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Abstract

Erasure-correcting codes, which support local repair of codeword symbols, have attracted substantial attention
recently for their application in distributed storage systems. This paper investigates a generalization of the usual
locally repairable codes. In particular, this paper studies a class of codes with the following property: any small set of
codeword symbols can be reconstructed (repaired) from a small number of other symbols. This is referred to as
cooperative local repair. The main contribution of this paper is bounds on the trade-off of the minimum distance and
the dimension of such codes, as well as explicit constructions of families of codes that enable cooperative local repair.
Some other results regarding cooperative local repair are also presented, including an analysis for the well-known
Hadamard/Simplex codes.
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1 Introduction
In this paper, we explore a new class of codes that enable
efficient recovery from the failure of multiple code sym-
bols. In particular, we study codes with (r, �)-cooperative
locality which allow for any � failed code symbols to be
recovered by contacting at most r other intact code sym-
bols. Our study of such codes is motivated by their appli-
cation in distributed storage systems a.k.a. cloud storage,
where information is stored over a network of storage
nodes (disks). In order to protect the stored informa-
tion against inevitable node (disk) failures, a distributed
storage system encodes the information using an erasure-
correcting code. The code symbols from the obtained
codeword are then stored on the nodes in the system. Each
node stores one code symbol from the codeword.
The task of recovering the code symbols stored on failed

nodes with the help of the code symbols stored on intact
nodes is referred to as code repair or node repair [1]. An
erasure-correcting code with an efficient code repair pro-
cess helps quickly restore the state after node failures. This

*Correspondence: arya@umn.edu
†Equal contributors
2Department of Electrical and Computer Engineering, University of Minnesota
Twin Cities, 55455 Minneapolis, MN, USA
Full list of author information is available at the end of the article

consequently enables seamless operation of the system for
a long time period. Recently, multiple classes of erasure-
correcting codes have been proposed that optimize the
code repair process with respect to various performance
metrics. In particular, the codes that minimize repair-
bandwidth, i.e., the number of bits communicated during
repair of a single node, are studied in [1–4] and refer-
ences therein. The codes that enable small disk-I/O during
the repair process are studied in [3, 5]. Another family of
erasure codes that focus on small locality, i.e., enabling
repair of a single failed code symbol by contacting a small
number of other code symbols, are presented in [6–11].
A code is said to have all-symbol locality r if every the

code symbol is a function of at most r other code sym-
bols. This ensures local repair of each code symbol by
contacting at most r other code symbols. In this paper,
we generalize the notion of codes with all-symbol locality
to codes with (r, �)-cooperative locality: any set of � code
symbols are functions of at most r other code symbols.
This allows for cooperative local repair of code symbols,
where any group of � failed code symbols is repaired by
contacting at most r other code symbols.
The ability to perform code repairs involving more than

one failure is a desirable feature in most of the distributed
storage systems that can experience multiple simultane-
ous failures [12]. Moreover, this property also allows for
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deliberately delaying code repairs when system resources
need to be freed to support other system objectives, e.g.,
queries (accesses), to the stored information by clients.
Here, we note that the approach of cooperative code
repair has been previously explored in the context of
repair-bandwidth efficient codes in [13, 14] and references
therein.
In this paper, we address two important issues regarding

codes with (r, �)-cooperative locality: (1) obtaining trade-
offs among minimum distance, dimension (rate), and
locality parameters (r, �) for such code and (2) present-
ing explicit constructions for codes with (r, �)-cooperative
locality that are close to the obtained trade-offs. Towards
designing codes with (r, �)-cooperative locality, we mainly
focus on codes with maximum possible rate. We con-
struct a code with (r, �)-cooperative locality that has rate
at least r−�

r+�
. This code construction is based on the reg-

ular bipartite graphs with girth at least � + 1. In the light
of an upper bound r

r+�
on the rate of a code with (r, �)-

cooperative locality that we show later, this construction
provides codes that are very close to being optimal. Here,
we also note that there are explicit constructions for the
regular bipartite graphs with large girth [15]. Thus, one
can obtain high (almost optimal) rate codes with (r, �)-
cooperative locality for distributed storage systems. Note
that, a minimum distance is not guaranteed in this con-
struction. We also show that the codes based on expander
graphs enable cooperative local repairs while maintaining
both high rate and good minimum distance.
Given a large number of parity constraints with low

weights, expander graph-based codes are natural candi-
dates for codes to enable locality. However, these codes
are overkill when one is interested in code repair of sin-
gle failed symbol and codes with significantly better rate
vs. distance trade-off can be obtained [6, 9, 11, 16]. But as
we aim to recover frommultiple failures in a local manner,
these codes become an attractive option.

1.1 Contributions and organization
In Section 2, we first present a formal definition of codes
with (r, �)-cooperative locality and highlight the connec-
tions between the notion of cooperative locality as defined
in this paper and various other contemporary notions
from distributed storage literature [9–11, 16–20] that
aim to generalize locally repairable codes (LRCs) [6, 7].
In Section 2.1, we comment on the cooperative locality
parameters of the codes with multiple small-sized disjoint
repair groups for each code symbol [17]. In Section 2.2, we
highlight both the differences and similarities between the
codes with (r, �)-cooperative locality and the codes with
(r̃, δ)-locality [16].
In Section 3, we obtain an upper bound on the min-

imum distance of a code with (r, �)-cooperative locality
which encodes k information symbols to n symbols long

codewords. As a special case of this result, we then obtain
a bound on the best possible rate for a code with (r, �)-
cooperative locality with no further minimum distance
requirement.
We address the issue of providing explicit constructions

for codes with (r, �)-cooperative locality in Sections 4, 6.1
and 6.2.
In Section 4, we present two simple constructions for

the codes that have (r, �)-cooperative locality and com-
ment on their rates with respect to the bound obtained
in Section 3. In Section 6.1, we consider the codes based
on regular bipartite graphs with large girth (girth = length
of the smallest cycle). In particular, we show that a code
based on regular bipartite graph with girth g allows for
cooperative local repair of g − 1 failed code symbols. We
further study cooperative locality of the codes based on
expander graphs in Section 6.2. We comment on the con-
ditions in terms of expansion ratio or second eigenvalue
that the underlying expander graph needs to satisfy for
the code to enable cooperative repair of a certain number
of erasures. Table 1 summarizes the rates and distances
obtained by various code constructions considered in this
paper.
Certain families of classical algebraic codes may possess

local repair property. In Section 7, we study punctured
Hadamard codes (a.k.a. Simplex codes) in the context
of cooperative local repair. We show that a punctured
Hadamard code with n symbols long codewords has (r =
�+1, �)-cooperative locality for any � ≤ n−1

2 .We conclude
this paper in Section 8 with some directions for future
work.
A short note on notation: we use bold lowercase letters

to denote vectors. For an integer n ≥ 1, [ n] denotes the
set {1, 2, . . . , n}. For a code C, we use rate(C) and dmin(C)

to denote its rate and minimum distance, respectively.

1.2 Related work
The concept of codes with small locality for distributed
storage system is introduced in [6, 8, 21]. In [6], Gopalan
et al. study the rate vs. distance trade-off for linear codes
with small locality or locally repairable codes1. The sim-
ilar trade-offs under more general definitions of locally
repairable codes and constructions of the codes attaining
these trade-offs are studied in [7, 9–11, 16, 22, 23] and
references therein.
In [24], Prakash et al. consider codes that allow for local

repair of multiple code symbols. In particular, they focus
on codes that can correct two erasures by utilizing two
parity checks of weights at most r+1. Prakash et al. derive
the rate vs. distance trade-off for such code and (for large-
enough field size) show the existence of the codes that
attain the trade-off. We note that the definition of coop-
erative locality considered in this paper is more general
than that studied in [24]. Moreover, we do not restrict
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Table 1 Summary of the constructions of codes with (r, �)-cooperative locality considered in this paper. For the codes based on
unbalanced bipartite expander graphs (Section 6.2.1), we assume that the underlying bipartite graphs is bi-regular with h and �

representing its left and right degrees, respectively. Moreover, the graph exhibits expansions from left to right of any set of at most αn
left nodes with expansion ratio h(1 − ε). Here, the constituent local codes have distance at least t + 1. For codes based on double
cover of regular expander graphs (Section 6.2.2), � and λ denote the degree and the second largest absolute eigenvalue of the
underlying graph, respectively. This construction utilizes smaller code of minimum distance at least δ� to define local constraints at
the vertices of the double cover

Construction Cooperative locality Rate rate(C) Minimum distance dmin(C)

Partition code (Section 4.1) (r, �) r
r+�2

n − k + 1 − �
(
k�
r − 1
)

Product code (Section 4.2) (r, �)
(

r
r+1

)�
� + 1

Concatenated code (Section 5) (r, �) �+2
�+4

r
r+2 � + 1

Regular bipartite graph-based code (Section 6.1) (r, �) ≥ r−�
r+�

≥ � + 1

Unbalanced bipartite expander graph-based code (Section 6.2.1) (r, �) ≥ 1 + h
�

r
�

− h ≥ (2 − ε − ε
t

)
αn

Double cover of regular expander graph based-code (Section 6.2.2) (r, �) ≥ 2 r
��

− 1 δ
(
δ − λ

�

)
n

Hadamard code (Section 7) (r = � + 1, �), ∀1 ≤ � ≤ n−1
2

log(n+1)
n

n+1
2

ourselves to only two erasures. In Section 6.1.2, we show
that the codes based on regular bipartite graphs with high
girth are rate-wise (almost) optimal under the natural
generalization of [24] to more than two erasures.
Recently, the codes that enable multiple ways to

locally repair a code symbols have received attention. In
[11, 17, 18], the codes that enable multiple disjoint repair
groups for every code symbol are considered. The codes
that provide multiple disjoint repair group for only infor-
mation symbols are studied in [19, 20]. In Section 2.1, we
comment on the implication of this line of work for the
issue of cooperative locality.

2 Codes with (r, �)-cooperative locality
Definition 1. A q-ary code C with length n and dimen-

sion k ≡ logq |C| is called an (n, k) code. We define an
(n, k) code C to be a code with (r, �)-cooperative locality if
for each S ⊂ [n] with |S| = �, we have a set �S ⊆ [n] \S
such that

1. |�S | ≤ r,
2. For any codeword c = (c1, c2, . . . , cn) ∈ C, the � code

symbols cS := {ci : i ∈ S} are functions of the code
symbols c�S := {ci : i ∈ �S}.

Note that Definition 1 ensures that any � code sym-
bols can be cooperatively repaired from at most r other
code symbols. This generalizes the notion of codes with
all-symbol locality r [6–8], where locality is defined with
respect to one code symbol, i.e., � = 1.

Remark 1. For a code C with all-symbol locality r, we
have the following bound on its minimum distance [6, 7].

dmin(C) ≤ n − k −
⌈
k
r

⌉
+ 2. (1)

The code attaining the bound in (1) are presented in
[7, 9–11] and references therein.

2.1 Cooperative locality from codes with multiple disjoint
local repair groups for code symbols

In [11, 17, 18], codes with multiple disjoint local repair
groups for all code symbols are studied. These codes
allow for multiple ways to recover a particular code sym-
bol by contacting disjoint sets of small number of other
code symbols. In particular, the work in [11, 17, 18] study
codes with at least t disjoint local repair groups, each
comprising of at most r̃ other code symbols. We claim,
according to our definition, these codes also have (r̃i, � =
i)-cooperative locality for each i ∈ [ t]. Without loss of
generality, we establish this for i = t, i.e., we argue that a
code with t disjoint repairs groups (each of size at most r̃)
has (r̃t, � = t)-cooperative locality.
Consider a set of t code symbols in failure. For any of

these t failed code symbols, each symbol can have at least
one failed code symbol in at most t − 1 of its t disjoint
repair groups. This implies that the code symbol under
consideration has at least one of its local repair groups free
of any failures. Thus, the code symbol can be repaired with
the help of one of its intact local repair groups. This leave
us with t − 1 code symbols in failure (erasure). Now, for
another code symbol in failure, we can have at most t − 2
of its disjoint local repair groups with at least one failed
code symbol. This leaves at least 2 of its disjoint local
groups intact; therefore, this code symbol can be repaired
with the help of one of its intact local repair groups. Fol-
lowing the similar argument, we can see that all of the
t failed code symbols can be repaired in a code with t
disjoint repair groups for all code symbols. In the worst
case, we contact at most r̃t code symbols to repair all of
the t failures. This establishes the (r̃t, � = t)-cooperative
locality for the codes under consideration.
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Similarly, the codes with availability [19, 20], which
enablemultiple disjoint repair groups only for information
(systematic) symbols in a codeword, can allow for cooper-
ative local repair for certain ranges of system parameters.
In particular, ([20] Construction I can give codes with
(r̃�, �)-cooperative locality and rate r̃

r̃+�
.

Remark 2. Here, we would like to note that the definition
of the codes with (r, �)-cooperative locality (Definition 1) is
more general. In particular, we show in Sections 4.1, 5, and
6.1 that it is possible to have codes with (r, �)-cooperative
locality that do not have at least t = � disjoint local repair
groups for all code symbols (or information symbols).

2.2 Comparison with the codes with (r̃, δ)-locality [9, 10]
In [16], Prakash et al. propose to study codes with (r̃, δ)-
locality, a generalization that enforces additional require-
ments which the local repair groups of an LRC need to
satisfy. In particular, a code C is said to have (r̃, δ)-locality
if there is a set of codes {Ci}i∈L obtained by puncturing the
code C, for some index set L, such that the following three
requirements hold: (1) for each i ∈ L, the support of Ci is
no more than r̃ + δ − 1; (2) for each i ∈ L, the minimum
distance of Ci is larger than or equal to δ; and (3) each code
symbol is contained in the support of at least one of the
punctured codes Ci, i ∈ L. The rate vs. distance trade-
offs for the codes with (r̃, δ)-locality and the constructions
attaining these trade-offs are presented in [9, 10].
Note that a code with (r, δ)-locality ensures repair of

any δ − 1 failures within each punctured code. Here, we
would like to highlight that the notion of (r, �)-cooperative
locality is different from that of (r, δ)-locality. In particu-
lar, codes with (r, �)-cooperative locality are not required
to meet the requirement (2) in the aforementioned defini-
tion of the codes with (r, δ)-locality. As a result, there are
families of codes which satisfy the requirements of (r, �)-
cooperative locality but that do not meet the definition of
the codes with (r, δ)-locality. We illustrate this with the
help of the following example.
Let C be a code which encodes three message symbols

m = (a, b, c) to a seven-symbol-long codeword

c = (a, b, c, a + b, b + c, c + a, a + b + c).

We note that the code C is nothing but a [ 7, 3, 4] Sim-
plex code which we study in Section 7. It follows from the
analysis presented in Section 7 that this code has (r =
3, � = 2)-cooperative locality, i.e., any set of � = 2 failed
code symbols can be recovered by contacting r = 3 other
code symbols. Let us assume that the code symbols a and
a + b are in failure. In this case, we can recover both the
failed code symbols from the set of r = 3 code symbols
(b, b + c, a + b + c). In other words, (a, a + b, b, b + c, a +
b + c) form a punctured code of the original code C at
r + � = 5 indices. However, this punctured code does not

have minimum distance at least � + 1 = δ = 3. This can
easily be observed from the fact that the punctured sub-
code does not allow the repair of two code symbols b + c
and a + b + c from the remaining set of three code sym-
bols (a, a + b, b). Moreover, there is no punctured codes
of the original code at at most r + � = 5 indices which has
minimum distance at least � + 1 = 3. Therefore, C is an
example of a code with (r = 3, � = 2)-cooperative local-
ity which does not have (r = 3, δ = � + 1 = 3)-locality as
defined in [16].
This also shows that the definition of (r, �)-cooperative

locality is not a strengthening of the definition of (r, δ)-
locality. Hence, one cannot directly invoke the impossi-
bility results for the codes with (r, δ)-locality to obtain
impossibility results for the codes with (r, �)-cooperative
locality. However, as far as the achievability is concerned,
a construction for a code with (r̃, δ)-locality gives a con-
struction with (r = �r̃, � = δ − 1)-cooperative locality as
explained in Section 4.

3 Rate vs. distance trade-off for codes with
(r, �)-cooperative locality

In this section, for given r and �, we present a trade-off
between the rate and theminimum distance of a code with
(r, �)-cooperative locality (cf. Definition 1). We employ
the general proof technique introduced in [6, 22, 23] to
obtain the following result.

Theorem 1. Let C ⊆ F
n
q be an (n, k) code (linear, or

non-linear) over the finite field Fq with (r, �)-cooperative
locality. Then, the minimum distance of C satisfies

dmin(C) ≤ n − k + 1 − �

⌊
k − �

r

⌋
. (2)

Furthermore, when we have r ≥ �, the minimum dis-
tance of C satisfies the following.

dmin(C) ≤ n − k + 1 − �

(⌈
k
r

⌉
− 1
)
. (3)

Proof. The proof involves construction of a sub-code
C′ ⊂ C ⊆ F

n
q such that all but a small number of coordi-

nates in every codeword of C′ are fixed. The coordinates
of the codewords in C are fixed in an iterative manner
as follows. In each iteration, we consider a set of � coor-
dinates which have not been fixed so far. Then, we pick
the set of r other coordinates such that the code sym-
bols associated with these r coordinates allow us to repair
the code symbols associated with the � coordinates under
consideration. The current iteration ends with fixing these
r + � coordinates to some specific values. Note that some
of the r coordinates may have been fixed in the previous
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Fig. 1 Construction of sub-code C ′ ⊂ C

iterations. We describe the iterative construction of the
sub-code C′ in Fig. 1. Given the sub-code C′ ⊂ C, we have

dmin(C) ≤ dmin(C′). (4)

Given C′, one can obtain a code C′′ with |C′′| = |C′| by
removing fixed coordinates from all the codeword in C′.
This implies that dmin(C′′) = dmin(C′), which along with
(4) give us the following.

dmin(C) ≤ dmin(C′′). (5)

We refer the reader to Section 8.1 for the complete
proof.

Remark 3. It is possible to obtain a bound on the mini-
mum distance of codes with (r, �)-cooperative locality that
depends on the alphabet size, in the spirit of [22]. Indeed, a
more general version of Theorem 1 will give,

k ≤ min
t≤min

{⌊
n

r+�

⌋
,
⌊
k−1
r

⌋} rt + logq Aq(n − t(r + �), d),

where Aq(n, d) is the maximum size of a q-ary error-
correcting code of length n and distance d. The proof of this
bound is straightforward.

Note that an (n, k) code with (r, �)-cooperative locality
has its minimum distance at least � + 1 as it can recover

from the erasure of any � code symbols (cf. Definition 1).
Combining this observation with Theorem 1, we obtain
the following result.

Corollary 1. The rate of an (n, k) code with (r, �)-
cooperative locality is bounded as

k
n

≤ r
r + �

+ 1
n

�2

r
. (6)

Furthermore, for the case when we have r ≥ �, the rate of
an (n, k) code with (r, �)-cooperative locality satisfies

k
n

≤ r
r + �

. (7)

Proof. It follows from (2) and the fact dmin(C) ≥ � + 1
that

� + 1 ≤ dmin(C) ≤ n − k + 1 − �

⌊
k − �

r

⌋
.

By using
⌊
k−�
r

⌋
≥ k−�

r − 1, we get

k
n

≤ r
r + �

+ 1
n

�2

r
. (8)
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In the case when we have r ≥ �, we can combine (3) with
the observation dmin(C) ≥ � + 1 to obtain the following.

� + 1 ≤ dmin(C) ≤ n − k + 1 − �

(⌈
k
r

⌉
− 1
)
.

By using
⌈
k
r

⌉
− 1 ≥ k

r − 1, we get

k
n

≤ r
r + �

. (9)

Remark 4. Here, we note that the assumption r ≥ � is
a natural assumption as it always holds for linear codes
with (r, �)-cooperative locality and dimension at least �,
i.e., k ≥ �. Note that the additional term 1

n
�2

r that we have
for the case when r < � vanishes as n becomes large as
compared to �.

4 Naive constructions of codes with
(r, �)-cooperative locality

In this section, we address the issue of constructing high
rate codes that have (r, �)-cooperative locality. In partic-
ular, we describe two simple constructions that ensure
cooperative local repair for the failure of any � code sym-
bols: (1) partition code and (2) product code. In partition
code, we partition the information symbols in groups of
r
�
symbol and encode each group with an

( r
�

+ �, r
�

)
max-

imum distance separable (MDS) code (cf. Section 4.1).
On the other hand, a product code is obtained by arrang-
ing k = ( r

�

)� information symbols in an �-dimensional
array and then introducing parity symbols along different
dimensions of the array (cf. Section 4.2).

4.1 Partition code
For the ease of exposition, we assume that �|r and ( r

�

) |k.
Given k information symbol over Fq, a partition code
encodes these symbols into n = k r+�2

r symbols long
codewords as follows:

1. Partition k information symbols into p = k�
r groups

of size r
�
each.

2. Encode the symbols in each of the p groups using an( r
�

+ �, r
�

)
MDS code over Fq. We refer to the r

�
+ �

code symbols obtained by encoding r
�
information

symbols in the i th group as i th local group.

As it is clear from the construction, partition code has
the rate k

n = r
r+�2

. Moreover, a code symbol can be recov-
ered from any r

�
other code symbols from its local group.

In the worst case, when � failed code symbols belong to
� distinct local groups, we can recover all � symbols from
� r

�
= r code symbols, downloading r

�
symbols from each

of the � local groups containing one failed code symbol.

Remark 5. Note that the partition codes presented here
are special cases of codes with ( r

�
, δ = � + 1)-locality as

studied in [9, 10] (cf. Section 2.2). The partition codes as
described above only aim at maximizing the rate of the
code. If we are also interested in achieving large minimum
distance, then we can take n strictly greater than k r+�2

r and
attain the following relationship between the minimum
distance dmin and the code dimension k [9]

dmin(C) = n − k + 1 − �

(
k�
r

− 1
)
. (10)

In the above construction of the partition codes, we use
an
( r

�
+ �, r

�

)
MDS code to encode disjoint groups of r

�

message symbols. Note that the rate of this MDS code
governs the rate of the overall code. One can potentially
use some other code C local of minimum distance at least
� + 1 to encode disjoint groups of r

�
message symbols.

Now, we use r (x), x ∈ [�] to denote the number of symbols
that needs to be contacted to repair x erasure in one local
group. For the case when an

( r
�

+ �, r
�

)
MDS code is used,

we have r (x) = r
�
for x ∈ [�]. Let r ∗(x) denote the upper

concave envelope of r (x) on the interval [1, �]∈ R. Assume
that we have p disjoint local groups, then a pattern of
� erasures can be represented by a vector (l1, l2, . . . , lp).
Here, li denotes the number of erasures within the ith
local group. Note that we have

∑p
i=1 li = �.

For a given local code C local, one needs to access∑p
i=1 r (li) number of intact code symbols to repair the

erasure pattern (l1, l2, . . . , lp). Now, we use concavity of
r ∗(·), the fact that r ∗(x) ≥ r (x) for x ∈ [�], and Jensen’s
inequality to obtain the following.

p∑
i=1

r (li) ≤
p∑

i=1
r ∗(li) ≤ pr ∗

(∑p
i=1 li
p

)
= pr ∗

(
�

p

)
.

(11)

Since the rate of the partition code is agnostic to the
number of local groups, we can use the value of p which
can support k message symbols and minimizes the R.H.S.
of (11). This approach optimizes the value of r for a given
choice of � and C local.

Example 1. It is possible to achieve better locality
parameters in the partition code than just to use the copies
of MDS codes. Consider a partition code with two blocks,
each being a punctured Hadamard [7,3,4] code. From
Theorem 4, we know that r(x) = r∗(x) = x + 1, for
1 ≤ x ≤ 3 for these Hadamard codes. Hence, we have an
(14, 6) code with (5, 3)-cooperative locality.
On the other hand, consider a partition code with

two blocks of (7, 3) MDS codes. For this (14, 6) code,
we may need to access up to six symbols to repair
even two symbols. Indeed, the overall code has (6, 3)-
cooperative locality.
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4.2 Product code
Product codes are a well-known construction of codes
in the coding theory literature. Given k = ( r

�

)� infor-
mation symbols and �|r, we first arrange k = ( r

�

)�
information symbols in an �-dimensional array with index
of each dimension of the array ranging in the set

[ r
�

]
.

These information symbols are then encoded to obtain an
n = ( r

�
+ 1
)� symbols long codeword. In the following,

we describe the encoding process for � = 2-dimensional
array. The generalization of the encoding process for
higher dimensions is straightforward.

1. Arrange k = ( r2 )2 information symbols in an r
2 × r

2
array.

2. For each row of the array, add a parity symbol by
summing all r

2 symbols in the row and append these
symbols to their respective rows.

3. For each of the r
2 + 1 columns of the updated array,

add a parity by summing all r
2 symbols in the column.

Remark 6. An �-dimensional product code enables �

disjoint repair groups for all code symbols. For exam-
ple, every code symbol in a two-dimensional product code
has two disjoint repair groups, associated with its row
and column, respectively. Therefore, cooperative locality of
product codes follows from the discussion in Section 2.1.
We note that product codes along with their minimum dis-
tance have been previously been considered in [11, 19] in
the context of codes with small locality.

We now compare the rate of partition code and product
code with the bound in (7). For any � ≥ 1, we have(

r
r + �

)�

≤ r
r + �2

. (12)

Note that (12) follows from the fact that

r�(r+�2) ≤ r(r�+�r�−1�)+r
(

�∑
i=2

(
�

i

)
r�−i�i
)

= r(r+�)�.

Therefore, partition code approach provides (r, �)-
cooperative locality with a better rate. However, for all
system parameters, the rate of partition code is smaller
than the known bound (7), i.e.,

r
r + �2

≤ r
r + �

.

Here, we would like to note that the difference between
the rate achieved by the partition code and the bound
in (7) gets smaller as the parameter r becomes large as
compared to the parameter �. It is an interesting problem
to either tighten the bound in (7) or present a construc-
tion for codes with (r, �)-cooperative locality which have
higher rate than that of the partition code. In the next two
sections, we present two approaches to achieve this goal.

5 Concatenated codes with (r, �)-cooperative
locality

Here, we describe a family of concatenated codes with
(r, �)-cooperative locality. This construction employs an
MDS code and a code with small locality as inner and
outer codes, respectively. In particular, we employ an[ r

�
+ x, r

�
, x + 1

]
MDS code over Fq and an [nout, kout]

code with (rout, �out)-cooperative locality over Fqr/� as
inner and outer codes, respectively. Let C be the concate-
nated code. We know that

R = rate(C) = r
r + x�

· kout
nout

(13)

Before we describe the concatenated codes with (r, �)-
cooperative locality for general �, let us consider a few
examples for small values of �.

5.1 When � = 3
Let us take an

[ r
3 + 1, r3 , 2

]
MDS code over Fq as the inner

code. This code can repair any one failed code symbol
by contacting the remaining r

3 code symbols. For outer
code, we employ a code with (rout, 1)-cooperative locality
over Fqr/3 . This can repair any one super symbol (which
consists of r

3 symbols of Fq) by contacting rout symbols
over Fqr/3 , i.e., rout r3 symbols over Fq. (Note that in order
to repair a super symbol, we can obtain the value of rout
required super symbols by contacting r

3 symbols over Fq
from each of their corresponding codewords of the inner
code.)
If � = 3 erasures lie in the inner codewords of three dif-

ferent super symbols, then we can repair each of these era-
sures by contacting r

3 other code symbols. This amounts
to using 3 r

3 = r symbols over Fq. If at least two erasures
belong to the inner codeword of a super symbol, we can
employ (rout, 1)-cooperative locality of the outer code to
repair the corresponding super symbol. In the worst case,
we contact rout r3 + r

3 symbols over Fq, when two erasures
belong to one super symbol and the third erasure belongs
to another super symbol. Since we want

rout
r
3

+ r
3

≤ r,

we have rout ≤ 2. Taking rout = 2, we can get the
concatenated code with rate

R = r
r + 3

· rout
rout + 1

= 2r
3(r + 3)

.

Moreover, this code has minimum distance at least
four. Now, we compare the rate of the obtained concate-
nated code with that of the partition code described in
Section 4.1, which has the rate r

r+9 .
2r

3(r + 3)
>

r
r + 9

⇒ r < 9. (14)

Hence, for all r < 9, the concatenated codes have a
higher rate than the partition codes.
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5.2 When � = 4
Here, we focus on obtaining the codes with (r, 4)-
cooperative locality. We use an

[ r
4 + 2, r4 , 3

]
MDS code

over Fq as the inner code. This code can correct two era-
sures within an inner codeword associated with a super
symbol. In order to repair a super symbol, we employ
a code with (rout, 1)-cooperative locality over Fqr/4 as an
outer code. It can be easily verified that (for suitable value
of rout) the concatenated code obtained by this approach
allows for the recovery of four erasures by contacting at
most r symbols over Fq. In particular, when the inner
codeword associated with one super symbol encounter
three erasures and the inner codeword associated with
another super symbol encounter one erasure, we contact
at most rout r4 + r

4 symbols over Fq. Since we need to satisfy

rout
r
4

+ r
4

≤ r,

we have rout ≤ 3. Working with rout = 3, one can obtain a
code with (r, 4)-cooperative locality and rate

R = r/4
r/4 + 2

· rout
rout + 1

= 3r
4(r + 8)

.

Moreover, the concatenated codes obtained in this man-
ner have minimum distance at leat 2 × 3 = 6. We obtain
better rate as compared to that of the partition codes (cf.
Section 4.1), iff

3r
4(r + 8)

>
r

r + 16
⇒ r < 16. (15)

5.3 General values of �
Here, in addition to �|r, we assume that � is even2. For
1 ≤ x ≤ � − 1, we now take an

[ r
�

+ x, r
�
, x + 1

]
MDS

code over Fq as the inner code. For outer code, we employ
a code over F

r/�
q that can locally recover

⌊
�

x+1

⌋
failed

(erased) super symbols. Note that there exist such codes
with rate (cf. Sections 4.1 and 2.1)

r̃

r̃ +
⌊

�
x+1

⌋ ,
where r̃ denotes the number of super symbols needed
for the local repair of one super symbol. In our defini-
tion, these codes have (ir̃, i)-cooperative locality for all
i ∈
{
1, 2, . . . ,

⌊
�

x+1

⌋}
.

Now, consider the case where all � erasures lie in the
inner codewords corresponding to different super sym-
bols, we can repair all � erasures by contacting � × r

�
= r

code symbols over Fq. For the case where 1 ≤ y ≤
⌊

�
x+1

⌋
super symbols are in erasure, in the worst case, we have
(x + 1) erasures in the inner codewords corresponding
to y distinct super symbols and 1 erasure in the inner

codewords associated with � − y(x + 1) different super
symbols. In order to repair these erasures, we contact

yr̃
r
�

+ (� − y(x + 1))
r
�

symbols over Fq. Since we need to satisfy,

yr̃
r
�

+ (� − y(x + 1))
r
�

≤ r,

we get r̃ ≤ x + 1. Therefore, the rate of the concatenated
code we get is

R(x) = x + 1

x + 1 +
⌊

�
x+1

⌋ ·
r
�

r
�

+ x
= x + 1

x + 1 +
⌊

�
x+1

⌋ · r
r + x�

.

(16)

Note that the concatenated code obtained in this section
has a minimum distance of at least (x + 1)

(⌊
�

x+1

⌋
+ 1
)
.

Remark 7. If we substitute x = �
2 in (16), we obtain a

code with rate

R
(

�

2

)
=

�
2 + 1

�
2 + 1 + 1

· r
r + 2

= � + 2
� + 4

· r
r + 2

. (17)

The rate R
(

�
2
)
in (17) is strictly greater than the rate of

the partition codes r
r+�2

as long as r < �3

4 .

6 Cooperative locally repairable codes using
codes on graphs

The concatenated codes described in Section 5 enable
(r, �)-cooperative locality with better rate and minimum
distance as compared to those of partition codes. How-
ever, the improvements obtained by concatenated code
approach are small and limited to the bounded values of
the parameter r. In this section, we present various graph-
based codes that improve upon the previously described
approaches for a large range of system parameters.

6.1 Bipartite graphs with large girth
The girth of a graph is the number of vertices in the
shortest cycle of the graph. In this section, we explore a
particular class of codes based on bipartite graphs with
high girth. In this construction, the code symbols are asso-
ciated with the edges of a bipartite graph and both the left
and right vertices in the the bipartite graph enforces the
constraints on the code symbols associated with the edges
incident on these vertices. The analysis of the cooperative
locality of the codes obtained in this manner is based on
the fact that the underlying bipartite graph has high girth.
Let G = (U ∪ V , E) be a bipartite graph where U and

V denote the set of left and right vertices, respectively.
In particular, we work with the bipartite graphs that are
bi-regular, i.e., all the vertices from one part have the
same degree. If all the left vertices and right vertices have
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degrees �1 and �2, respectively, then we refer to such a
bipartite graph as a (�1,�2)-regular bipartite graph. In
the case, where we have �1 = �2 = �, we simply call
the bipartite graph as�-regular bipartite graph. Given the
bipartite graph G, we obtain a code C (over Fq) in the
following manner:

• We assign each edge in the bipartite graph G(V , E)

with a code symbol in the codewords of C. That is,
C ⊆ F

|E|
q .

• For every (left or right) vertex in the bipartite graph,
all the code symbols associated with the edges
incident on the vertex satisfy a linear constraint (over
Fq).

Before stating our general result on the cooperative
locality of the codes obtained in this manner, we con-
sider small values of �. Note that any two edges in G (code
symbols in a codeword of C) share at most one vertex
(appear together in at most one local constraint). Thus,
for � = 2 code symbols in erasure, it is possible to find
two local constraints that contain exactly one of the two
erased symbols. This allows for the repair of both the
erased symbols by utilizing these two local constraints. In
other words, the code C has (2(�max − 1), 2)-cooperative
locality, where �max denotes the maximum degree of the
underlying bipartite graph G. Similarly, even in the pres-
ence of � = 3 erasures, one can find at least two local
constraints such that there is only one erasure among the
code symbols participating in each of these constraints.
Figure 2a, b illustrates this fact by considering two pos-
sible patterns of � = 3 erasures. Now, using these two
constraints, one can repair two erasures, which leaves only
one erased symbol which can then be recovered with the
help of any of the two local constraints it appears in. The

repair of � = 3 erasures involves at most 3(�max−1) other
code symbols; hence, the code C has (3(�max − 1), 3)-
cooperative locality. In order to cooperatively repair � >

3 erasures in C, we utilize the fact that the underlying
bipartite graph G has high girth.

Theorem 2. Let G be a �-regular bipartite graph with
girth g, then the code C obtained from the construction
described above has ((g − 1)(� − 1), g − 1)-cooperative
locality.

Proof. A bipartite graph can only have cycles of even
length (number of vertices or edges). Note that as we
explain this before stating this theorem, the code C can
correct up to three erasures without any assumption on
the girth of the bipartite graph G. Therefore, without loss
of generality, we can assume that the girth of the bipar-
tite graph G is at least six3, i.e., g ≥ 6. We use induction
over the number of erasures to prove the claim. For the
base case, we consider the case of � = 3 erasures. As
described in the paragraph preceding the statement of this
theorem, the code C can recover from three erasures in a
cooperative manner.
Now as an inductive hypothesis, we assume that the

code C can repair at most � ≤ g − 2 erasures in a coopera-
tive manner and show that it is also possible to repair � +
1 ≤ g −1 erasures. Towards this, we show that given �+1
erasures, it is possible to obtain a local constraint which
has a single erasure among the code symbols appearing
in the constraint. Finding such a constraint allow for the
recovery of one erasure leaving � erasures. In order to
show a contradiction, we assume that no such local con-
straint exists. We start with a vertex say u1 ∈ U with at
least two of the code symbols associated with the edges
incident on it in erasure.We then traverse along one of the

Fig. 2 Two representative patterns of three erasures. The edges associated with the three erasures are colored in red. a In this pattern, all three erased
code symbols appear together in a local constraint associated with the left vertex u1. Therefore, all the erased symbols must appear in different local
constraints corresponding to the right vertices. This allows for the recovery of all three erased code symbols by using local constraints associated
with the right vertices v1, v2, and v3. b In this pattern, two erased code symbols together in the local constraint associated with the left vertex u1.
This leads to both the erased symbols appearing in two different local constraints defined by the right vertices v1 and v2. Since the third erased
symbol can participate in only one of the local constraints associated with the right vertices (v2 here), one can recover all three erased symbols
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edges out of the vertex u1 which have their correspond-
ing code symbols in erasure. (Note that there are at least
two of such edges.) Let v1 ∈ V denote the vertex that we
arrive at after traversing the edge. Since v1 has at least two
code symbols associated with its edges in erasure, we can
now pick an edge associated with one of the erased sym-
bol to reach another vertex u2 ∈ U which is different from
u1. We continue this process until we cannot traverse to
an unexplored vertex through an edge with its associated
symbol in erasure. Note that this process is bound to end
in at most �+1 steps as there are only �+1 erasures. This
process can end with two possibilities: (1) we have tra-
versed through all edges associated with erased symbols
or (2) all the unexplored edges from the last vertex leads to
previously visited vertices. The first possibility is not feasi-
ble under our assumption as it implies that the last vertex
has only single erasure associated with the edges incident
on it. The second possibility leads to the existence of cycle
of length at most �+1 which is infeasible as �+1 ≤ g−1.
This leads to a contradiction. Thus, it is possible to obtain
a local constraint which has a single erasure among the
code symbols appearing in the constraint. Now that we
are remained with � erasures, we can employ the inductive
hypothesis to complete the proof.
As for the total number of intact code symbols con-

tacted during the repair process, in the worst case, we
may need to utilize g − 1 different local constraints to
recover from g − 1 erasures. This amounts to contacting
(g − 1)(� − 1) intact code symbols.

Remark 8. (Construction of regular bipartite graphs
with large girth) The problem of constructing regular
bipartite graphs with large girth has received significant
attention in the past. Here, we like to point out the work
presented in [15, 25] and references therein. For an odd
integer k ≥ 1 and prime power q, Lazebnik et al. present
explicit construction for q-regular bipartite graphs with
girth at least k + 5 and number of edges qk−1 [15]. There-
fore, for any �, one can design a code using a regular
bipartite graph from [15] which ensures cooperative local
repair of any � erasures.

6.1.1 Rate and distance ofC obtained from a regular
bipartite graph

When G is a regular bipartite graph of degree �, the num-
ber of independent linear constrains on the codewords is
at most 2|E|

�
. Hence, the rate of the code is

rate(C) ≥ |E | − 2|E |/�
|E | = � − 2

�
.

Note that Theorem 2 establish that the code C obtained
using a�-regular graphwith girth g has ((g−1)(�−1), g−
1)-cooperative locality. If we set (g − 1)(� − 1) = r and

g − 1 = �, then the following holds for the code C with
(r, �)-cooperative locality.

rate(C) ≥
r
�

− 1
r
�

+ 1
= r − �

r + �
. (18)

As far as the minimum distance dmin(C) of a code
C based on a �-regular bipartite graph G with girth g
is concerned, we have the following trivial bound from
Theorem 2.

dmin(C) ≥ g. (19)

One can construct a Tanner graph H corresponding to
the graphG. The left vertices and right vertices in this Tan-
ner graph correspond to the edges in the graph G and the
vertices in the graph G, respectively. The Tanner graphH
is a bi-regular bipartite graph with left degree 2 and right
degree �. Moreover, the girth ofH is 2g. We can now use
([26] Theorem 2) to conclude that

dmin(C) ≥ d̃min
(d̃min − 1)g/2 − 1

d̃min − 2
, (20)

where d̃min is the minimum distance of the smaller code
associated with each vertex in the graph G. For our case of
d̃min = 2, (20) does not give us anything better than (19).

Remark 9. The relationship between stopping number,
the smallest number of erasures that cannot be corrected
under iterative decoding, and the girth of the Tanner graph
associated with a code have been previously explored in
the literature [27]. As described above, we can obtain a
Tanner graphH corresponding to the graph G. This allows
us to draw the connections between Theorem 2 and the
literature on stopping number.

Remark 10. Compared to (7), this achievability result
has a loss of at most �

r+�
from the optimal possible rate.

6.1.2 Comparisonwith the work in [24]
Recently, Prakash et al. study codes which allow for local
repair of two erasures [24]. In their model, they perform
the repair of the two erasures in a successive manner,
where a parity constraint of weight at most r̃+1 is used to
repair each of the two erasures. In [24], Prakash et al. show
that such codes have their rates upper bounded by r̃

r̃+2 .
Note that their model can be generalized to � ≥ 2

erasures, and one can consider codes that enable succes-
sive local repairs from � erasures by contacting � parity
constraints of weight at most r̃ + 1. The codes based
on bipartite graphs with high girth, as proposed in this
section, fall under this setting. Taking r̃ = r

�
, their rate

(cf. (18)) is at least r̃−1
r̃+1 . Since the upper bound r̃

r̃+2
from [24] still applies to these codes, they exhibit almost
optimal rate.
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6.2 Expander graphs
The above analysis of the construction based on bipar-
tite graphs fails to show a high minimum distance on top
of the local repair property. However, with the graphical
construction, it is also possible to have high distance, and
hence protection against catastrophic failures. Next, we
show how the expansion property of graphs leads to such
conclusion.

6.2.1 Unbalanced bipartite expanders
Let G = (U ∪ V , E) be an unbalanced left regular bipar-
tite graph with |U | = n ≥ |V| = m and left degree h.
We assume that the graph G is an expander graph where
expansion happens from left nodes to right nodes. In par-
ticular, we assume that for all S ⊆ U such that |S| ≤ �, we
have

�(S) ≥ (1 − ε)h|S|. (21)

Here, �(S) ⊆ V denotes the set of right nodes that
constitute the neighborhood of the nodes in the set S .
We now associate a code symbol with each of the left

nodes in the bipartite graph G. For v ∈ V , let �(v) ⊆ U
denote the neighborhood of the node v. Consider a code
C such that for each v ∈ V , the code symbols associated
with �(v) constitute a codeword in a shorter MDS code
C0 with length � = |�(v)| and minimum distance at least
t + 1. Note that this approach of constructing codes from
unbalanced expander graphs is proposed in [26, 28] and
references therein.
Next, we argue that for small enough ε (cf. (21)), the

code C should be able to correct any set of at most � era-
sures. Note that the locality parameter r is dictated by the
degrees of the right nodes in the graph G.

Theorem 3. Let G be an unbalanced (left) expander
bipartite graph as defined in (21). If we have ε < 1 − 1

t+1 ,
then the code C can be locally repaired from any � or less
number of erasures by contacting at most ��·rate(C0) code
symbols.

Proof. We prove the claim using induction on �. Note
that a single erasure can be repaired by using one of the
local constraints the erased code symbol participates in.
Now assume that at most � − 1 erasures can be repaired
by using local constraints defined by the graph G. We now
show that any set of � erasures can also be repaired using
local constraints.
Let S ⊆ U with |S| ≤ � denote the set of � erased code

symbols. In order to repair these � erasures, we start with
a right node which has at most t of the code symbols asso-
ciated with its neighborhood in erasure. These t erasures
can be corrected under the local constraints satisfied by
the code C. We can then utilize the inductive hypothesis
to complete the proof.

Note that what remains to be shown is that the desir-
able right node with at most t associated erasures exists.
Towards this, we assume that there is no such right node.
In other words, this implies that the induced subgraph Ĝ
defined by the nodes S ∪ �(S) has at least t + 1 edges
incident on every node in �(S) from the nodes in S .
Therefore, we have

(t + 1)|�(S)| ≤ number of edges in Ĝ = h|S|
⇒ |�(S)| ≤ h|S|

t + 1
. (22)

However, for ε < 1 − 1
t+1 , it follows from (21) that

|�(S)| >
h|S|
t + 1

.

This along with (22) leads to a contradiction. Hence, in
the presence of at most � erasures, it is possible to find the
desirable right node (with at most t erasures among the
code symbols associated with its neighborhood).
Now the claim that r ≤ �� · rate(C0) follows from the

fact that correcting each erasure requires contacting at
least � · rate(C0) code symbols from a codeword of the
shorter code C0.

Let αn be such that the graph G allows for expansion of
all sets S ⊆ U of size at most αn by a factor of at least
(1 − ε)h, i.e.4,

�(S) ≥ (1 − ε)h|S| for all S ⊆ U with |S| ≤ αn.

Proposition 1. For the code C based on the bipartite
graph G above and local codes of minimum distance t + 1,
we have,

dmin(C) ≥
(
2 − ε − ε

t

)
αn.

A proof of this fact, which is an extension of existing
results (such as [28]) is provided in Section 8.2. We fur-
ther assume that the bipartite graph G is bi-regular with�

denoting its right degree, i.e., nh = m�. Moreover, let C0
represent the shorter code of length � used to define the
code C. Then we have,

rate(C) ≥ n − m�(1 − rate(C0))
n

= 1 + h
�

r
�

− h,

where r = �� · rate(C0) denotes the maximum number of
intact code symbols that need to be contacted to repair �

erasures.

Remark 11. Here, we note that for any constant ε > 0
and δ < 1, it is possible to explicitly construct unbal-
anced expander graphs with constant degree h, m = δn
and expansion factor (1− ε)h for 	(n) sized subsets of left
vertices [29].
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6.2.2 Regular expander graph
We now study the cooperative locality of the codes
obtained by the double covers of �-regular expander
graphs [28]. The analysis of the cooperative locality is
based on the analysis of the decoding algorithm for these
codes presented in [30]. Note that we naturally mod-
ify the decoding algorithm from [30] to perform erasure
correction in a cooperative manner.
Let G = (V , E) be a �-regular graph with |V| = N and λ

as the second (absolute) largest eigenvalue of its adjacency
matrix5. GivenG, we construct a bipartite graph G̃ = (V0∪
V1, Ẽ) with |V0| = |V1| = N in the following manner (see
Fig. 3):

• Each vertex u ∈ V in the original graph G
corresponds to a left node ul ∈ V0 and a right node
ur ∈ V1 in the graph G̃.

• For a pair of vertices (ul, vr) ∈ V0 × V1, there exists
an edge (ul, vr) ∈ Ẽ iff there is an edge between the
vertices u and v in the original graph G, i.e., (u, v) ∈ E .

The bipartite graph G̃ is referred to as the double cover
of the graphG. Note that the bipartite graph G̃ is�-regular
with total n = N� edges. Moreover, the following result
holds for the bipartite graph G̃.

Lemma 1. (Expander mixing lemma) [31] Let G̃ be the
�-regular bipartite graph as described above. Then, for
every S ⊆ V0 and T ⊆ V1, we have∣∣∣∣Ẽ(S × T ) − d|S||T |

N

∣∣∣∣ ≤ λ
√|S||T |, (23)

Fig. 3 Illustration of the double cover G̃ of the �-regular graph G . An
edge (u, v) in the original graph G contributes to two edges (ul , vr)
and (vl , ur) in the the bipartite graph G̃

where Ẽ(S×T ) denotes the collection of the edges from the
nodes in the set S to the nodes in the set T .

Given the bipartite graph G̃ and a code C0 with �-
symbol long codewords, we define a code C as a slight
generalization of the method of Section 6.1. Each edge in
G̃ corresponds to a code symbol in the codewords of C. For
each node in the bipartite graph G̃, the � code symbols
associated with the � edges incident on the node con-
stitute a codeword in the code C0. Note that we assume
the local code C0 to be an MDS code throughout this
paper. In Fig. 4, we present an algorithm which corrects
any � erasures in C an cooperativemanner by contacting at
most �� · rate(C0) code symbols. The algorithm alternates
between the left nodes V0 and the right nodes V1 in order
to utilize the smaller code C0 associated with the vertices
to correct the erasures.
Let S1 ⊆ V0 denote the set of nodes that have era-

sures among the code symbols associated with their edges
and did not attempt to correct those erasures in the first
round of the algorithm. This implies that each vertex in
S1 has at least dmin(C0) erasures among the code symbols
associated with its � edges. Therefore, we have

|S1| ≤ �

dmin(C0)
. (24)

We use S i for i ≥ 2 to denote the set of (left or right)
vertices that have erasures among the � code symbols
associated with them in the beginning of ith round and did
not attempt to correct those erasures. Note that S i ⊆ V0
and S i ⊆ V1 when i is an odd and even round of decod-
ing, respectively. Next, we employ the expander mixing
lemma (cf. Lemma 1) to show that

{|S1|, |S2|, |S3|, . . . } is
a strictly decreasing sequence.

Lemma 2. Let S1,S2, . . . be the sequence of sets of (left
or right) vertices in the bipartite graph G̃ as defined above.
Assume that the minimum distance of C0 is at least (1+ε)λ

and � ≤ Nλεδ
2 = nλεδ

2� . Then, for i ≥ 1, we have

∣∣S i+1∣∣ ≤ ∣∣S i∣∣
1 + ε

. (25)

Proof. We prove the relation in (25) for i = 1; the proof
for general i involves steps similar to those in the proof of
the i = 1 case. Note that each code symbol that is in era-
sures after the first round of decoding is associated with
some edge incident on a left node belonging to the set S1.
By the definition of the set S2, it has at least dmin(C0) era-
sures among the � code symbols associated with it after
the first round of decoding. In other words, this implies
that each vertex in the set S2 has at least dmin(C0) edges
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Fig. 4 Cooperative erasure correction in the code based on the double cover of a regular expander graph

incident on it which are emanating from the vertices from
the set S1. Therefore, we have

|S2|dmin(C0) ≤ |Ẽ (S1 × S2) |
(a)≤ �|S1||S2|

N
+ λ
√

|S1||S2|
(b)≤ �|S1||S2|

N
+ λ

|S1| + |S2|
2

(c)≤ ��|S2|
N · dmin(C0)

+ λ
|S1| + |S2|

2
, (26)

where (a) and (c) follows from Lemma 1 and (24), respec-
tively. Note that we employ the AM-GM inequality to
obtain (b). It follows from (26) that∣∣S2∣∣ ≤ λ

2 · dmin(C0) − λ − 2��/(N · dmin(C0))
∣∣S1∣∣ .

(27)

By replacing dmin(C0) = δ� in (27), we get∣∣S2∣∣ ≤ λ

2δ� − λ − 2�/(Nδ)

∣∣S1∣∣ . (28)

Under our assumption that 2�
Nδ

≤ ελ, it follows from (28)
that∣∣S2∣∣ ≤ λ

2δ� − (1 + ε)λ

∣∣S1∣∣ . (29)

Now, under the assumption that δ� ≥ (1 + ε)λ, we get
from (29) that∣∣S2∣∣ ≤ ∣∣S1∣∣

1 + ε
. (30)

It follows from the Lemma 2 that in at most logarithmic
(in �) rounds of decoding, the algorithm described in Fig. 4
can correct � erasures.
The codes based on the double covers of �-regular

expander graphs have been studied in the coding theory
literature before (see, e.g., [30]). The rate and the mini-
mum distance of the code C depends on the rate and the

minimum distance of the code C0. Note that C0 charac-
terizes the local constraints associated with the vertices in
the bipartite graph G̃. In particular, if rate(C0) = R and
dmin(C0) = δ�, then we have that rate(C) ≥ 2R − 1 and
dmin(C) ≥ δ(δ − λ

�
)n [28, 30].

As we show in this section, for an ε > 0 and local
code C0 such that dmin(C0) = δ� ≥ (1 + ε)λ, it is pos-
sible to correct � ≤ Nλεδ

2 erasures using the algorithm
described in Fig. 4. Moreover, in the worst correction of
each erasure involves contacting at most rate(C0)� ≤
(1 + rate(C))�/2 other intact code symbols (assuming
that the local code C0 is an MDS code). Therefore, the
codes based on the double cover of a �-regular expander
graph and a local code C0 have (r, �)-cooperative locality
for any � ≤ Nλεδ

2 = nλεδ
2� and r = �(1 + rate(C))�/2, that

is,

rate(C) ≥ 2r
��

− 1.

In the next section, we show an explicit family of alge-
braic codes that exhibit very strong cooperative local
repair property, as well as a very high minimum distance.

7 Cooperative local repair for Hadamard codes
In this section, we study the cooperative locality for punc-
tured Hadamard codes. Punctured Hadamard codes are
also referred to as Simplex codes, which are the dual
codes of Hamming codes. These codes are well known
to be locally decodable codes (LDCs) [32] and have mul-
tiple disjoint repair groups for each code symbols. Here,
we comment on the exact parameters for the coopera-
tive locality of these codes. In particular, we show that
an [n = 2k − 1, k, 2k−1]2 punctured Hadamard code has
(r = � + 1, �)-cooperative locality for any � ≤ n−1

2 .
An [n = 2k − 1, k, 2k−1]2 punctured Hadamard code

encodes a k bits long message (m1,m2, . . . ,mk) to an n =
2k − 1 codeword c = (c1, c2, . . . , cn=2k−1

)
such that

ci =
k∑

j=1
mjbij (mod) 2.
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Here, bi = (bi1, bi2, . . . , bik) ∈ F
k
2 denotes the binary

representation of the integer i ∈ [2k − 1]. In an[
n = 2k − 1, k, 2k−1]

2 puncturedHadamard code, we have
ci + c2j = ci+2j , where 1 ≤ j ≤ k − 1 and i ∈ [2j − 1].
Moreover, we note that an

[
n = 2k − 1, k, 2k−1]

2 punc-
tured Hadamard code has a particular structural property:
for any 2 ≤ k̃ < k, the prefix of length 2̃k − 1 of
each codeword is a codeword of the

[̃
n = 2̃k − 1, k̃, 2̃k−1

]
2

punctured Hadamard code which encodes the message
(m1,m2, . . . ,mk̃). We now present the main result of this
subsection:

Theorem 4. In an
[
n = 2k − 1, k, 2k−1]

2 punctured
Hadamard code, any 1 ≤ � ≤ n−1

2 erasures can
be corrected by contacting at most � + 1 other code
symbols.

Proof. We prove the theorem by using induction over k.
For base case, we consider k = 2, where the [n = 3 = 22−
1, 2, 2]2 punctured Hadamard code encodes the message
(m1,m2) to a codeword (c1, c2, c3) = (m1,m2,m1 + m2).
In this case, any 1 ≤ � ≤ 3−1

2 = 1 erasure can be
recovered by contacting other � + 1 = 2 code symbols.
For example, one can recover c2 = m2 from (c1, c3) =
(m1,m1 + m3).
For inductive step, we assume that the lemma holds for

any punctured code of dimension up to k − 1. Consider
the
[
n = 2k − 1, k, 2k−1]

2 punctured Hadamard code of
dimension k, and two cases regarding the positions of �

erased code symbols.

• Case 1: There are x ≤ 2k−2 − 1 erasures among the
first n̂ = 2k−1 − 1 code symbols. Note that the first
n̂ = 2k−1 − 1 code symbols constitute a codeword of
an
[̂
n = 2k−1 − 1, k − 1, 2k−2]

2 punctured
Hadamard code. Therefore, from the inductive
hypothesis, one can correct the x erasures among the
first n̂ code symbols by contacting x + 1 other code
symbols out of these n̂ code symbols. Now, if the
symbol c2k−1 in erasure, we can recover it by
contacting one of the intact symbol among{
c2k−1+1, c2k−1+2, . . . , cn=2k−1

}
say c2k−1+j and the

corresponding code symbol cj from the first n̂ code
symbols. Now, we can repair the remaining erased
symbols among

{
c2k−1+1, c2k−1+2, . . . , cn=2k−1

}
from

c2k−1 and the corresponding code symbol among the
first n̂ code symbols. For example, if we want to
recover the symbol c2k−1+m, we can use c2k−1 and cm
to reconstruct c2k−1+m. In the worst case, we contact
� + 1 code symbols during the repair of all � erasures.

• Case 2: There are x ≥ 2k−2 erasures among the first
n̂ = 2k−1 − 1 code symbols. In this case, we first
recover the code symbol c2k−1 if it is in erasure.

Without loss of generality, we assume that c2k−1 is in
erasure. Note that there are n−1

2 = 2k−1 distinct pairs
of code symbols

{
ci, c2k−1+i

}
i∈[2k−1] that can recover

c2k−1 . Since we have at most n−1
2 − 1 = 2k−1 − 1

erasures apart from c2k−1 , one of the 2k−1 pairs{
ci, c2k−1+i

}
i∈[2k−1] must be intact. This pair allows us

to recover c2k−1 .
Now that we know the symbol c2k−1 = mk , we can
remove the contribution ofmk from any of the last
2k − 1 − 2k code symbols

{
c2k−1+1, c2k−1+2, . . . ,

cn=2k−1
}
. Similarly, we can addmk to any of the first

n̂ = 2k−1 − 1 code symbols {c1, c2, . . . , c2k−1}.
Therefore, we can reduce the case 2 to case 1 of the
proof and repair any �1 erasures by contacting at
most �1 + 1 code symbols.

Combining both cases completes the proof.

Remark 12. Note that, for each symbol, the punc-
tured Hadamard code provides n−1

2 disjoint repair groups.
Moreover, each of these repair groups comprises two sym-
bols. Therefore, it easily follows from the discussion of
Section 2.1 that the punctured Hadamard code has (2�, �)-
cooperative locality for � ≤ n−1

2 . Here, we show that
these codes allow for more efficient cooperative local repair
mechanism by establishing (� + 1, �)-cooperative locality
for them.

8 Conclusions
All the constructions of this paper are designed to allow
for the cooperative local repairs in the case of adversar-
ial erasure patterns. One can consider the setting where
erasures occur according to a random model. Here, we
briefly comment on the setting where � erasures are uni-
formly distributed among the code symbols. Moreover,
we assume r and � to be large enough. In that case, we
claim that even the simple partition codes of Section 4.1
are asymptotically optimal. This is true, because with rea-
sonably high probability (depending on r and �), every
local group (a total p of them) experiences less than about
t ≡ 


(
�
p log

�
p

)
number of erasures. Therefore, with high

probability, one can perform cooperative local repair of
� random erasures even if an

( r
�

+ t, r
�

)
MDS code in

employed in the construction of the partition code (cf.
Section 4.1). This translates to a coding scheme with the
overall rate of r

r+�t . One can take p large enough to opti-
mize this value. Indeed, it is possible to attain a rate of

r
r+�1+ε for some ε>0. Comparing with (7), we see that par-
tition codes are near-optimal in this case. Here, note that
it was shown in [33] that for a random erasure channel,
the partition codes are asymptotically optimal in terms of
achieving capacity.
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8.1 Part of the proof of Theorem 1
Before proceeding with the analysis, we argue the cor-
rectness of the algorithm in Fig. 1. Note that it is always
possible to find � coordinates

{
ij1, i

j
2, . . . , i

j
�

}
at line 5.

When the algorithm reaches line 5, the sub-code Cj−1 has
more than q� codewords. Therefore, there must be at least
� coordinates in the codewords in Cj−1 that are not fixed in
the previous iterations. This also implies that, form ∈ [ �],

ijm /∈ Ij−1 :=
⋃

j′∈[j−1]

(
Rj′ ∪
{
ij

′
1, . . . , i

j′
�

})
⊂[ n] . (31)

Note that the code symbols indexed by Ij−1 are fixed in
Cj−1. This further implies that

Rj = �{ij1,...,ij�} 
⊂ Ij−1,

i.e., not all of the code symbols contacted to repair the
� symbols indexed by the set

{
ij1, . . . , i

j
�

}
can be fixed in

the previous iterations. Otherwise, the symbols indexed
by the set

{
ij1, . . . , i

j
�

}
would also have been fixed in the

previous iterations.
For the construction of a sub-code as described in Fig. 1,

we defineAj = Ij\Ij−1 ⊆ Rj ∪
{
ij1, . . . , i

j
�

}
and aj = |Aj|.

Assuming that the while loop in Fig. 1 ends with j = t, for
j ∈ [ t], we have

Ij =
⋃
j′∈[j]

Aj′ ,

where we take union of the disjoint setsAj′ , j′ ∈ [ j] .
Note that none of the indices in the set

{
ij1, . . . , i

j
�

}
cor-

responds to fixed symbols. Thus, by the definition of Aj
and aj, only aj − � code symbols among the code symbols
indexed by the set Rj are not fixed in the previous itera-
tions. Hence, at line 7, there are at most qaj−� possibilities
for y j. This implies that

|Cj| ≥ |Cj−1|/qaj−�. (32)

The construction of the subcode C′ can end at either line
10 or line 14. Here, we analyze only the case when the con-
struction ends at line 10. (The similar analysis holds for
the other case as well). In this case, we have |Ct| ≤ q�, or

� ≥ logq |Ct| ≥ k −
t−1∑
j=0

(
aj+1 − �

)
. (33)

Now, using that aj ≤ |Aj| ≤ |Rj ∪
{
ij1, . . . , i

j
�

}
| ≤ r + �,

we get

k − � ≤
t−1∑
j=0

(
aj+1 − �

) ≤ tr. (34)

This implies that

t ≥
⌊
k − �

r

⌋
. (35)

Furthermore, for the case when we have r ≥ �, it follows
from (34) that

t ≥
⌈
k
r

⌉
− 1. (36)

Note that sub-code C′ = Ct . Therefore,
logq |C′| = logq |Ct|

≥ logq |C| −
t−1∑
j=0

(
aj+1 − �

)
= k −

t−1∑
j=0

aj+1 + t�

(a)= k − |It| + t� (37)

where (a) follows from the fact that It is union of the
disjoint setsAj.
Now, we define C′′ = C′|It which denotes the code

obtained by puncturing the codewords in C′ at the coordi-
nates associated with the set It . We have |C′′| = |C′| and
dmin(C′′) = dmin(C′). Moreover, the length of the code-
words in C′′ is n−|It|. Next, applying the Singleton bound
on C′′ gives us

dmin(C) ≤ dmin(C′′) ≤ n − |It| − logq |C′′| + 1

≤ n − |It| − (k − |It| + t�) + 1
= n − k − t� + 1, (38)

It follows from (38) and (35) that

dmin(C) ≤ n − k + 1 − �

⌊
k − �

r

⌋
. (39)

For the setting where we have r ≥ �, we can use (38)
along with (36) to obtain that

dmin(C) ≤ n − k + 1 − �

(⌈
k
r

⌉
− 1
)
. (40)

This completes the proof.

8.2 Proof of Proposition 1
DefineUt(A),A ⊂ U , to be the set of neighbors ofA such
that each vertex ofUt(A) is connected to at most t vertices
from A. Notice that for any A : |A| ≤ αn, �(A) ≥ (1 −
ε)h|A|. Furthermore,

|Ut(A)| + |�(A) \ Ut(A)|(t + 1) ≤ h|A|.
Therefore, |Ut(A)| ≥ (1 − ε − ε/t)h|A|.
For any codeword of C whose support is given by the

vertex set S ⊂ U , we must have Ut(S) = ∅. Clearly, when
|S| ≤ αn, |Ut(S)| ≥ (1− ε − ε/t)h|S| > 0. Let us assume
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|S| > αn but |S| ≤ (2 − ε − ε/t)αn. Let Q be a proper
subset of S such that |Q| = αn. The number of edges
coming out of S \Q is h(|S| − αn) ≤ h(1 − ε − ε/t)αn.
On the other hand, Ut(Q) ≥ (1 − ε − ε/t)hαn. Hence,
Ut(S) 
= ∅.
This proves that the minimum distance of the expander

code is at least (2 − ε − ε/t)αn.

Endnotes
1Throughout this paper, we use both “codes with small

locality” and “locally repairable codes” to refer to the
codes that enable local repair of a single failed code
symbol.

2This assumption is just for the ease of exposition and a
similar construction for odd � can also be
proposed.

3Note that Theorem 2 guarantees cooperative local
repair of only � = 3 erasures when g = 4.

4As shown above, αn ≥ � is a sufficient condition for
the code obtained from the bipartite graph G to be able
to allow for cooperative repair of � erasures.

5If d = λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λN be N eigenvalues of
the adjacency matrix of G, then λ = max{λ2, |λN |}.
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