)-(34) are slightly modified from
related equations in Section 3. For simple implementa-
tion, (32) can be changed into following form:

φSA‐SNEP
i;g

σSIi;g
¼ max 0;

ψi;g

σSIi;g
−λ�

 !
; i ¼ 1;…;D: ð35Þ

Note that the right-hand sides of (34) and (35) are
composed of scaled ψi,g by σSIi;g . Thus, if we find the opti-

mal solution with ψi;g=σ
SI
i;g by EPL1, the solution would

be φSA‐SNEP
i;g =σSI

i;g . By multiplying σSIi;g with the solution, we

can obtain exactly same result with (32).
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Finally, the adapted mean vector is given as follows:

μSA�SNEP
g ¼ signðμML

g −μSI
g Þ⊙φSA�SNEP

g þ μSI
g : ð36Þ

In Fig. 4, each figure shows how the sparse speaker adap-
tation methods work by EPL1 and SNEP. In the figure, the
red arrows from the ML mean indicate the adapted mean
vectors, and the region of non-sparse solution is sur-
rounded by the two dashed lines. As can also be seen in
Fig. 4, from the same ML mean vector, the differently
adapted mean vectors are obtained because of the shared
standard deviations.

6 Experimental results
The experiments were conducted on the ETRI Korean
conversation speech database collected at 16 kHz sam-
pling rate and 16-bit resolution by two types of smart
phone devices in clean condition. We used about 100 h of
speech data spoken by 300 speakers to train the SI
triphone-based GMM-HMM acoustic model. For adapta-
tion and evaluation, we used 50 speakers’ 350 sentences
(300 sentences for adaptation and 50 sentences for the
phone recognition test) and each sentence is roughly 4–
5 s long. We used 12-dimensional Mel-frequency cepstral
coefficients with log energy and concatenated their first
and second derivatives as a feature vector to constitute
39-dimensional feature vectors. We applied a phone level
unigram language model in terms of 39 Korean phonemes

to our phone recognition experiments. The SI model had
11,848 tied-state triphone-based HMMs including three
states per each HMM and GMM with 32 Gaussian com-
ponents per state. All phone recognition tests were per-
formed according to various values of hyperparameter τ.
To observe the effects of the variances of the SI model

for SNEP compared with EPL1, we counted the number
of times that each dimension of mean vectors was
adapted during the adaptation process. In Fig. 5, x-axis
indicates each dimension of the mean vector and nor-
malized histogram of the counts is shown on y-axis. For
EPL1, three distinct peaks are observed, and their di-
mensions are related to the log energy and its first and
second derivatives. On the other hand, it is noticeable
that there is no peak with SNEP and every dimension is
evenly adapted. As mentioned earlier, we believe that
speaker characteristic is not mainly concentrated on the
three dimensions which are related to log energy. There-
fore, it can be said that SNEP-based sparse speaker
adaption can reflect more the speaker variability than
the EPL1-based method.
In Table 1, phone error rate (PER) and sparsity of vari-

ous methods are summarized, and the sparsity indicates
the percentage of the number of parameters which are
not adjusted after adaptation. For comparison purpose,

Fig. 4 Illustration of a EPL1 and b SNEP-based sparse speaker adaptation from the same ML mean vector

Fig. 5 Normalized histogram of the total number of times that each
dimension is adapted after adaptation with τ = 2

Table 1 Phone error rate (%) and sparsity (%) for different τ’s
τ 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Phone error rate (%)

SI 31.45

MLLR 21.77

MAP 17.87 17.76 17.63 17.71 17.68 17.94 18.06

EPL1 18.19 17.99 17.99 18.12 18.26 18.24 18.37

SNEP 18.37 18.23 17.98 17.85 17.63 17.75 17.74

Sparsity (%)

MAP 50.96

EPL1 89.45 91.37 92.62 93.52 94.19 95.13 95.48

SNEP 87.42 88.72 89.67 90.46 91.08 91.60 92.05
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we also did phone recognition tests on SI model and
maximum likelihood linear regression (MLLR) adapta-
tion. For MLLR, we used full matrix and 65 regression
classes which showed the best PER. The best PER for
EPL1 is 17.99 % with 91.37 % sparsity. In contrast, the
SNEP shows no recognition performance degradation
against MAP adaptation with 91.08 % sparsity. From our
experimental results, it is proven that sparse speaker
adaptation with the dimension-specific variances can
adapt the SI model more accurately than EPL1-based
sparse speaker adaptation.

7 Conclusions
In this paper, we propose the SNEP method which is a
more generalized version of EPL1 in which certain scaling
parameters can be applied to the EPL1 framework. In
addition, by using the SNEP method, we also propose
sparse speaker adaptation. In our experiments, we show
that a small number of dimensions are mostly adapted by
EPL1-based speaker adaptation and the proposed speaker
adaptation method can evenly adapt every dimension of
the mean vectors by using the variances of the SI model.
With the proposed methods, it is also shown that we can
obtain sparsely adapted model with no loss of phone rec-
ognition performance compared with MAP adaptation.
Our further work is to apply the EPL1 and SNEP frame-
work to deep neural network-based acoustic model adap-
tation [25–28] with the gradient projection method.
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