
Qin et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:108 
DOI 10.1186/s13634-015-0294-y
RESEARCH Open Access
Gaussian mixture probability hypothesis
density filter for multipath multitarget
tracking in over-the-horizon radar
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Abstract

Conventional multitarget tracking systems presume that each target can produce at most one measurement
per scan. Due to the multiple ionospheric propagation paths in over-the-horizon radar (OTHR), this assumption is
not valid. To solve this problem, this paper proposes a novel tracking algorithm based on the theory of finite set
statistics (FISST) called the multipath probability hypothesis density (MP-PHD) filter in cluttered environments.
First, the FISST is used to derive the update equation, and then Gaussian mixture (GM) is introduced to derive
the closed-form solution of the MP-PHD filter. Moreover, the extended Kalman filter (EKF) is presented to deal
with the nonlinear problem of the measurement model in OTHR. Eventually, the simulation results are provided
to demonstrate the effectiveness of the proposed filter.

Keywords: Over-the-horizon radar (OTHR), Multipath multitarget tracking, Probability hypothesis density filter, Finite
set statistics (FISST)
1 Introduction
Over-the-horizon radar (OTHR) exploits skywave propa-
gation of high-frequency signals to detect and track tar-
gets, which are different from the conventional radar. It
has received wide attention because of its wide area sur-
veillance, long detection range, strong anti-stealth ability,
the capability of the long early warning time, and so on.
In OTHR, a significant problem is the effect of multi-
path propagation, which causes multiple detections via
different propagation paths for a target with missed de-
tections and false alarms at the receiver [1–6]. Neverthe-
less, the conventional tracking algorithms, such as
probabilistic data association (PDA) [7–9], presume that
a single-measurement per target, it may consider the
other measurements of the same target as clutter, and
multiple tracks are produced when a single target is
present. Therefore, these methods cannot effectively
solve the multipath propagation problem.
In order to solve the multipath propagation problem

of OTHR, lots of algorithms have been proposed. Such
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as the multipath viterbi data association (MVDA) [10]
and modified probabilistic data association (MPDA)
[11]. However, these conventional algorithms involve
data association problem and the complexity of the
computation. In addition, it is noted that most of the
existing algorithms in OTHR focus on a single target.
Therefore, the multitarget tracking algorithm in OTHR
is still an open problem.
Most of the conventional algorithms about multitarget

tracking, such as multiple hypothesis tracker (MHT)
[12], joint probabilistic data association (JPDA) [13, 14],
and probability hypothesis density (PHD) filter [15], as-
sume the following measurement model: (1) every target
produces at most one measurement and (2) any meas-
urement is produced by a target or clutter. In this paper,
we consider the measurement model which satisfies
these assumptions as standard measurement model.
However, many measurement models in real-life target
tracking scenarios do not satisfy these prerequisite of
assumption, which are treated as nonstandard measure-
ment model. Recently, the multiple detection joint prob-
abilistic data association (MD-JPDA) filter [16] based on
the JPDA framework was proposed to deal with the
multiple detection targets, which can apply to OTHR.
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However, this algorithm involves complexity data associ-
ation. To solve this problem of multitarget tracking,
more effective methods should be taken into account to
implement in OTHR.
In 2009, Mahler derived a series of “second-generation”

PHD/cardinalized probability hypothesis density (CPHD)
filters [17] which addressed the tracking problems for
nonstandard multitarget measurement model, such as
extended targets [18–21], unresolved target [22], un-
known clutter [23], and superpositional sensors [24].
As for the multipath propagation in OTHR, the re-
ceiver can obtain more than one measurement from
the same target, which means that it violates the second
assumption of the standard measurement model. There-
fore, the multipath tracking model in OTHR is one of
the nonstandard measurement models, such that
conventional multitarget tracking algorithms would
no longer be applicable.
To solve the multipath propagation problem of multi-

target, we propose a novel tracking algorithm based on
the theory of finite set statistics (FISST) called the multi-
path probability hypothesis density (MP-PHD) filter in
OTHR. First, inspired by Mahler’s work in [17], the
FISST is used to derive the update equation of the MP-
PHD filter. Then, a method of Gaussian mixture (GM) is
introduced to derive the closed-form solution of the
MP-PHD filter. In addition, the extended Kalman filter
(EKF) is presented to deal with the nonlinear problem of
the measurement model in OTHR. The simulation
results demonstrate that the MP-PHD filter can accur-
ately estimate the target state and the target number for
low detection probability under the multitarget tracking
circumstance.
This paper is organized as follows. Section 2 presents

the problem formulation for OTHR. Section 3 then for-
mulates the random finite set (RFS) measurement model
Fig. 1 Geometry of a planar OTHR measurement model with a collocated tra
for the OTHR tracking problem and derives the MP-
PHD filter in OTHR based on the FISST. A closed-form
implementation of MP-PHD filter is presented in
Section 4. In Section 5, the simulation results are
presented. Finally, some conclusions and future works
are discussed in Section 6.

2 Problem formulation
2.1 Dynamic model
The geometry of the target and OTHR system is
depicted in Fig. 1. The target state vector of OTHR at

time k is defined by xk ¼ ρ kð Þ; :ρ kð Þ; b kð Þ; :b kð Þ½ �′; xk∈ℑ ,
where ρ(k) = ρ1(k), :ρ kð Þ, b(k), and :b kð Þ are the ground
range, range rate, bearing, and bearing rate and ℑ is the
space of the ground coordinates, the dash denotes
transposition.
Since the distance between the receiver and the targets

is large, we usually assume that the state equation of
OTHR is linear and discrete-time. It could be modeled as

xk ¼ Fxk−1 þ uk−1 ð1Þ
where uk − 1 is a zero mean, white Gaussian noise with
covariance Qk − 1, and the state transition matrix F is
given by

F ¼
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

2
664

3
775 ð2Þ

where T is the sampling period.

2.2 Measurement model of OTHR
OTHR achieves beyond the line-of-sight horizon target
tracking by exploiting skywave propagation of high-
frequency signals via the ionospheric, and depending on
nsmitter and receiver. hr and ht denote reflecting ionosphere heights



Qin et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:108 Page 3 of 18
the particular ionospheric propagation conditions, there
may be several propagation paths. As shown in Fig. 1,
the OTHR signal reflects from the transmitter to the
target by an ionospheric at height ht, then the signal re-
flects from the target to the receiver by an ionospheric
at height hr. As is well known, there are many iono-
spheric layers present in the atmosphere, and we sup-
pose that there are two ionospheric layers E and F for
simplicity, with constant heights hE and hF (this suppose
is the same as other algorithms in OTHR). Therefore,
there are four propagation modes: mode EE (transmit
on E and receive on E); mode EF (transmit on E and re-
ceive on F); mode FE (transmit on F and receive on E);
and mode FF (transmit on F and receive on F). It means
that the receiver can obtain more than one measurement
from the same target at one time.
The OTHR measurements consist of a slant range

Rg = r1 + r2, Doppler fd, and Az =π/2 ‐ θ (θ is the azimuth as
shown in Fig. 1) of the form zk = [Rg(k), fd(k), Az(k)]′, zk∈G,
where G is the space of the slant coordinates.
The measurement model of OTHR involves the map-

ping from the ground coordinates ρ; :ρ; b; :b:ð Þ to the
slant coordinates (Rg, fd, Az). From Fig. 1, it can be
shown that the mapping is expressed as [2]

Rg ¼ r1 þ r2

f d ¼
:
ρ

4
ρ

r1
þ η

r2

� �
Az ¼ sin−1 ρ sin bð Þ= 2r1ð Þf g

8>><
>>: ð3Þ

where

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ=2ð Þ2 þ h2r

q
ð4Þ

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ=2ð Þ2−dρ sin bð Þ=2þ d=2ð Þ2 þ h2t

q
ð5Þ

η ¼ ρ−d sin bð Þ ð6Þ

Then, the measurement model of OTHR can be
expressed as [11]

zk ¼

h1ðxkÞ þ wk;1 if mode EE

h2ðxkÞ þ wk;2 if mode EF

h3ðxkÞ þ wk;3 if mode FE

h4ðxkÞ þ wk;4 if mode FF

clutter otherwise

8>>>>>><
>>>>>>:

ð7Þ

where xk is the state variable; wk,i is the zero mean, white
Gaussian noise with known covariance Rk,i, and hi(⋅) is
the nonlinear measurement function of ith propagation
mode, i = 1, 2, 3, 4.
hi xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ=2ð Þ2 þ h2r

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ=2ð Þ2−dρ sin bð Þ=2þ h2t

q
:
ρ

4
ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ=2ð Þ2 þ h2r

q þ ρ−d sin bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ=2ð Þ2−dρ sin bð Þ=2þ h2t

q
0
B@

1
CA

sin−1 ρ sin bð Þ= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ=2ð Þ2 þ h2t

q� �� �

2
666666664

3
777777775

ð8Þ
where, for a given propagation mode i, ht and hr must
be replaced by the virtual ionosphere heights, where the
details can be found in [11].

3 The RFS model and PHD filter implementation
in OTHR
In the standard PHD filter, it is presumed that a target
produces at most one measurement. Due to the multi-
path effect of OTHR, a single target may generate sev-
eral measurements. Therefore, the measurement model
of the MP-PHD filter proposed in this paper is different
from the standard PHD filter. In this section, we first
introduce the RFS measurement model for OTHR and
then derive the update equation of the MP-PHD filter
based on the theory of FISST.

3.1 The RFS measurement model for OTHR
At each time k, a finite set of measurements of OTHR,
denoted by Zk ¼ zk;1; zk;2;⋯zk;Nk

� �
, where zk;1; zk;2;⋯

zk;Nk are the received measurements at time k and Nk is
the number of measurements. Since the measurements
include several detections from targets and clutter, the
collection of measurements of OTHR can be modeled
by RFS

Zk ¼ Θk;1 xkð Þ∪Θk;2 xkð Þ∪Θk;3 xkð Þ∪Θk;4 xkð Þ∪Γk ð9Þ

where Θk,i(xk), i = 1,⋯, 4 denotes the measurement orig-
inated from the ith propagation path and Γk denotes the
RFS of clutter. It is presumed that conditional on xk,
Θk,i(xk), i = 1,⋯, 4 and Γk are independent RFSs.

3.2 The update equation of MP-PHD filter in OTHR
Note that both the MP-PHD filter and the standard
PHD filter recursion require two steps: prediction and
update. In the following subsection, we only derive the
update equation according to the above RFS measure-
ment model since the prediction step of the MP-PHD
filter is identical to the standard PHD filter.
In ref. [17], the probability generating functional

(PGFL) of update equation for the multitarget Bayes
filter can be written as
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Gkjk h½ � ¼
δF
δZk

0; h½ �
δF
δZk

0; 1½ � ð10Þ

where F[g, h] is two-variable PGFL as

F g; h½ � ¼
Z

hX ⋅Gk gjX½ �⋅f kjk−1 XjZ k−1ð Þ
	 


δX ð11Þ

Gk gjX½ � ¼
Z

gZ⋅f k ZjXð ÞδZ ð12Þ

where fk|k − 1(X|Z
(k − 1)) is the predicted multitarget distri-

bution, fk(Z|X) is the multitarget likelihood function and
hX is defined by hX = 1 when X =∅ and hX =∏x ∈ Xh(x)
otherwise. The update PHD filter can be given by

Dkjk xð Þ ¼ δGkjk
δx

1½ � ð13Þ

Therefore, the update equation for MP-PHD filter can
be derived by the following procedures:

1) Derive the PGFL Gk[g|X] by using the OTHR
measurements and exploiting Eq. (11) to derive a
closed form of F[g, h]

2) Derive the derivatives of F[g, h] by using Eq. (10) to
derive a closed form of Gk|k[h]

3) According to Eq. (11), derive a closed-form update
for the MP-PHD filter in OTHR

In the following part of this subsection, we will present
the details of the derivation. First, we derive the PGFL
Gk[g|X] according to the OTHR measurements in Eq.
(9). Since Θk(x) =Θk,1(x) ∪Θk,2(x) ∪Θk,3(x) ∪Θk,4(x), the
PGFL Gk[g|x] of Θk(x) is

Gk gjx½ � ¼
Y4
i¼1

Gk;i gjx½ � ¼
Y4
i¼1

1−pD;k xð Þ þ pD;k xð Þpg;i xð Þ
	 


¼ 1−pD;k xð Þ
	 
4

þ 1−pD;k xð Þ
	 
3

pD;k xð Þ
X4
i¼1

pg;i xð Þ
 !

þ 1−pD;k xð Þ
	 
2

p2D;k xð Þ
X3
i¼1

X4
j¼iþ1

pg;i xð Þpg;j xð Þ
 !

þ 1−pD;k xð Þ
	 


p3D;k xð Þ
X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

pg;i xð Þpg;j xð Þpg;m xð Þ
 !

þp4D;k xð Þ
X
i¼1

X
j¼2

X
m¼3

X
n¼4

pg;i xð Þpg;j xð Þpg;m xð Þpg;n xð Þ
 !

ð14Þ

where pg,i(x) = ∫g(z)gk,i(z|x)dz, pD,k(x) is the detection prob-
ability, and gk,i(z|x) is the likelihood of the ith propagation
path. Consequently, if we abbreviate qD,k(x) = 1 − pD,k(x),
Eq. (11) can be summarized as follows:
F g; h½ � ¼ eλc g½ �−λ⋅Gkjk−1½hðq4D;k þ q3D;kpD;k
X4
i¼1

pg;i

 !

þq2D;kp
2
D;k

X3
i¼1

X4
j¼iþ1

pg;ipg;j

 !

þqD;kp
3
D;k

X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

pg;ipg;jpg;m

 !

þp4D;k
X
i¼1

X
j¼2

X
m¼3

X
n¼4

pg;ipg;jpg;mpg;n

 !
Þ�

ð15Þ
where c[g] = ∫g(z)ck(z)dz and Gk|k − 1[h] = ∫hXfk|k − 1

(X|Z(k − 1))δX.
To derive a closed-form update equation for the multi-

path multitarget PHD filter, we assume that the predicted
multitarget distribution is a Poisson process:

Gkjk−1 h½ � ¼ eμs h½ �−μ ð16Þ

where s[h] = μ− 1∫h(x)Dk|k − 1(x)dx and μ = ∫Dk|k − 1(x)dx.
Thus, Eq. (15) can be written as

F g; h½ � ¼ exp

 
ðλc g½ �−λþ μs hq4D;k

h i
þ μs hq3D;kpD;k

X4
i¼1

pg;i

 !" #

þμs hq2D;kp
2
D;k

X3
i¼1

X4
j¼iþ1

pg;ipg;j

 !" #

þμs hqD;kp
3
D;k

X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

pg;ipg;jpg;m

 !" #

þμs hp4D;k
X
i¼1

X
j¼2

X
m¼3

X
n¼4

pg;ipg;jpg;mpg;n

 !" #
−μÞ

ð17Þ
Next, we deduce the formula for δF
δZ 0; h½ �. Note that we

set g = 0 because the formula for δF
δZ g; h½ � is very cumber-

some without setting it.
Lemma 1. The derivatives of F[g, h] is given by the

formula

δF
δZ

0; h½ � ¼ F 0; h½ �⋅
Y

Z
⋅
X
℘∠Z

Y
W∈℘

dW 0; h½ � ð18Þ
where the notation ‘℘ ∠ Z’ is shorthand for “℘ partitions
Z into cells W”, ∏Z =∏z ∈ Zλc(z),



dW 0; h½ � ¼

1þ μs hq3D;kpD;k
X4
i¼1

ℓz1;i

 !" #
if W ¼ z1f g

μs hq2D;kp
2
D;k

X3
i¼1

X4
j¼iþ1

X2
a¼1

X2
b ¼ 1
a≠b

ℓza;iℓzb;j

0
BB@

1
CCA

2
664

3
775 if W ¼ z1; z2f g

μs hqD;kp
3
D;k

X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

X3
a¼1

X3
b ¼ 1
a≠b

X3
c ¼ 1
a≠c
b≠c

ℓza;iℓzb;jℓzc;m

0
BBBBB@

1
CCCCCA

2
666664

3
777775 if W ¼ z1; z2; z3f g

μs hp4D;k
X
i¼1

X
j¼2

X
m¼3

X
n¼4

X4
a¼1

X4
b ¼ 1
a≠b

X4
c ¼ 1
a≠c
b≠c

X4
d ¼ 1
a≠d
b≠d
c≠d

ℓza;iℓzb;jℓzc;mℓzd ;n

0
BBBBBBBB@

1
CCCCCCCCA

2
666666664

3
777777775

if W ¼ z1; z2; z3; z4f g

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð19Þ
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and where
ℓz;i xð Þ ¼ gk;i zjxð Þ
λc zð Þ i ¼ 1;⋯; 4: ð20Þ
See Appendix 1 for the proof of Lemma 1.
emma 2. The multipath posterior PGFL G [h] is given as
L
Gkjk h½ � ¼ F0 h½ �⋅
X

℘∠Zk

Y
W∈℘

dW 0; h½ �X
℘ 0∠Zk

Y
W∈℘ 0dW 0; 1½ � ð21Þ

k|k
where
F0 h½ � ¼ exp μs h−1ð Þq4D;k
h i	 


ð22Þ
and dW[0, h] is the Eq. (19).
See Appendix 2 for the proof of Lemma 2.

ccording to Lemmas 1 and 2, we can obtain the MP-PHD filter update equation in Proposition 1 as follows:
A
Dkjk xjZ kð Þ
	 


≅LZk xjZ k−1ð Þ
	 


⋅Dkjk−1 xjZ k−1ð Þ
	 


ð23Þ

Proposition 1. The update equation for the MP-PHD filter is
where
LZk xjZ k−1ð Þ
	 


¼ q4D;k xð Þ þ
X
℘∠Zk

ω℘⋅
X
W∈℘

bW
dW

ð24Þ
here
ω℘ ¼
Y

W∈℘
dWX

℘ 0∠Zk

Y
W∈℘ 0dW

ð25Þ
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where
dW ¼

1þ Dkjk−1 q3D;kpD;k
X4
i¼1

ℓz1;i

 !" #
if W ¼ z1f g

Dkjk−1 q2D;kp
2
D;k

X3
i¼1

X4
j¼iþ1

X2
a¼1

X2
b ¼ 1
a≠b

ℓza;iℓzb;j

0
BB@

1
CCA

2
664

3
775 if W ¼ z1; z2f g

Dkjk−1 qD;kp
3
D;k

X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

X3
a¼1

X3
b ¼ 1
a≠b

X3
c ¼ 1
a≠c
b≠c

ℓza;iℓzb;jℓzc;m

0
BBBBB@

1
CCCCCA

2
666664

3
777775 if W ¼ z1; z2; z3f g

Dkjk−1 p4D;k
X
i¼1

X
j¼2

X
m¼3

X
n¼4

X4
a¼1

X4
b ¼ 1
a≠b

X4
c ¼ 1
a≠c
b≠c

X4
d ¼ 1
a≠d
b≠d
c≠d

ℓza;iℓzb;jℓzc;mℓzd ;n

0
BBBBBBBB@

1
CCCCCCCCA

2
666666664

3
777777775

if W ¼ z1; z2; z3; z4f g

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð26Þ
 !8
bW ¼

q3D;kpD;k
X4
i¼1

ℓz1;i if W ¼ z1f g

q2D;kp
2
D;k

X3
i¼1

X4
j¼iþ1

X2
a¼1

X2
b ¼ 1
a≠b

ℓza;iℓzb;j

0
BB@

1
CCA if W ¼ z1; z2f g

qD;kp
3
D;k

X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

X3
a¼1

X3
b ¼ 1
a≠b

X3
c ¼ 1
a≠c
b≠c

ℓza ;iℓzb;jℓzc;m

0
BBBBB@

1
CCCCCA if W ¼ z1; z2; z3f g

p4D;k
X
i¼1

X
j¼2

X
m¼3

X
n¼4

X4
a¼1

X4
b ¼ 1
a≠b

X4
c ¼ 1
a≠c
b≠c

X4
d ¼ 1
a≠d
b≠d
c≠d

ℓza;iℓzb;jℓzc;mℓzd ;n

0
BBBBBBBB@

1
CCCCCCCCA

if W ¼ z1; z2; z3; z4f g

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð27Þ
See Appendix 3 for the proof of Proposition 1.

4 Gaussian mixture implementation of the
MP-PHD filter
According to the GM implemented in the standard PHD fil-
ter in [25], a GM-PHD filter recursion can be derived for
the multipath target tracking. Due to the MP-PHD filter pre-
diction equation for the OTHR are identical to the standard
PHD filter, the GM prediction equation of MP-PHD filter
are the same as the standard GM-PHD filter, where the de-
tails can be found in [25]. Therefore, in this section, we only
consider the GM update equation of the MP-PHD filter.

4.1 Gaussian mixture MP-PHD
To derive a closed-form solution to the update equation
of the MP-PHD filter, we assume that each target follows
a linear-Gaussian transition and measurement model, i.e.,
f kjk−1 xjζð Þ ¼ N x; Fkjk−1xkjk−1;Qkjk−1
	 


ð28Þ

gk;i zjxð Þ ¼ N z;Hk;ix;Rk;i
� �

; i ¼ 1;⋯; 4 ð29Þ
where N(⋅;m, P) denotes a Gaussian density with mean
m and covariance P. F is the state transition matrix, Q is
the process noise covariance, Hk,i is the observation
matrix, and Rk,i is the observation noise covariance. The
survival and detection probability are assumed as a con-
stant, i.e., pS,k(x) = pS,k, pD,k(x) = pD,k. To facilitate the
derivation of the closed-form solution, we define an
intermediate operator Gi

k;z by

Gi
k;zaϕ

	 

xð Þ ¼ gk;i zajxð Þϕ xð Þ ð30Þ

If gk,i(za|x) =N(za;Hk,ix, Rk,i) and ϕ(x) =N(z;mϕ, Pϕ),

then Gi
k;zaϕ

	 

xð Þ is a Gaussian density
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Gi
k;zaϕ

	 

xð Þ ¼ ρk;i zað ÞN x;mk;i; Pk;i

� � ð31Þ

where

ξkjk−1;i ¼ Hk;imϕ ð32Þ

Skjk−1;i ¼ Rk;i þ Hk;iPϕH
T
k;i ð33Þ

ρk;i zað Þ ¼ N za; ξkjk−1;i; Skjk−1;i
� � ð34Þ

mk;i ¼ mϕ þ Kk;i za−ξkjk−1;i
� � ð35Þ

Pk;i ¼ I−Kk;iHk;i
� �

Pϕ ð36Þ

Kk;i ¼ PϕH
T
k;i Skjk−1;i
� �−1 ð37Þ

We suppose that the predicted PHD filter at time k − 1
has the following GM representation:

Dkjk−1 xð Þ ¼
XJ kjk−1
l¼1

ω lð Þ
kjk−1⋅N x;m lð Þ

kjk−1;P
lð Þ
kjk−1

	 


¼
XJ kjk−1
l¼1

ω lð Þ
kjk−1⋅ϕ

lð Þ
kjk−1 xð Þ

ð38Þ

where ω lð Þ
kjk−1 is the weight of the lth component and Jk|k− 1

is the predicted number of the components. Then, the up-
date equation at time k can be expressed as a GM of

Dkjk xð Þ ¼ DND
kjk xð Þ þ

X
℘∠Zk

X
W∈℘

DD
kjk x;Wð Þ ð39Þ

The GM components DND
kjk xð Þ , handling the no detec-

tions cases, are given by

DND
kjk xð Þ ¼

XJ kjk−1
l¼1

ω lð Þ
kjk⋅N x;m lð Þ

kjk ;P
lð Þ
kjk

	 

ð40Þ

ω lð Þ
kjk ¼ qD;k

4ω lð Þ
kjk−1 ð41Þ

m lð Þ
kjk ¼ m lð Þ

kjk−1 ð42Þ

P lð Þ
kjk ¼ P lð Þ

kjk−1 ð43Þ

The GM components DD
kjk x;Wð Þ , handling detected

target cases, are given by

DD
kjk xð Þ ¼

XJkjk−1
l¼1

ω lð Þ
kjk⋅N x;m lð Þ

kjk ;P
lð Þ
kjk

	 

ð44Þ
ω lð Þ
kjk ¼ ω℘⋅

bW
dW

� � lð Þ
⋅ω lð Þ

kjk−1 ð45Þ

ω℘ ¼
Y

W∈℘
dWX

℘ 0∠Zk

Y
W∈℘ 0dW

ð46Þ

when W = {z1},

dW ¼ 1þ
XJkjk−1
l¼1

qD;k
3pD;k

λc z1ð Þ ω lð Þ
kjk−1

X4
i¼1

Gi
k;z1ϕ

lð Þ
kjk−1

	 

xð Þ

ð47Þ

bW
dW

� � lð Þ
¼

qD;k
3pD;k

X4
i¼1

Gi
k;z1ϕ

lð Þ
kjk−1

	 

xð Þ

λc z1ð Þ þ qD;k3pD;k
XJkjk−1
r¼1

ω rð Þ
kjk−1

X4
i¼1

Gi
k;z1ϕ

rð Þ
kjk−1

	 

xð Þ

ð48Þ
when W = {z1, z2}

dW ¼ qD;k
2pD;k

2

λc z1ð Þλc z2ð Þ
XJkjk−1
l¼1

ω lð Þ
kjk−1

X3
i¼1

X4
j¼iþ1

X2
a¼1

X2
b ¼ 1
a≠b

Gi
k;za ∘G

j
k;zb

ϕ lð Þ
kjk−1

	 

xð Þ

ð49Þ

bW
dW

� � lð Þ
¼

X3
i¼1

X4
j¼iþ1

X2
a¼1

X2
b ¼ 1
a≠b

Gi
k;za ∘G

j
k;zb

ϕ lð Þ
kjk−1

	 

xð Þ

XJkjk−1
r¼1

ω rð Þ
kjk−1

X3
i¼1

X4
j¼iþ1

X2
a¼1

X2
b ¼ 1
a≠b

Gi
k;za ∘G

j
k;zb

ϕ rð Þ
kjk−1

	 

xð Þ

ð50Þ
when W = {z1, z2, z3}

dW ¼ qD;kpD;k
3

λc z1ð Þλc z2ð Þλc z3ð Þ
XJ kjk−1
l¼1

ω lð Þ
kjk−1

X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

X3
a¼1

X3
b ¼ 1

a≠b

X3
c ¼ 1

a≠c

b≠c

� Gi
k;za ∘G

j
k;zb

∘Gm
k;zcϕ

lð Þ
kjk−1

	 

xð Þ

ð51Þ

bW
dW

� � lð Þ
¼

X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

X3
a¼1

X3
b ¼ 1
a≠b

X3
c ¼ 1
a≠c
b≠c

Gi
k;za ∘G

j
k;zb

∘Gm
k;zcϕ

lð Þ
kjk−1

	 

xð Þ

XJkjk−1
r¼1

ω rð Þ
kjk−1

X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

X3
a¼1

X3
b ¼ 1
a≠b

X3
c ¼ 1
a≠c
b≠c

Gi
k;za ∘G

j
k;zb

∘Gm
k;zcϕ

rð Þ
kjk−1

	 

xð Þ

ð52Þ

when W = {z1, z2, z3, z4}



dW ¼ pD;k
4

λc z1ð Þλc z2ð Þλc z3ð Þλc z4ð Þ
XJ kjk−1
l¼1

ω lð Þ
kjk−1

X
i¼1

X
j¼2

X
m¼3

X
n¼4

X4
a¼1

X4
b ¼ 1
a≠b

X4
c ¼ 1
a≠c
b≠c

X4
d ¼ 1
a≠d
b≠d
c≠d

Gi
k;za ∘G

j
k;zb

∘Gm
k;zc ∘G

n
k;zdϕ

lð Þ
kjk−1

	 

xð Þ ð53Þ

bW
dW

� � lð Þ
¼

X
i¼1

X
j¼2

X
m¼3

X
n¼4

X4
a¼1

X4
b ¼ 1
a≠b

X4
c ¼ 1
a≠c
b≠c

X4
d ¼ 1
a≠d
b≠d
c≠d

Gi
k;za ∘G

j
k;zb

∘Gm
k;zc ∘G

n
k;zdϕ

lð Þ
kjk−1

	 

xð Þ

XJ kjk−1
r¼1

ω rð Þ
kjk−1

X
i¼1

X
j¼2

X
m¼3

X
n¼4

X4
a¼1

X4
b ¼ 1
a≠b

X4
c ¼ 1
a≠c
b≠c

X4
d ¼ 1
a≠d
b≠d
c≠d

Gi
k;za ∘G

j
k;zb

∘Gm
k;zc ∘G

n
k;zdϕ

rð Þ
kjk−1

	 

xð Þ

ð54Þ
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where ∘ denotes a composition.

4.2 Implementation issues

1) Nonlinear measurement model: The above Gaussian
mixture MP-PHD filter can be extended to a nonlin-
ear measurement model using the EKF. Due to that
the dynamic model in the OTHR is linear, we only
apply EKF to deal with the nonlinear measurement
model in the update step of MP-PHD filter. Use the
approximations (55) and (56) in place of the originals
(32) and (33), and use the linearizations in (57) to
calculate (36) and (37)

ξkjk−1;i ¼ hk;i mϕ ; 0
� � ð55Þ

Skjk−1;i ¼ Uk;iRk;iU
T
k;i þ Hk;iPϕH

T
k;i ð56Þ

where

Hk;i ¼ ∂hk;i x; 0ð Þ
∂x x¼mϕ

 ð57Þ

2) Managing mixture components: Similar to the
standard GM-PHD filter, the techniques of merging
and pruning must be used to reduce the exponential
growth of the number of Gaussian components,
which the merging and pruning methods specific to
Gaussian components can be found in [25].

3) Computational complexity: As is shown in Eq. (24),
the MP-PHD filter requires all partitions of the
current measurements for updating, ℘∠ Zk denotes
that ℘ is one partition of the measurement set Zk and
W∈℘ denotes that W is one cell of ℘. Note that W
does not include null set. For instance, Zk = {z1, z2, z3}
can be partitioned as follows [19–21]

℘1 ¼ z1f g; z2f g; z3f gf g; ℘2 ¼ z1; z2f g; z3f gf g;
℘3 ¼ z1f g; z2; z3f gf g;
℘4 ¼ z1; z3f g; z2f gf g; ℘5 ¼ z1; z2; z3f gf g;

whereas with the number of measurements growing, the
number of partitions grows very large, which is compu-
tationally infeasible.
From the above analysis, we can see that the computa-

tional load required by the proposed MP-PHD filter is
similar to that of the extended targets PHD filter [18–22].
Note that some methods, such as K-means++ method
[19] and spectral clustering [20], have been suggested for
the implementation of the extended targets PHD filter to
reduce the number of partitions. However, these methods
that applied in the extended targets are measurement
dependent. Since the measurement function of each
measurement mode can be very different in OTHR. These
methods may fail with the multipath tracking problem in
OTHR. To limit the number of partitions in the MP-PHD
filter, some approximations are necessary in this paper.
First, we can use the gating technology with multiple val-
idation gates to reduce the number of measurements for
each propagation model before the update step at each
time [11], and then we can use the similar method of “ef-
fective binary partition” that was implemented in [26] to
reduce the number of partitions. For space considerations
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which are not the focus of this paper, we omit the details.
Note that we used only a simple partition technique in
our implementation, and the development of more effi-
cient implementations will be a future task.

5 Numerical simulations
The performance of the proposed MP-PHD filter will be
evaluated through two numerical examples, including the
single target and multitarget tracking in this section. And
we use the optimal subpattern assignment (OSPA) metric
to evaluate the performance of the proposed algorithm [27].

5.1 Experiment 1
In this subsection, we have designed an experiment to com-
pare the MP-PHD filter with the standard single-path PHD
filter in a single target tracking scenario. Note here that the
standard single-path PHD filter uses one specific mode
(mode EE used in this experiment) to track the targets, and
we use the gating technology to reduce the number of mea-
surements for propagation model EE before the update step
at each time. The two filters are simulated with the same
Fig. 2 The scenario of true target trajectory and OTHR multipath detection
detections without clutter in slant coordinates
environment in OTHR. It is assumed that a single non-
maneuvering target is in the presence of clutter. Clutter is
generally modeled as a Poisson RFS with the intensity func-
tion κk(y) = λVu(y), where u(⋅) indicates the uniform density
over the region [1000, 1400]km × [0.069813, 0.17453]rad,
V = 41.8868 km ⋅ rad is the “volume” of this surveillance re-
gion, and λ = 4.7743(km ⋅ rad)− 1 is the average number of
the clutter returns per unit volume. This translates to 200
clutter measurements per scan. And each propagation
model has the same detection probability and target survive
probability that are set to pD,k = 0.6 and pS,k = 0.95. To keep
computations tractable, the Gaussian component pruning
is applied in this numerical example with a pruning thresh-
old τ = 10− 5, a merging threshold U = 20, and a maximum
number of Gaussian components Jmax = 100. It is assumed
that a single target moving in the surveillance region with
the initial target state x0 = (1100 km, 0.15 km/s,
0.10472 rad, 8.72665e−05 rad/s). Other simulation parame-
ters are defined as the same as [11]. The true target trajec-
tory and OTHR multipath detections without clutter under
pD,k = 0.6 are shown in Fig. 2. It is shown that the receiver
s. a True target trajectory in ground coordinates. b OTHR multipath



Fig. 3 Target tracking produced by a MP-PHD filter and a single-path PHD filter. a Standard single-path PHD filter. b MP-PHD filter. c Standard
single-path PHD filter. d MP-PHD filter
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can obtain more than one measurement from the same tar-
get at one scan.
The target tracking results of the MP-PHD filter

and the standard single-path PHD filter for one
simulation are shown in Fig. 3. As the position esti-
mates are shown in (a) and (b), we can see that the
MP-PHD filter provides more accurate position esti-
mates for almost all the time. Moreover, for the
simulation results, shown in (c) and (d), using the
MP-PHD, there is only one false estimated number
at time 8.

5.2 Experiment 2
In this scenario, we assumed that the number of targets
is constant. The performance of the GM-MP-PHD filter
is compared with the MD-JPDA filter. Two filters are
simulated with the same environment in OTHR tracking
system, and we also use the gating technology with mul-
tiple validation gates to reduce the number of measure-
ments in the MD-JPDA filter. The experiment goes on
for 600 s (sampling period T = 20 s), and we assumed
that two targets appear with initial state target 1 x1 =
(1130 km, 0.12 km/s, 0.10472 rad, 8.72665e−05 rad/s)
and target 2 x2 =(1125 km, −0.1 km/s, 0.11472 rad,
7.92665e−05 rad/s), respectively. And each propagation
model has the same target survive probability and detection
probability that are set to pS,k = 0.95 and pD,k = 0.6. Other
parameters are adopted as the same as the experiment 1.
The position root mean squared error (RMSE) of the

two filters are shown in Fig. 4. It is shown that the pro-
posed MP-PHD filter has a notable performance gain
over the MD-JPDA filter. This is due to the fact that the
proposed MP-PHD filter encapsulates all the infor-
mation about the targets by enumerating all of the
Fig. 4 Position RMSE for a MP-PHD filter and a MD-JPDA filter with OTHR d
association between propagation paths and measure-
ments. However, only a subset of the associations (not
all the permutations of the propagation paths) is used in
the MD-JPDA filter, this is the reason degrades the
performance of MD-JPDA filter.
To evaluate the computational time of the proposed al-

gorithm, the averaged time is computed in MATLAB7.1
on an Intel CORE i5 CPU computer with 2 GB of RAM.
The proposed GM-MP-PHD consumed approximately
8.6 s per MC run and the MD-JPDA consumed approxi-
mately 1.1 s. Although the proposed MP-PHD filter has
high computational time, it has better performance than
the MD-JPDA filter.

5.3 Experiment 3
To validate the tracking performance of MP-PHD filter in
multipath multitarget tracking, in this experiment, we have
designed a multiple track scenario including three non-
maneuvering targets where the target number is changing
in OTHR. The experiment goes on for 800 s with the sam-
pling period T = 20 s, and it is assumed that target 1 and
target 2 appear in the course of the whole experiment
with initial state x1 = (1100 km, 0.15 km/s, 0.10472 rad,
8.72665e−05 rad/s) and x2 = (1170 km, −0.14 km/s,
0.11472 rad, 7.72665e−05 rad/s), respectively, target
3 appears at t = 180 s and disappears at t = 480 s with the
initial states x3 = (1170 km, −0.05 km/s, 0.15701 rad,
−8.72665e−05 rad/s). In this experiment, there are no
spawning targets for simplification. Other simulation con-
ditions are the same as the experiment 1.

1) One simulation: The true target trajectory is shown in
Fig. 5, and the position estimates of the MP-PHD
filter for one simulation compared with the standard
ata



Fig. 5 The true target trajectory
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single-path PHD filter are shown in Fig. 6, the estimation
of target number is shown in Fig. 7. As shown in Figs. 6
and 7, the MP-PHD filter can accurately estimate the
target state and the target number of the multipath
multitarget tracking in OTHR. In comparison, the
simulation result shows that the MP-PHD filter
provides more accurate position estimates for almost all
the times.

2) 100 Monte Carlo simulations: We compare the MP-
PHD filter with the standard single-path PHD filter
Fig. 6 The true and estimation target trajectory (pD,k = 0.6)
over 100 Monte Carlo simulations with different
detection probability pD,k = 0.6 and pD,k = 0.99,
respectively. We use the OSPA metric to evaluate
the performance, the parameters of OSPA distance
are set to the cutoff parameter c = 15 km and the
order parameter p = 2 (see [27] for more details).

Figure 8 shows the average of OSPA distance com-
parison between the MP-PHD filter and the standard
single-path PHD filter, and the average of estimated



Fig. 7 The true and estimated target number (pD,k = 0.6)
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number is shown in Fig. 9. The simulation results
demonstrate that the tracking performance of the
MP-PHD filter surpasses the performance of the
standard single-path PHD filter. Moreover, it can ac-
curately estimate the target state and the target
number with low detection probability under the
Fig. 8 The average of OSPA distance
multitarget tracking circumstance. As shown in
Figs. 8 and 9, the standard single-path PHD filter
cannot deal with the multitarget tracking problem
effectively under low detection probability. This is
due to the fact that the MP-PHD filter use four path
measurements to track the targets, and then, it can



Fig. 9 Average of estimated target number
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more effectively use the measurements from the tar-
gets under low detection probability.
6 Conclusions
In this paper, the MP-PHD filter, which tracks the
multipath multitarget in OTHR, has been proposed.
The MP-PHD filter is based on the theory of FISST,
the FISST is employed to derive the update equation,
and then a closed-form solution of MP-PHD filter in
the form of GM has been proposed. The EKF is used
to deal with the nonlinear problem of the measure-
ment model. Simulation results show that the pro-
posed MP-PHD filter has a notable performance gain
over the MD-JPDA filter.
Similar to the standard PHD filter, the MP-PHD filter

should be improved for some problems. For example, as
the number of targets in the surveillance region is large,
the estimated target number is unreliable. To solve this
problem, a modified PHD filter name, cardinalized PHD
filter, is proposed by Mahlar [28, 29]. Our future work
could derive a CPHD filter which can be applied to the
multitarget tracking in OTHR.
7 Appendices
7.1 Appendix 1: Proof of Lemma 1
This lemma is proved by mathematical induction.
For the initial induction step, assume Z = {z1}. In this
case there is only one partition, ℘ = {{z1}}, and we
get
δF
δz1

g; h½ �j g¼0 ¼ F g; h½ �λc z1ð Þ 1þ μs hq3D;kpD;k
X4
i¼1

ℓz1;i

 !" # 

þμs hq2D;kp
2
D;k

X3
i¼1

X4
j¼iþ1

ℓz1;ipg;j þ pg;iℓz1;j
	 
 !" #

þμs

"
hqD;kp

3
D;k

 X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

ðℓz1;ipg;jpg;m

þpg;iℓz1;jpg;m þ pg;ipg;jℓz1;mÞ
!#!

þμs

"
hp4D;k

 
ℓz1;1pg;2pg;3pg;4 þ pg;1ℓz1;2pg;3pg;4

þpg;1pg;2ℓz1;3pg;4 þ pg;1pg;2pg;3ℓz1;4

!#!
jg¼0

¼ F 0; h½ �λc z1ð Þ 1þ μs hq3D;kpD;k
X4
i¼1

ℓz1;i

 !" # !

¼ F 0; h½ �λc z1ð Þd z1f g 0; h½ �
ð58Þ

Now, assume that we have established Eq. (18) for
Z = {z1,⋯, zm} with |Z| =m > 1. We are to establish Eq. (18)
for Z = {z1,⋯, zm, zm + 1} and |Z| =m + 1. Using the prod-
uct rule for functional derivatives, we get

δ2F
δZδzmþ1

g; h½ �j g¼0 ¼ δF
δzmþ1

g; h½ �jg¼0⋅
Y

Z
⋅
X
℘∠Z

Y
W∈℘

dW 0; h½ �
 !

þF 0; h½ �⋅
Y

Z
⋅
X
℘∠Z

δ

δzmþ1

Y
W∈℘

dW g; h½ �
 !

g¼0


ð59Þ

On the one hand,
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δF
δzmþ1

g; h½ � g¼0 ¼ F 0; h½ �λc zmþ1ð Þd zmþ1f g 0; h½ � ð60Þ

On the other hand,

δ

δzmþ1

Y
W∈℘

dW g; h½ � g¼0 ¼
Y
W∈℘

dW 0; h½ �
 !

⋅
X
W∈℘

1
dW 0; h½ �

δdW

δzmþ1
g; h½ � g¼0


ð61Þ

where
δdW
δzmþ1

g; h½ �jg¼0

λc zmþ1ð Þ ¼

μs hq2D;kp
2
D;k

X3
i¼1

X4
j¼iþ1

X2
a¼1

X2
b ¼ 1
a≠b

ℓza;iℓzb;j

0
BB@

1
CCA

2
664

3
775 if W ¼ z2f g

μs hqD;kp
3
D;k

X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

X3
a¼1

X3
b ¼ 1
a≠b

X3
c ¼ 1
a≠c
b≠c

ℓza;iℓzb;jℓzc;m

0
BBBBB@

1
CCCCCA

2
666664

3
777775 if W ¼ z2; z3f g

μs hp4D;k
X
i¼1

X
j¼2

X
m¼3

X
n¼4

X4
a¼1

X4
b ¼ 1
a≠b

X4
c ¼ 1
a≠c
b≠c

X4
d ¼ 1
a≠d
b≠d
c≠d

ℓza;iℓzb;jℓzc;mℓzd ;n

0
BBBBBBBB@

1
CCCCCCCCA

2
666666664

3
777777775

if W ¼ z2; z3; z4f g

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð62Þ
In the above equation, we use z1 to replace zm + 1 for
simplicity. And it is easy to find that δF

δzmþ1
g; h½ � �

g¼0 ¼ λc zmþ1ð ÞdW∪ zmþ1f g 0; h½ � . Putting this all together,
Eq. (59) can be written as

δ2F
δZδzmþ1

g; h½ �j g¼0 ¼ F 0; h½ �⋅
Y

Z∪ zmþ1f g⋅
X
℘∠Z

Y
W∈℘∪ zmþ1f gf g

dW 0; h½ �
0
@

1
A

þF 0; h½ �⋅
Y

Z∪ zmþ1f g⋅
X
℘∠Z

Y
W∈℘

dW 0; h½ �
 !

⋅

X
W∈℘

dW∪ zmþ1f g 0; h½ �
dW 0; h½ �

 !
ð63Þ

Note that all partitions of the Z ∪ {zm+ 1} have the following
forms. First, take a partition ℘ of the set Z and add the cell
{zm+1} to obtain a new partition ℘1(zm+ 1) =℘ ∪ {{zm+1}} of
Z ∪ {zm+1}. This action is what is denoted mathematically in
the first line of Eq. (63). Secondly, remove a cell W from the
partition ℘ and replace it with W ∪ {zm+1} of a new partition
℘2(zm+1,W) = {W ∪ {zm+1}} ∪ ∪ V∈℘− {W}{V} of Z ∪ {zm+ 1}.
This action is what is denoted by the product

Y
W∈℘

dW 0; h½ �
 !

⋅
X
W∈℘

dW∪ zmþ1f g 0; h½ �
dW 0; h½ �

 !
ð64Þ

in the second line of Eq. (63). Consequently, Eq. (63)
becomes

δ2F
δZδzmþ1

g; h½ � g¼0 ¼ F 0; h½ �⋅
Y

Z∪ zmþ1f g⋅
X

℘∠Z∪ zmþ1f g

Y
W∈℘

dW 0; h½ �
 !

ð65Þ

and this ends the inductive step.

7.2 Appendix 2: Proof of Lemma 2
From Eq. (10), we get
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Gkjk h½ �¼
δF
δZk

0; h½ �
δF
δZk

0; 1½ �

¼ F 0; h½ �
F 0; 1½ � ⋅

X
℘∠Zk

Y
W∈℘

dW 0; h½ �X
℘ 0∠Zk

Y
W∈℘ 0dW 0; 1½ �

¼ exp μs h−1ð Þq4D;k
h i	 


⋅

X
℘∠Zk

Y
W∈℘

dW 0; h½ �X
℘ 0∠Zk

Y
W∈℘ 0dW 0; 1½ �

ð66Þ

7.3 Appendix 3: Proof of proposition 1
The posterior multipath PHD filter can be calculated as

Dkjk xð Þ ¼ δGkjk
δx

h½ � h¼1j ð67Þ

Thus, from Eq. (21), we must first determine

δGkjk
δx

h½ � ¼ δF0

δx
h½ �⋅
X

℘∠Zk

Y
W∈℘

dW 0; h½ �X
℘ 0∠Zk

Y
W∈℘ 0dW 0; 1½ �

þ F0 h½ �⋅
X

℘∠Zk

δ

δx

Y
W∈℘

dW 0; h½ �X
℘ 0∠Zk

Y
W∈℘ 0dW 0; 1½ � ð68Þ

On the one hand, use Eq. (22) and get

δF0

δx
h½ � ¼ F0 h½ �⋅Dkjk−1 xð Þ⋅q4D;k xð Þ ð69Þ

On the other hand,

δ

δx

Y
W∈℘

dW 0; h½ � ¼
Y
W∈℘

dW 0; h½ �
X
W∈℘

δdW
δx 0; h½ �
dW 0; h½ � ð70Þ

where from Eq. (19), we have
δdW
δx 0; h½ �
Dkjk−1 xð Þ ¼ bW ¼

q3D;k xð ÞpD;k xð Þ
X4
i¼1

ℓz1;i xð Þ
 !

i

q2D;k xð Þp2D;k xð Þ
X3
i¼1

X4
j¼iþ1

X2
a¼1

X2
b ¼ 1
a≠b

ℓza;i xð Þℓzb;jð

0
BB@

qD;k xð Þp3D;k xð Þ
X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

X3
a¼1

X3
b ¼ 1
a≠b

X3
c ¼ 1
a≠c
b≠c

ℓz

0
BBBBB@

p4D;k xð Þ
X
i¼1

X
j¼2

X
m¼3

X
n¼4

X4
a¼1

X4
b ¼ 1
a≠b

X4
c ¼ 1
a≠c
b≠c

X4
d ¼ 1
a≠d
b≠d
c≠d

ℓz

0
BBBBBBBB@

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
Substituting Eqs. (69) and (71) into Eq. (68) yields

δGkjk
δx h½ �

F0 h½ �⋅Dkjk−1 xð Þ ¼ q4D;k xð Þ⋅
X

℘∠Zk

Y
W∈℘

dW 0; h½ �X
℘ 0∠Zk

Y
W∈℘ 0dW 0; 1½ �

þ

X
℘∠Zk

Y
W∈℘

dW 0; h½ �
X

W∈℘

bW
dW 0; h½ �X

℘ 0∠Zk

Y
W∈℘ 0dW 0; 1½ �

ð72Þ

Setting h = 1 in the above equation then yields

Dkjk xð Þ
Dkjk−1 xð Þ ¼ q4D;k xð Þ þ

X
℘∠Zk

Y
W∈℘

dW 0; 1½ �
X

W∈℘

bW
dW 0; 1½ �X

℘ 0∠Zk

Y
W∈℘ 0dW 0; 1½ �

¼ q4D;k xð Þ þ
X
℘∠Zk

Y
W∈℘

dW 0; 1½ �X
℘ 0∠Zk

Y
W∈℘ 0dW 0; 1½ �⋅

X
W∈℘

bW
dW 0; 1½ �

¼ q4D;k xð Þ þ
X
℘∠Zk

ω℘⋅
X
W∈℘

bW
dW

ð73Þ

where

ω℘ ¼
Y

W∈℘
dWX

℘ 0∠Zk

Y
W∈℘ 0dW

ð74Þ
f W ¼ z1f g

xÞ

1
CCA if W ¼ z1; z2f g

a;i xð Þℓzb;j xð Þℓzc;m xð Þ

1
CCCCCA if W ¼ z1; z2; z3f g

a;i xð Þℓzb;j xð Þℓzc;m xð Þℓzd ;n xð Þ

1
CCCCCCCCA

if W ¼ z1; z2; z3; z4f g

ð71Þ



dW ¼ dW 0; 1½ � ¼

1þ Dkjk−1 q3D;kpD;k
X4
i¼1

ℓz1;i

 !" #
if W ¼ z1f g

Dkjk−1 q2D;kp
2
D;k

X3
i¼1

X4
j¼iþ1

X2
a¼1

X2
b ¼ 1
a≠b

ℓza;iℓzb;j

0
BB@

1
CCA

2
664

3
775 if W ¼ z1; z2f g

Dkjk−1 qD;kp
3
D;k

X2
i¼1

X3
j¼iþ1

X4
m¼jþ1

X3
a¼1

X3
b ¼ 1
a≠b

X3
c ¼ 1
a≠c
b≠c

ℓza;iℓzb;jℓzc;m

0
BBBBB@

1
CCCCCA

2
666664

3
777775 if W ¼ z1; z2; z3f g

Dkjk−1 p4D;k
X
i¼1

X
j¼2

X
m¼3

X
n¼4

X4
a¼1

X4
b ¼ 1
a≠b

X4
c ¼ 1
a≠c
b≠c

X4
d ¼ 1
a≠d
b≠d
c≠d

ℓza;iℓzb;jℓzc;mℓzd ;n

0
BBBBBBBB@

1
CCCCCCCCA

2
666666664

3
777777775

if W ¼ z1; z2; z3; z4f g

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð75Þ
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