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Abstract

to demonstrate the effectiveness of the proposed filter.

set statistics (FISST)

Conventional multitarget tracking systems presume that each target can produce at most one measurement

per scan. Due to the multiple ionospheric propagation paths in over-the-horizon radar (OTHR), this assumption is
not valid. To solve this problem, this paper proposes a novel tracking algorithm based on the theory of finite set
statistics (FISST) called the multipath probability hypothesis density (MP-PHD) filter in cluttered environments.
First, the FISST is used to derive the update equation, and then Gaussian mixture (GM) is introduced to derive
the closed-form solution of the MP-PHD filter. Moreover, the extended Kalman filter (EKF) is presented to deal
with the nonlinear problem of the measurement model in OTHR. Eventually, the simulation results are provided
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1 Introduction
Over-the-horizon radar (OTHR) exploits skywave propa-
gation of high-frequency signals to detect and track tar-
gets, which are different from the conventional radar. It
has received wide attention because of its wide area sur-
veillance, long detection range, strong anti-stealth ability,
the capability of the long early warning time, and so on.
In OTHR, a significant problem is the effect of multi-
path propagation, which causes multiple detections via
different propagation paths for a target with missed de-
tections and false alarms at the receiver [1-6]. Neverthe-
less, the conventional tracking algorithms, such as
probabilistic data association (PDA) [7-9], presume that
a single-measurement per target, it may consider the
other measurements of the same target as clutter, and
multiple tracks are produced when a single target is
present. Therefore, these methods cannot effectively
solve the multipath propagation problem.

In order to solve the multipath propagation problem
of OTHR, lots of algorithms have been proposed. Such

* Correspondence: ginyong1208@163.com

'School of Electronic Information and Communications, Huazhong University of
Science and Technology, Wuhan 430074, China

Full list of author information is available at the end of the article

@ Springer

as the multipath viterbi data association (MVDA) [10]
and modified probabilistic data association (MPDA)
[11]. However, these conventional algorithms involve
data association problem and the complexity of the
computation. In addition, it is noted that most of the
existing algorithms in OTHR focus on a single target.
Therefore, the multitarget tracking algorithm in OTHR
is still an open problem.

Most of the conventional algorithms about multitarget
tracking, such as multiple hypothesis tracker (MHT)
[12], joint probabilistic data association (JPDA) [13, 14],
and probability hypothesis density (PHD) filter [15], as-
sume the following measurement model: (1) every target
produces at most one measurement and (2) any meas-
urement is produced by a target or clutter. In this paper,
we consider the measurement model which satisfies
these assumptions as standard measurement model.
However, many measurement models in real-life target
tracking scenarios do not satisfy these prerequisite of
assumption, which are treated as nonstandard measure-
ment model. Recently, the multiple detection joint prob-
abilistic data association (MD-JPDA) filter [16] based on
the JPDA framework was proposed to deal with the
multiple detection targets, which can apply to OTHR.
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However, this algorithm involves complexity data associ-
ation. To solve this problem of multitarget tracking,
more effective methods should be taken into account to
implement in OTHR.

In 2009, Mahler derived a series of “second-generation”
PHD/cardinalized probability hypothesis density (CPHD)
filters [17] which addressed the tracking problems for
nonstandard multitarget measurement model, such as
extended targets [18-21], unresolved target [22], un-
known clutter [23], and superpositional sensors [24].
As for the multipath propagation in OTHR, the re-
ceiver can obtain more than one measurement from
the same target, which means that it violates the second
assumption of the standard measurement model. There-
fore, the multipath tracking model in OTHR is one of
the nonstandard measurement models, such that
conventional multitarget tracking algorithms would
no longer be applicable.

To solve the multipath propagation problem of multi-
target, we propose a novel tracking algorithm based on
the theory of finite set statistics (FISST) called the multi-
path probability hypothesis density (MP-PHD) filter in
OTHR. First, inspired by Mahler’s work in [17], the
FISST is used to derive the update equation of the MP-
PHD filter. Then, a method of Gaussian mixture (GM) is
introduced to derive the closed-form solution of the
MP-PHD filter. In addition, the extended Kalman filter
(EKF) is presented to deal with the nonlinear problem of
the measurement model in OTHR. The simulation
results demonstrate that the MP-PHD filter can accur-
ately estimate the target state and the target number for
low detection probability under the multitarget tracking
circumstance.

This paper is organized as follows. Section 2 presents
the problem formulation for OTHR. Section 3 then for-
mulates the random finite set (RFS) measurement model
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for the OTHR tracking problem and derives the MP-
PHD filter in OTHR based on the FISST. A closed-form
implementation of MP-PHD filter is presented in
Section 4. In Section 5, the simulation results are
presented. Finally, some conclusions and future works
are discussed in Section 6.

2 Problem formulation
2.1 Dynamic model
The geometry of the target and OTHR system is
depicted in Fig. 1. The target state vector of OTHR at
time k is defined by xx = [p(k), p(k), b(k),.b(k)] , x¢€3,
where p(k) = p1(k), .p(k), b(k), and .b(k) are the ground
range, range rate, bearing, and bearing rate and J is the
space of the ground coordinates, the dash denotes
transposition.

Since the distance between the receiver and the targets
is large, we usually assume that the state equation of
OTHR is linear and discrete-time. It could be modeled as

Xk = Fxpeo1 + up1 (1)

where u;_, is a zero mean, white Gaussian noise with
covariance Q_i, and the state transition matrix F is
given by

=N e
S O =N
o= OO
_ N o O
—~
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—

where T is the sampling period.

2.2 Measurement model of OTHR

OTHR achieves beyond the line-of-sight horizon target
tracking by exploiting skywave propagation of high-
frequency signals via the ionospheric, and depending on
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Fig. 1 Geometry of a planar OTHR measurement model with a collocated transmitter and receiver. h, and h, denote reflecting ionosphere heights
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the particular ionospheric propagation conditions, there
may be several propagation paths. As shown in Fig. 1,
the OTHR signal reflects from the transmitter to the
target by an ionospheric at height /4, then the signal re-
flects from the target to the receiver by an ionospheric
at height /,. As is well known, there are many iono-
spheric layers present in the atmosphere, and we sup-
pose that there are two ionospheric layers E and F for
simplicity, with constant heights /g and /¢ (this suppose
is the same as other algorithms in OTHR). Therefore,
there are four propagation modes: mode EE (transmit
on E and receive on E); mode EF (transmit on E and re-
ceive on F); mode FE (transmit on F and receive on E);
and mode FF (transmit on F and receive on F). It means
that the receiver can obtain more than one measurement
from the same target at one time.

The OTHR measurements consist of a slant range
Rg =ry + ry, Doppler f;, and Az = 71/2 - 6 (6 is the azimuth as
shown in Fig. 1) of the form z; = [Rg(k), f,(k), Az(k)]", zkeG,
where G is the space of the slant coordinates.

The measurement model of OTHR involves the map-
ping from the ground coordinates (p,.p,b,.b") to the
slant coordinates (Rg,f;, Az). From Fig. 1, it can be
shown that the mapping is expressed as [2]

Rg =n + 1y
ra=4{E+1 ®)
Az = sin" {psin(b)/(2r1)}
where
(p/2)" + h (4)
rs =/ (p/2)~dpsin(b) /2 + (d/2)* + I (5)
n = p-dsin(b) (6)

Then, the measurement model of OTHR can be
expressed as [11]

hy(xx) +wiyr  if mode EE
hy(xx) +wio  if mode EF
zk = § hs3(xx) +wis if mode FE (7)
ha(xr) + wia if mode FF
clutter otherwise

where x; is the state variable; wy ; is the zero mean, white
Gaussian noise with known covariance Ry; and 7,(-) is
the nonlinear measurement function of ith propagation
mode, i=1, 2, 3, 4.
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\/p/Z +h2+\/p/2 —dpsin(b)/2 + 12
p-dsin(b)
\/p/2 + i \/(p/2 ~dpsin(b)/2 + h?
sin {psin) (2/lp/27 +12) |

'NEW

(8)

where, for a given propagation mode i, /, and 4, must
be replaced by the virtual ionosphere heights, where the
details can be found in [11].

3 The RFS model and PHD filter implementation
in OTHR

In the standard PHD filter, it is presumed that a target
produces at most one measurement. Due to the multi-
path effect of OTHR, a single target may generate sev-
eral measurements. Therefore, the measurement model
of the MP-PHD filter proposed in this paper is different
from the standard PHD filter. In this section, we first
introduce the RFS measurement model for OTHR and
then derive the update equation of the MP-PHD filter
based on the theory of FISST.

3.1 The RFS measurement model for OTHR

At each time k, a finite set of measurements of OTHR,
denoted by Z¥ = {z¢ 1,22, -
zrN, are the received measurements at time k and Nj is
the number of measurements. Since the measurements
include several detections from targets and clutter, the

collection of measurements of OTHR can be modeled
by RFS

Zkny J» where zg1,zio, -

Z5 = @1 (%) VO 2 (o1 ) UBR 3 (i ) U 4 (k) ULk 9)

where O ;(x;),i=1, ---,4 denotes the measurement orig-
inated from the ith propagation path and I} denotes the
RFS of clutter. It is presumed that conditional on xy,
O i(xr),i=1, -, 4 and I} are independent RFSs.

3.2 The update equation of MP-PHD filter in OTHR
Note that both the MP-PHD filter and the standard
PHD filter recursion require two steps: prediction and
update. In the following subsection, we only derive the
update equation according to the above RFS measure-
ment model since the prediction step of the MP-PHD
filter is identical to the standard PHD filter.

In ref. [17], the probability generating functional
(PGFL) of update equation for the multitarget Bayes
filter can be written as
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37,10, 1]
Gexlh] = 57 (10)
B AN
where Flg, /] is two-variable PGFL as
Fleh = | B Gulellfe (X124 V)ox )
Gulel) = | & £4(z1X)02 (12)

where fi - 1(X |Z% 1) is the predicted multitarget distri-
bution, fi(Z]|X) is the multitarget likelihood function and
I~ is defined by #* =1 when X =@ and 4~ =TI, yh(x)
otherwise. The update PHD filter can be given by

Gk

Dilw) = 24 1] (13)

Therefore, the update equation for MP-PHD filter can
be derived by the following procedures:

1) Derive the PGFL Gilg|X] by using the OTHR
measurements and exploiting Eq. (11) to derive a
closed form of Flg, /]

2) Derive the derivatives of F[g, 4] by using Eq. (10) to
derive a closed form of Gy«[4]

3) According to Eq. (11), derive a closed-form update
for the MP-PHD filter in OTHR

In the following part of this subsection, we will present
the details of the derivation. First, we derive the PGFL
Gilg|X] according to the OTHR measurements in Eq.
(9). Since O(x) = O 1(x) U O 2(x) U O 3(x) U O 4(x), the
PGFL Gglg|x] of O(x) is

4

Gelgl] = HGk,ng T1(1-Pox@ + Pos(x)pex)

i=1

= (124 x)) (1 —pDk(x)) Pp(®) (Zpgz )
+(12os)) Phal x)(Z D Pei®)py(x )

i=1j=i+1

)
( ~Ppilx )p Di(® (ii ipgl(xpg, (X)Pg m(x ))
i=1 j=i+1m=j+1
Jr.4’713/( <Z

i=1 j=2

Pi(®)Pgj(X)Dgn(%)Pg (x)>

(14)

m=3 n=4

where pg(x) = 1g(2)gr.i(z|x)dz, ppi(x) is the detection prob-
ability, and g (z|x) is the likelihood of the ith propagation
path. Consequently, if we abbreviate gpi(x) =1 - ppi(x),
Eq. (11) can be summarized as follows:
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F[g h] e/lc[g] - Gk\k l[h(qu +qD kak<Zng>

+0IZD,/<P%),/< (Z Zpg,ipgyi>

=1 j=it1

(15)
2 3 4
+dpiloi (Z Z Z pg«,ingng>
=1 j=itlm=j+1
+Phi (Z Z Z Zp&tpg,/pg‘mpgﬁ) )]
i=1 j=2 m=3 n—4
where  c[g] = [g(2)cn(z)dz  and  G—1[H] = 1 fipp -
(x|z%*=)sx.

To derive a closed-form update equation for the multi-
path multitarget PHD filter, we assume that the predicted
multitarget distribution is a Poisson process:

G [h] = e+ (16)

where s[h] =y~ lfh(x)DkV(, 1(x)dx and p = [Dyyr_ 1 (x)dx.
Thus, Eq. (15) can be written as

Flg, h] = exp <(Ac[g}—)t + us [hq‘*D)k} + us

hqupDk (Z Zpglpg]>

i=1j=i+1

hqD Wi <22: > Z PeiPeibe. m>]

i=1j=i+1m=j+1

hpDk <Z DD D Pebeibe mpgnﬂ “)

i=1 j=2 m=3 n=4

4
hq;ka,k ( E Pg,i>:|
=1

i

)

%)

tu

+u

)

(17)

Next, we deduce the formula for 20, /4]. Note that we
set g =0 because the formula for &g, /] is very cumber-
some without setting it.

Lemma 1. The derivatives of Flg, h] is given by the
formula

SF
570 = Flo,n T[> I dwlo, 4]

pLZ Wep

(18)

where the notation ‘@ L Z’ is shorthand for “(@ partitions
Z into cells W, Tz =11, c ZAc(2),
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1+ us

ha kPp i (Z@m)] W ={z}

3 4 2 2
Us hquj,kp%,k ZZ Z Z il ifW={z1,2}

3

2 3 4 3
dw(0,h) = { #s | haprbi [ DD DD Z Zfza ey e, m fW ={z1,2,23}  (19)

i=1j=itlm=j+la=lb=1c=1
azb azc
L b=c
4 4 4 4
4 ; —
us | hph . SN DD il el ifW ={z1,22, 23,24}
i=1 j=2 m=3n=4a=lhb=1c=1d=1
azb azc azd
bzc bzd
L czd 1
and where
Gilzlx)
0,i(x) === i=1, 4 (20)
Ac(z)

See Appendix 1 for the proof of Lemma 1.
Lemma 2. The multipath posterior PGFL Gylh] is given as

Z LZy H We /J

Gnlh] = (21)
WS szHWe,j
where
Foll] = exp(us|(h-1)ahy] ) (22)

and dyw|0, h] is the Eq. (19).

See Appendix 2 for the proof of Lemma 2.

According to Lemmas 1 and 2, we can obtain the MP-PHD filter update equation in Proposition 1 as follows:
Proposition 1. The update equation for the MP-PHD filter is

Dk (x|z<k>) =Ly, (x|Z(k’1)) Dier (x|Z<k’1)) (23)
where
(x|Z(k 1>) =g (%) + Z W, Z (24)
PLZy Wep W

here

HWE[gdW
Wy, =
DI | P
' L7 Weg! w
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where
4
1+ Dijgn qupDk (ZQ,:‘)} W= {z}
=1
3 4 2 2
D |@patbs | DD D D Lavilany ifW = {z1,2,}
i=1j=itla=1p—1
2 3 4 3 3
dw = { Drik-1 | 4p i Z Z Z Z Z Zgza iz, jlem ifW ={z1,22,23} (26)
i=1j=i+lm=j+la=lb=1c=1
azb azc
L bzc
4 4 4 4
Dk|k71 p4D,k Z Z Z Z € ZZME ezd n {fW = {Zl7 Z9, 23724}
i=1 j=2 m=3n=4a=lb=1c=1d=1
azb azc azd
bzc bzd
L czd
4
qD kPD k <Z€Z1,i> W= {z}
i=1
3 4 2 2
Db | DD DD Luila ifW = {z1,2}
i=1j=itla=1p—1
2 3 4 3 3 3
b =1{ Doalbi| DD 2D D0 D builast fW=fa.2a)  (27)
i=1j=itlm=j+la=1ph—1c—1
azb azc
bzc
4 4 4 4
Ppk ZZ Z Ze gz;,je ezdn ifWZ{217227237Z4}
i=1 j=2 m=3n=4a=lb=1c=1d=1
azb azc azd
bzc bzd
czd
See Appendix 3 for the proof of Proposition 1.
PP P P i1 (*[6) = N(x; Fik-1%K[k-1 Qk\k—l) (28)
4 Gaussian mixture implementation of the Giil2x) = N(Z;Hk,ix,Rk,i) L i=1,--4 (29)

MP-PHD filter

According to the GM implemented in the standard PHD fil-
ter in [25], a GM-PHD filter recursion can be derived for
the multipath target tracking. Due to the MP-PHD filter pre-
diction equation for the OTHR are identical to the standard
PHD filter, the GM prediction equation of MP-PHD filter
are the same as the standard GM-PHD filter, where the de-
tails can be found in [25]. Therefore, in this section, we only
consider the GM update equation of the MP-PHD filter.

4.1 Gaussian mixture MP-PHD

To derive a closed-form solution to the update equation
of the MP-PHD filter, we assume that each target follows
a linear-Gaussian transition and measurement model, i.e.,

where N(-; m, P) denotes a Gaussian density with mean
m and covariance P. F is the state transition matrix, Q is
the process noise covariance, Hy, is the observation
matrix, and Ry; is the observation noise covariance. The
survival and detection probability are assumed as a con-
stant, ie., psi(®)=pswpPpoi*)=ppir To facilitate the
derivation of the closed-form solution, we define an
intermediate operator Gfﬂz by

(Gher#) () = 2, zal) D)

If giza|%) = N(zy Hy %, Rie)) and  @x) = N(z; my, Py),
then (G}l(yza ¢) (x) is a Gaussian density

(30)
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(G =) (5) = prs(aN (s s, Pr) (31)
where
ki1, = Hiimg (32)
Skik-14 = Rei + HiPgH (33)
Pri(za) = N (245 Ek-rir Skik-1,0) (34)
mi; = mg + Kii(za—Expe-r,) (35)
Pri = (I-KiiHi;)Py (36)
Ky = P¢H/€i(5k|k-1,i)_1 (37)

We suppose that the predicted PHD filter at time k-1
has the following GM representation:

Tkik-1
() . (1) O]
Dyjp-1(x) = Zwk\k 1 ( M1 P 1)
]k\k 1 (38)

= Zwk\k 1 k\k 1 (%)

where w,(f‘),H is the weight of the /th component and Ji_ 1

is the predicted number of the components. Then, the up-
date equation at time k can be expressed as a GM of

X+ > Y Dhlx W)

LZ Wep

Dy (x) = DR (x (39)

The GM components D],:‘[f (%), handling the no detec-

tions cases, are given by

Jklk-1
() p)
klk Zwklk (x mk\k’P k|k> (40)
l l
(‘)l(<|)k =dp k4(‘)l((|)k 1 (41)
o _ ()
e = Mjk-1 (42)
0 _ p)
Pk\k Pk|k 1 (43)

The GM components Dflk(x, W),
target cases, are given by

handling detected

Tklk-1

k|k Zwk\k ( kl|)k’Pl(<\>k)

(44)
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O]
o _ bw 0
W = @p- <E> “Wplk-1 (45)
IL., v
Wep
Wp = (46)
ZJO/LZkHWEp/dW
when W= {z;},
Jifk-1
qu PDk z)
dW*1+Z Oplk- 12( kzl¢k|k 1) )
(47)

4
i )
b 0 qD,kspD,kZ (Gk,ll ¢1(<\)k—1> (x)
( bw\ " _ i—1
dW) Tik-1 4 )
Ac(z1) + qD,kng,kZ “’1(:\}(712 (G;gzl ¢/(<T/)<—1) ()
r=1 i=1
(48)

when W= {z,, z5}
4ok Ppx” PDk (E
W= AC Zl AC 22 Z

14 3 i i i (Gi-z kzb¢k\k 1)( )
(49)

( G i) @)

by 0]
E /k\k 1

E :“’k\m
i=

M~ HM~

2 .
> 3 (Gl Gha i) @

1j=i+la=1 p=1
azb
(50)
when W= {Zl’ 22, 23}
qp P, I s 433 E
dy = ——2— "
Ae(z1)Ae(z2)Ae(z3) 4 Z k- 1121:/;1 m; ; z:: ;
azb azc
bz=c
[ J
% (Ghs, G, Gl by ) @)
(51)

ZZ Z Z Z Z (Giz G/kzb GZ:ZL¢I(<I\)I<—1><’C)

S>> S 3T Y (6 Gl G ) @)

(52)

when W= {z;, 2o, 23, 24}
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PDk 0
d
v Ac(z1)Ae(z2)Ae(z3)Ae(za) Z ©xlk-1 /

ik~
=1 i=1

~.

>3 Y (6

)
3
Il
w
X

G]
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4 4 4 4
Z Z Z Z ( kzb Gy, szd‘nbk\k 1) (x) (53)

Ziﬁ

czd

kzp GZ‘IZC kZd(pk‘k 1)( )

i=l j=2 m=3n=4a=1hb=1c=1d=1
azb azc a=
bzc  bzd
bW <Z>_ czd
dw) T . 4 4 4 4 .
r r
E ,\wk\kfl E Z E Z (sz kzb Gy szd(tbk\k—l)(x)
r=1 i=1 j=2 m=3n=4a=1b=1c= =
az# azc d
bzc bzd

where - denotes a composition.
4.2 Implementation issues

1) Nonlinear measurement model: The above Gaussian
mixture MP-PHD filter can be extended to a nonlin-
ear measurement model using the EKF. Due to that
the dynamic model in the OTHR is linear, we only
apply EKF to deal with the nonlinear measurement
model in the update step of MP-PHD filter. Use the
approximations (55) and (56) in place of the originals
(32) and (33), and use the linearizations in (57) to
calculate (36) and (37)

ék\k—l,i = hgi (””tﬁ’ O) (55)
Skik-1i = UriRe iU}, + HiPgHY, (56)
where
ahk‘i(x, 0)
Hyi=—5—"= le=m, (57)

2) Managing mixture components: Similar to the
standard GM-PHD filter, the techniques of merging
and pruning must be used to reduce the exponential
growth of the number of Gaussian components,
which the merging and pruning methods specific to
Gaussian components can be found in [25].

3) Computational complexity: As is shown in Eq. (24),
the MP-PHD filter requires all partitions of the
current measurements for updating, & £ Z; denotes

(54)

that @ is one partition of the measurement set Z; and
W € @ denotes that W is one cell of . Note that W
does not include null set. For instance, Z; = {z1, z,, 23}
can be partitioned as follows [19-21]

2 = Ha}h {z} {z}), 20 =
P3 = {{21}7{22"23}}’

22 = {{z1,z3},{za}}, 5 = {{z1,22, 23},

Hz1, 22}, {23} ),

whereas with the number of measurements growing, the
number of partitions grows very large, which is compu-
tationally infeasible.

From the above analysis, we can see that the computa-
tional load required by the proposed MP-PHD filter is
similar to that of the extended targets PHD filter [18—22].
Note that some methods, such as K-means++ method
[19] and spectral clustering [20], have been suggested for
the implementation of the extended targets PHD filter to
reduce the number of partitions. However, these methods
that applied in the extended targets are measurement
dependent. Since the measurement function of each
measurement mode can be very different in OTHR. These
methods may fail with the multipath tracking problem in
OTHR. To limit the number of partitions in the MP-PHD
filter, some approximations are necessary in this paper.
First, we can use the gating technology with multiple val-
idation gates to reduce the number of measurements for
each propagation model before the update step at each
time [11], and then we can use the similar method of “ef-
fective binary partition” that was implemented in [26] to
reduce the number of partitions. For space considerations
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which are not the focus of this paper, we omit the details.
Note that we used only a simple partition technique in
our implementation, and the development of more effi-
cient implementations will be a future task.

5 Numerical simulations

The performance of the proposed MP-PHD filter will be
evaluated through two numerical examples, including the
single target and multitarget tracking in this section. And
we use the optimal subpattern assignment (OSPA) metric
to evaluate the performance of the proposed algorithm [27].

5.1 Experiment 1

In this subsection, we have designed an experiment to com-
pare the MP-PHD filter with the standard single-path PHD
filter in a single target tracking scenario. Note here that the
standard single-path PHD filter uses one specific mode
(mode EE used in this experiment) to track the targets, and
we use the gating technology to reduce the number of mea-
surements for propagation model EE before the update step
at each time. The two filters are simulated with the same
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environment in OTHR. It is assumed that a single non-
maneuvering target is in the presence of clutter. Clutter is
generally modeled as a Poisson RFS with the intensity func-
tion xx(y) = AVu(y), where u(-) indicates the uniform density
over the region [1000, 1400]km x [0.069813, 0.17453]rad,
V'=41.8868 km - rad is the “volume” of this surveillance re-
gion, and A =4.7743(km - rad)” ' is the average number of
the clutter returns per unit volume. This translates to 200
clutter measurements per scan. And each propagation
model has the same detection probability and target survive
probability that are set to ppx = 0.6 and ps; = 0.95. To keep
computations tractable, the Gaussian component pruning
is applied in this numerical example with a pruning thresh-
old 7=10">, a merging threshold I/ = 20, and a maximum
number of Gaussian components /., = 100. It is assumed
that a single target moving in the surveillance region with
the initial target state xg (1100 km, 0.15 km/s,
0.10472 rad, 8.72665e-05 rad/s). Other simulation parame-
ters are defined as the same as [11]. The true target trajec-
tory and OTHR multipath detections without clutter under
Ppx = 0.6 are shown in Fig. 2. It is shown that the receiver
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X
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C
©
e
e
c
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1050 - 1 1 1 1 A 1 End position ||
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() True target trajectory in ground coordinates
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X A NES wE K 8 o o
AN
S 28 A &*ﬁ R o @ _
= 1200+ A Forcke K gk (@] @]
o ﬁA " %?:7* ***#%( IS 8 O Q)
€ ¥
S o ok ® OE) O(;Q)O 9 O  Measurement from EE path
M50 -+ % Hoy o o® +  Measurement from FE path
o ° o° %  Measurement from EF path
O A Measurement from FF path
1100 L L L L L
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(b) OTHR multipath detections without clutter in slant coordinates
Fig. 2 The scenario of true target trajectory and OTHR multipath detections. a True target trajectory in ground coordinates. b OTHR multipath
detections without clutter in slant coordinates
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can obtain more than one measurement from the same tar-
get at one scan.

The target tracking results of the MP-PHD filter
and the standard single-path PHD filter for one
simulation are shown in Fig. 3. As the position esti-
mates are shown in (a) and (b), we can see that the
MP-PHD filter provides more accurate position esti-
mates for almost all the time. Moreover, for the
simulation results, shown in (c¢) and (d), using the
MP-PHD, there is only one false estimated number
at time 8.

5.2 Experiment 2
In this scenario, we assumed that the number of targets
is constant. The performance of the GM-MP-PHD filter
is compared with the MD-JPDA filter. Two filters are
simulated with the same environment in OTHR tracking
system, and we also use the gating technology with mul-
tiple validation gates to reduce the number of measure-
ments in the MD-JPDA filter. The experiment goes on
for 600 s (sampling period 7'=20 s), and we assumed
that two targets appear with initial state target 1 x; =
(1130 km, 0.12 km/s, 0.10472 rad, 8.72665e-05 rad/s)
and target 2 x, =(1125 km, -0.1 km/s, 0.11472 rad,
7.92665e-05 rad/s), respectively. And each propagation
model has the same target survive probability and detection
probability that are set to ps;=0.95 and ppy = 0.6. Other
parameters are adopted as the same as the experiment 1.
The position root mean squared error (RMSE) of the
two filters are shown in Fig. 4. It is shown that the pro-
posed MP-PHD filter has a notable performance gain
over the MD-JPDA filter. This is due to the fact that the
proposed MP-PHD filter encapsulates all the infor-
mation about the targets by enumerating all of the
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association between propagation paths and measure-
ments. However, only a subset of the associations (not
all the permutations of the propagation paths) is used in
the MD-JPDA filter, this is the reason degrades the
performance of MD-JPDA filter.

To evaluate the computational time of the proposed al-
gorithm, the averaged time is computed in MATLAB7.1
on an Intel CORE i5 CPU computer with 2 GB of RAM.
The proposed GM-MP-PHD consumed approximately
8.6 s per MC run and the MD-JPDA consumed approxi-
mately 1.1 s. Although the proposed MP-PHD filter has
high computational time, it has better performance than
the MD-JPDA filter.

5.3 Experiment 3

To validate the tracking performance of MP-PHD filter in
multipath multitarget tracking, in this experiment, we have
designed a multiple track scenario including three non-
maneuvering targets where the target number is changing
in OTHR. The experiment goes on for 800 s with the sam-
pling period 7'=20 s, and it is assumed that target 1 and
target 2 appear in the course of the whole experiment
with initial state x; = (1100 km, 0.15 km/s, 0.10472 rad,
8.72665e-05 rad/s) and wy= (1170 km, -0.14 km/s,
0.11472 rad, 7.72665e-05 rad/s), respectively, target
3 appears at £ =180 s and disappears at ¢ =480 s with the
initial states x5 = (1170 km, -0.05 km/s, 0.15701 rad,
-8.72665e—05 rad/s). In this experiment, there are no
spawning targets for simplification. Other simulation con-
ditions are the same as the experiment 1.

1) One simulation: The true target trajectory is shown in
Fig. 5, and the position estimates of the MP-PHD
filter for one simulation compared with the standard

RMSE (km)

—6— Target1 MD-JPDA
—+— Target2 MD-JPDA ||
—<— Target1 MP-PHD

—+—— Target2 MP-PHD

Scan
Fig. 4 Position RMSE for a MP-PHD filter and a MD-JPDA filter with OTHR data

15 20 25 30
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single-path PHD filter are shown in Fig. 6, the estimation
of target number is shown in Fig. 7. As shown in Figs. 6

and 7, the MP-PHD filter can accurately estimate the
target state and the target number of the multipath
multitarget tracking in OTHR. In comparison, the
simulation result shows that the MP-PHD filter

over 100 Monte Carlo simulations with different
detection probability ppx = 0.6 and pp = 0.99,

respectively. We use the OSPA metric to evaluate
the performance, the parameters of OSPA distance
are set to the cutoff parameter ¢ = 15 km and the
order parameter p =2 (see [27] for more details).

provides more accurate position estimates for almost all

the times.

2) 100 Monte Carlo simulations: We compare the MP-
PHD filter with the standard single-path PHD filter

Figure 8 shows the average of OSPA distance com-

parison between the MP-PHD filter and the standard

single-path PHD filter, and the average of estimated
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Fig. 6 The true and estimation target trajectory (ppx = 0.6)
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Fig. 7 The true and estimated target number (pp = 0.6)

number is shown in Fig. 9. The simulation results
demonstrate that the tracking performance of the
MP-PHD filter surpasses the performance of the
standard single-path PHD filter. Moreover, it can ac-
curately estimate the target state and the target
number with low detection probability under the

multitarget tracking circumstance. As shown in
Figs. 8 and 9, the standard single-path PHD filter
cannot deal with the multitarget tracking problem
effectively under low detection probability. This is
due to the fact that the MP-PHD filter use four path

measurements to track the targets, and then, it can

OSPA distance

12
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—#— MP-PHD(Pd=0.99)
10l ~— standard single-path PHD(Pd=0.6) |
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61 - i

Fig. 8 The average of OSPA distance




Qin et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:108

Page 14 of 18

True vs Estimated

No. targets
N
[&)]
T

4 T T T T T
- standard single-path
PHD(Pd=0.g9) P
3.5 —— MP-PHD(Pd=0.99) 4
standard single-path
PHD(Pd=0.6)
3L —#— MP-PHD(Pd=0.6)

True number

1.5 .
1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Time
Fig. 9 Average of estimated target number
J
more effectively use the measurements from the tar- SF s 4
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6 Conclusions i=1j=it+1
In this paper, the MP-PHD filter, which tracks the 23 &
Iti pap 3 : +us hqD,kpls),k ZZ Z (ezw'pg.jpgm
multipath multitarget in OTHR, has been proposed. e e

The MP-PHD filter is based on the theory of FISST,
the FISST is employed to derive the update equation,
and then a closed-form solution of MP-PHD filter in
the form of GM has been proposed. The EKF is used
to deal with the nonlinear problem of the measure-
ment model. Simulation results show that the pro-
posed MP-PHD filter has a notable performance gain
over the MD-JPDA filter.

Similar to the standard PHD filter, the MP-PHD filter
should be improved for some problems. For example, as
the number of targets in the surveillance region is large,
the estimated target number is unreliable. To solve this
problem, a modified PHD filter name, cardinalized PHD
filter, is proposed by Mahlar [28, 29]. Our future work
could derive a CPHD filter which can be applied to the
multitarget tracking in OTHR.

7 Appendices

7.1 Appendix 1: Proof of Lemma 1

This lemma is proved by mathematical induction.
For the initial induction step, assume Z = {z;}. In this
case there is only one partition, @ ={{z1}}, and we
get

)

hp4D,k (ell,lpg,ng.?:pgA + pg,lezl 72pg73pg74

+pg,i€21 iPgm + pg,ipg‘jezl m))

+us

+pg.lpg.2gll~3pg,4 + pg,lpg,Zpg,SeZ1-4>:| ) |g:0

4
hq?).ka,k <Z€zhi>:| )
i—1

(58)

= F[0, h]Ac(z1) (l + us

= F[0, h|Ac(z1)dy,,, [0, K]

Now, assume that we have established Eq. (18) for
Z=Azy, "+, z,,} with |Z| = m > 1. We are to establish Eq. (18)
for Z=1{zy, ", Z» 2 + 1} and |Z| =m + 1. Using the prod-
uct rule for functional derivatives, we get

8 SF
WZI;H [g> h”g:0 = Fm#»l [g7 h} |g:0'HZ.Z ( H dW[O7 h})

pLZ \Wep
5
0 1, 35 T avlen)
Lz = m Wep
(59)

On the one hand,
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O6F

57 h] |g:0 = F[Ov h]AC(ZVH+1)d{zm+1}[Oa h]
Zm+1

(60)

On the other hand,
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1 ddw
d h dw|[0,h] |- _— g—
5Zm+l Vl—élf; W[g (u]/)_é[J W[ ’ ]> ‘;;}d\x/[o,h] 6zm+l [g7hH£ 0
(61)
where
3 4 2 2
us | happh ZZZ D it ifW = {z}
i=1j=i+la=1p =
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2 3 4 3 3
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ps | hph

In the above equation, we use z; to replace zm+1 for
simplicity. And it is easy to find that 32— = [ L] x
oLZ \ Wepu{{zm}}

le=0 = Ac(Zm+1)dwo(s,.,1[0, 4] . Putting this all together,
Eq. (59) can be written as
dw[0, h])
0L, X[ L avioon)
207 \Wegp

qu Zmt1 07 h
(Z e ]> ©

Wep

8°F
575e— e Mleo=FOM T L,p, Z( II

Note that all partitions of the Zu {z,,, , 1} have the following
forms. First, take a partition @ of the set Z and add the cell
{z,n + 1} to obtain a new partition @4(z,,, 1) = £U {{z;n s 1)} of
Z Uiz, 1}. This action is what is denoted mathematically in
the first line of Eq. (63). Secondly, remove a cell W from the
partition  and replace it with Wu {z,,, . 1} of a new partition

4 4
Z Z €Za ,igzb ngmmeZd,n

azb azc azd
bzc bzd

ifW = {zy,23,24}

czd
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This action is what is denoted by the product

dWU{Zm+1} [0, 7]
(H dW[Ovh]> : (Z W)

Wepo Wegpo

(64)

in the second line of Eq. (63). Consequently, Eq. (63)

becomes

OF il = Flon 11 3 (H dw[0 h])
e g=0 — RGN Wz : w Y,
020211 Z0{zZmi1} oty \Wep

(65)
and this ends the inductive step.

7.2 Appendix 2: Proof of Lemma 2
From Eq. (10), we get
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_ Z[JLZkHWG,(J
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Z!}’sz H Wep

- el

(66)

7.3 Appendix 3: Proof of proposition 1
The posterior multipath PHD filter can be calculated as
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Substituting Eqgs. (69) and (71) into Eq. (68) yields

Gk

69:7%] Z,{JLZkHWE,(J
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by
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(72)

Setting /1 =1 in the above equation then yields
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x
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On the other hand,
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fW={z}

ifW ={z1,2}

ifW ={z1,22,23}  (75)

ifW ={z1,22,23, 24}
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