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Abstract

Chunked codes are efficient random linear network coding (RLNC) schemes with low computational cost, where the
input packets are encoded into small chunks (i.e,, subsets of the coded packets). During the network transmission,
RLNC is performed within each chunk. In this paper, we first introduce a simple transfer matrix model to characterize
the transmission of chunks and derive some basic properties of the model to facilitate the performance analysis. We
then focus on the design of overlapped chunked codes, a class of chunked codes whose chunks are non-disjoint
subsets of input packets, which are of special interest since they can be encoded with negligible computational cost
and in a causal fashion. We propose expander chunked (EC) codes, the first class of overlapped chunked codes that
have an analyzable performance, where the construction of the chunks makes use of regular graphs. Numerical and
simulation results show that in some practical settings, EC codes can achieve rates within 91 to 97 % of the optimum

and outperform the state-of-the-art overlapped chunked codes significantly.
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1 Introduction

Random linear network coding (RLNC) has great poten-
tial for data dissemination over communication networks
[1-4]. RLNC can be implemented in a distributed fashion
due to its random nature and is shown to be asymptoti-
cally capacity-achieving for networks with packet loss in
a wide range of scenarios [5-7]. In this paper, we propose
a low-complexity RLNC scheme called expander chunked
(EC) codes and analyze the achievable rates of EC codes.

1.1 Background

For ordinary RLNC studied in literature [3-7], all par-
ticipating nodes forward coded packets formed by ran-
dom linear combinations of all the packets received so
far. Major issues in applying ordinary RLNC include the
computational cost and the coefficient vector overhead.
Consider the dissemination of k input packets, each con-
sisting of L symbols from a finite field. For encoding,
RLNC requires O(kL) finite field operations to generate a
coded packet, and for decoding, a destination node takes
O(k* + kL) finite field operations per packet if Gaussian
elimination is employed. Moreover, to recover the trans-
fer matrices of network coding at the destination node, a
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coefficient vector of k symbols is usually included in each
of the transmitted packets [3]. Since the packet length L
has an upper bound in real-world communication net-
works,! using large values of k reduces the transmission
efficiency. When there are hundreds of input packets, the
computational cost and the coefficient vector overhead
would make RLNC difficult for real-world implementa-
tion.

To resolve these issues, chunked (network) codes have
been proposed [8], where the input packets are encoded
into multiple small chunks (also called generations,
classes, etc.), each of which is a subset of the coded pack-
ets. When using chunked codes, an intermediate network
node can only combine the packets of the same chunk.
The encoding and decoding complexities per packet of
chunked codes are usually O(mL) and O(mL + m?),
respectively, where m is the chunk size, i.e., the number
of packets in each chunk. The coefficient vector overhead
also reduces to m symbols per packet since only the trans-
fer matrices of the chunks are required at the destination
nodes. Even so, the chunk size should be a small value (e.g.,
16 or 32) for the purpose of practical implementation, as
demonstrated in [9].

Existing chunked codes are in two categories: over-
lapped chunked codes and coded chunked codes. In over-
lapped chunked codes, the chunks are subsets of the
input packets with possibly non-empty intersections. The
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first several designs of chunked codes all belong to this
category. However, the existing designs of overlapped
chunks are mostly based on heuristics, and no rigorous
performance analysis is available for the existing designs
[10-12]. In coded chunked codes, chunks are generated by
combining multiple input packets. By generalizing foun-
tain codes and LDPC codes, nearly throughput optimal
chunked codes have been designed, including BATS code
[13, 14], Gamma code [15, 16], and L-chunked (LC) code
[17]. Overlapped chunks can be viewed as a degraded class
of coded chunks where chunks are generated using certain
repetition codes.

Overlapped chunked codes, however, can have lower
encoding complexity and latency than general coded
chunked codes. First, as no new packets are necessarily
generated during the encoding, the encoding complexity
is dominated by generating the indices for the packets in
each chunk, which does not incur any finite field opera-
tion or depend on the packet length L. In contrast, coded
chunked codes incur a computational cost that is linear of
L to generate a coded packet. For instance, BATS codes
require on average WL finite field operations for encod-
ing a chunk, where ¥ 2 3m. Therefore, compared to
general coded chunked codes, the computational cost of
overlapped chunked codes is usually negligible.

Second, overlapped chunks can be encoded in a causal
fashion. Suppose that the input packets arrive at the
encoder gradually. The first chunk can be generated after
collecting m input packets, and for every m input pack-
ets collected in the following, at least one new chunk
can be formed. Therefore, the generation as well as the
transmission of chunks can be performed in parallel with
the collection of the input packets, reducing the total
transmission latency. In contrast, how to achieve causal
encoding for general coded chunked codes is not clear:
BATS codes and Gamma codes usually require a large
fraction of the input packets for encoding chunks.

These advantages motivate us to study overlapped
chunked codes, which are especially suitable for delay sen-
sitive applications and networks where the source node
has limited computation and storage power, e.g., wireless
sensors and satellites.

1.2 Our contribution
We propose expander chunked (EC) codes, the first class
of overlapped chunked codes that has analyzable perfor-
mance. In an EC code, the overlapping between chunks
is generated using a regular graph: each chunk corre-
sponds to a node in the graph and two adjacent chunks
share an input packet. EC codes can be encoded causally
and share the same belief propagation (BP) decoding of
general overlapped chunked codes.

We analyze the BP decoding performance of EC codes
generated based on random regular graphs. By exploring
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the locally tree-like property of random regular graphs
and then conducting a tree-based analysis similar to that
of LT/LDPC code, we obtain a lower bound on the achiev-
able rate depending only on the chunk size, the degree of
the regular graph, and the rank distribution of the transfer
matrices.

The achievable rates of EC codes are evaluated and com-
pared with other chunked codes in two scenarios. We first
compare the achievable rates of EC codes with represen-
tative coded chunked codes for randomly sampled rank
distributions of the transfer matrices, where the purpose
is to understand the general performance of EC codes.
We find that the performance of EC codes highly depends
on the rank distributions: when the expected rank is rel-
atively large, the average achievable rate (over the rank
distributions sampled) of EC codes is close to 90 % of the
representative coded chunked codes, as well as a theoret-
ical upper bound. But for relatively small expected ranks,
the achievable rate of EC codes varies significantly for
different rank distributions.

To further see the real-world potential of EC codes,
we then evaluate the performance for a near-optimal
chunk transmission scheme over line-topology (line) net-
works [18]. As most practical routing schemes are single-
path based, line networks have attracted a lot of interest
[19-21]. Also, the chunked code scheme for line networks
can be extended to general network scenarios, including
general unicast networks [14, 18], two-way relay networks
[22], and wireless broadcast networks [23]. For a wide
range of the packet loss rates, with proper optimization
of the transmission scheme, EC codes achieve rates very
close to those of the coded chunked codes and about
91% ~ 97 % of the theoretical upper bounds. Besides,
we show by simulation that EC codes perform much bet-
ter than the existing overlapped chunked codes in line
networks.

Table 1 gives a brief comparison between EC codes,
BATS codes, and LC codes.

As another contribution, a simple transfer matrix model
is proposed to characterize the transmission of chunks
over networks with packet loss. Compared with a similar
model proposed in [14], which is more suitable for BATS
codes, our model incorporates some more practical fea-
tures of network operations for general chunked codes,
making the design of efficient network transmission pro-
tocols easier. Therefore, our model is of independent
interest for chunked codes. We derive some properties of
this transfer matrix model for the performance analysis,
which can apply to general chunked codes.

1.3 Related work

The simplest way to form a chunked code is to use dis-
joint subsets of the input packets as chunks [8], which has
been used in some applications of RLNC [9, 24, 25]. To
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Table 1 Comparison among EC/BATS/LC codes where achievable rates are evaluated over line networks with chunk transmission

scheme given in [18]

Design Causal encoding Encoding complexity Decoding complexity Achievable rates
EC Support O(n) O(nl) 91 % ~ 97 % of opt.
BATS Unknown O(nl) O(nl) >99 % of opt.

LC Unknown O(nl) O(nl) >98 % of opt.

decode a chunk, the transfer matrix of the chunk must
have full rank of m; otherwise, none of the packets in the
chunk could be recovered with high probability. However,
it is not always a simple task to guarantee the success of
decoding a chunk at the destination node. One approach
is to use feedback-based chunk transmission mechanism
[24]. While some efficient feedback protocols for spe-
cific applications have been developed [25, 26], in general,
such feedback incurs an inevitable delay and also con-
sumes network resources, resulting in degraded system
performance. Besides, for some scenarios such as satel-
lite and deep-space communications, feedbacks are not
even available. Another approach is to employ a random
scheduling-based chunk transmission scheme [27], where
every network node always randomly selects a chunk for
transmission. But this scheme has poor performance for
small chunk sizes [10, 11].

Instead of using disjoint chunks of input packets, chunks
with overlaps, i.e., different chunks share some input
packets in common, have been proposed by several groups
independently [10-12]. It is shown via simulations that
overlapped chunked codes have much better performance
than disjoint chunks [10, 11]. The random annex codes
proposed by Li et al. [12] demonstrate better performance
in simulation than the overlapped chunked codes in
[10, 11], but only heuristic analysis of the design is provided.

BATS code [13, 14] is the first class of chunked codes
that uses coded chunks. Each chunk in a BATS code is
generated as linear combinations of a random subset of
the input packets. BATS codes can be regarded as a matrix
generalization of fountain codes [28, 29] and preserve the
ratelessness of fountain codes.

Another kind of coded chunked codes consists of
chunks that satisfy some parity-check constraints, simi-
lar to those of LDPC codes. The first class of such codes
is Gamma codes [15, 16, 30], where the parity-check
constraints are applied on the whole chunk [15] or on
the individual packets in chunks [30]. Another class of
such codes is L-chunked codes [17] which consider more
general parity-check constraints and show better perfor-
mance. Note that the original Gamma code [15] paper
is published in parallel with the conference version of
this paper [31], while the refined Gamma codes [30] and
L-chunked codes are published later than that of our
conference version.

Various chunked code-based transmission schemes
have been designed and implemented recently [18, 22, 32],
which are consistent with our transfer matrix model.

2 Overlapped chunked codes

In this section, we give a general formulation of over-
lapped chunked codes, including causal encoding and
belief propagation (BP) decoding. We also provide a trans-
fer matrix model for general chunked codes.

2.1 Encoding of chunks

Consider transmitting a set of k input packets by, by, .. .,
by from a source node to a destination node over a net-
work with packet loss. Each input packet composes of
L symbols from the finite field F,; and is regarded as a
column vector in IFg henceforth.

Definition 1 (Chunked codes). A chunk is a set of pack-
ets each of which is a linear combination of the input
packets, and a chunked code is a collection of chunks.
A chunked code is said to be overlapped if its chunks
are subsets of the input packets with possibly non-empty
overlapping.

In this paper, we focus on the design of overlapped
chunked codes. Evidently, an overlapped chunked code
can be generated by repeating some input packets. Same
as most related works, we assume that all the chunks in
a chunked code have the same cardinality m, which is
called the chunk size. As the chunk size is related to the
encoding/decoding computational complexities and the
coefficient vector overhead, for the sake of the applicabil-
ity in common networks, we regard the chunk size m as a
fixed constant which does not change with the number of
input packets.

An overlapped chunked code can be more concisely rep-
resented by a collection of index sets of size m. For any
integer n, let 71,75, ...,7, be subsets of {1,...,k} with
size m. Let B; = {(b; : i € Z;}. We call either Z; or
B; a chunk and the subscript j the chunk ID. An over-
lapped chunked code of # chunks can be given by either
(Zi:j=1,...,n}or {B;j:j=1,...,n}.

Since each chunk is a subset of the input packets, it is not
necessary to duplicate the existing input packets for chunk
encoding. During the encoding, only the address in the
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memory of each packet in a chunk needs to be recorded.
Furthermore, every overlapped chunked code can be
encoded causally, which is explained in the following.

Definition 2 (Causal encoding). We say that a chunked
code can be encoded causally if for any positive integer
i < k, there exist at least I_ij chunks in the chunked code
such that

o these chunks are formed by the first i input packets,
and

e each of the first m x Léj input packets is used for
generating these chunks at least once.

It is worth mentioning that, when m = 1, systematic
encoding of a linear code is a special case of causal encod-
ing. For any overlapped chunked code where each input
packet is included by at least one chunk, we can always
apply some proper permutation of the indices such that,
for any j < n, the indices of the packets among the first
j chunks are 1,2,...,k;, where k; < mj. In this sense,
every overlapped chunked code can be encoded causally.
One example is given when introducing our EC codes in
Section 3. Now, consider a scenario where the input pack-
ets arrive at the source node sequentially (e.g., the source
node is a sensor which keeps on collecting data and encap-
sulating data into packets). Then, for any m input packets
collected consecutively, the source node can generate one
new chunk for transmission. Hence, the source node does
not necessarily collect all the input packets before encod-
ing and the chunks can be transmitted in parallel with
the collection of succeeding input packets. Therefore, by
applying an overlapped chunked code, the end-to-end
transmission latency could be significantly reduced.

2.2 Transmission of chunks
Each transmitted packet in the network is of the form
(j, ¢;b), where j specifies a chunk ID, ¢ € F is the coeffi-
cient vector, and b = Bjc, a linear combination of packets
in B}, is the payload. Here, with some abuse of notation, B;
is also treated as a matrix formed by juxtaposing the pack-
ets in B;. For convenience, we refer to a packet with chunk
IDj as a j packet.

Now, we describe a chunk transmission model through
a network employing linear network coding, which is
consistent with the recent design and implementation of
chunked code-based network protocols [18, 22, 32]. Con-
sider the jth chunk of packets b; , bj,, ..., b;, . The source
node first attaches a coefficient vector to each packet and
generates l;'i = (e;,bj), i = 1,...,m, where e; is the ith
column of the m x m identity matrix. The source node
then generates M; random linear combinations of f),'l. and
transmits these linear combinations after attaching the
chunk ID, where M; is an integer-valued random variable.
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Atan intermediate network node, suppose that / j pack-
ets have been received, denoted by (j,c’,b"), i = 1,...,h.
The network node can transmit j packet (j, ¢, b) generated
by

h h
c= Zqﬁici, and b = Z(])ibi, (1)
i=1 i=1
where ¢;, i = 1,2,...,h, are chosen from F;. A network

node does not transmit combinations of packets of differ-
ent IDs. Note that in (1), we only need to combine the j
packets with linearly independent coefficient vectors. For
the scheduling issue, i.e., how to choose a chunk B; by each
intermediate node for each transmission, please refer to
some recent proposed network protocols [18, 22, 32].

At the destination node, let T; be the matrix formed by
the coefficient vectors of all the j packets received, and let
Y; be the matrix formed by the payloads of all the j packets
received. We have

Y, = BT, 2)

where T; is called the transfer matrix of B;. Without
affecting the decoding performance, we can remove some
received j packets so that the remaining set of j pack-
ets have linearly independent coefficient vectors. So, we
assume that T; has a full-column rank. According to the
transmission scheme we described, we can further write

T = S;H;

where S; is an m x M; random matrix corresponding to the
linear combinations performed by the source node, and
H; is a random matrix with M; rows corresponding to the
linear operations performed by intermediate nodes as well
as the random packet losses over the network links. Here,
for a given value of Mj, S; is a totally random matrix, i.e.,
every entry of S; is chosen from [F; uniformly and inde-
pendently at random. Also, we assume that H; and S; are
independent conditionings on M; and rk(S;), which holds
for all the recent chunked code-based network protocols
[18, 22, 32].

The proposed chunk transmission model does not
depend on a particular chunked code and hence can be
used for the analysis of other chunked codes. A similar
model has been used for BATS codes [14]. Our model,
however, explicitly incorporates a parameter M; indicat-
ing the number of packets transmitted of a chunk, which
has a clear operation meaning in chunked code-based net-
work protocols. Intuitively, when the network has a higher
packet loss rate, we intend to use a larger value of M; to
gain the benefit of network coding. Readers can find more
discussion about this parameter in [18].

Now, we present a key result about the transfer matrices,
which shows that the column space of each transfer matrix
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with a fixed dimension is uniformly distributed over all the
subspaces with the same dimension.

Lemma 1. For any two subspaces W, U of F7' with the
same dimension,

Pr{(T;) = W} = Pr{(T;) = U},

where (T;) denotes the column space of matrix T;.

Proof. For matrix A and subspace U, define
AU ={Az:z e U}

It can be checked that A(Z) = (AZ). Since U and W have
the same dimension, there exists a full-rank 7 x m matrix
A such that

U=AW.
Thus,
Pr{(T;) = W}

Pr{A(T;) = U}
Pr{(AT;) = U}
= Pr{(AS;H;) = U}, 3)

where the first step follows by the invertibility of A.

For any s and r such that s > r, denote the event M; = s
and rk(S;) = r by &, and define S;, to be the set of all
m X s matrices with rank r. For any S € S, define Hg =

{H : (SH) = U}. Since §; is totally random given M; = s
and A is invertible, for any S € S,

Pr{S = S | &,} = Pr{AS = S| &,}.

Using the assumption that S; and H; are independent
conditionings on M; and rk(S;), we have

Pr{(ASjH/) = U}
= Z Pr{(AS;H;) = U| &} Pr{&,}

s,ris>r

= Z Z Z Pr{AS; = S,H; = H | &} Pr{&,}

s,r:s>r SeSs, HEH s

= > Y ) Pr(AS; =S| &) Pr{H; = H | &,) Pr{&,/)

sris=r SeSg, HEH s

= > > ) Pr(S; =S| &, Pr(H; = H | &,) Pr{&,)

sris=r SeS, HEH s

= Z Z Z Pr{S; =S, H; = H | Esr} Pr{&s,}

sris>r SeS;r HEH s

= Z PI‘{(S;H/) =U | gs,r} Pr{gs,r}

= Pr{(SjHj) = U}
= Pr{(Tj) = U}.

The proof is completed by combining the above equality
with (3). O
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2.3 BPdecoding

The destination node tries to decode the input packets by
solving the local linear systems Y; = B;T;,j = 1,2,...,n.
These local linear systems for chunks jointly give a global
linear system of equations on the k input packets, but solv-
ing the global linear system without considering the chunk
structure usually has high computational cost. Therefore,
we consider the following BP decoding of overlapped
chunked codes.

The BP decoding includes multiple iterations. Initially,
each chunk B; is associated with a linear system given in
(2). We say chunk B; is decodable if its linear system is
uniquely solvable. Each iteration consists of two phases:

e in the first phase, decode every decodable chunk that
has not been decoded by solving its associated linear
system using, e.g., Gaussian elimination, and

e in the second phase, for each input packet b in B; that
is decoded in the last phase and each chunk B; # B;
that includes b, substitute the value of b into the
linear system of B;, reducing the number of unknown
input packets in this linear system.

The BP decoding stops when all the chunks have been
decoded or all the chunks that have not been decoded are
not decodable.

Now, we analyze the time cost of the BP decoding algo-
rithm measured in finite field operations. Solving the
linear system of a chunk can be done by first inverting the
coefficient matrix, which costs O(m3) and then using the
inverse to recover all the unknown input packets, which
costs O(m>L). As there are n chunks, all the first phases
cost O((m® + m2L)n) in total. The substitution of an
input packet into a linear system costs O(mL) and can
happen at most mn times, so all the second phases cost
O(m?*Ln) in total. Therefore, the BP decoding algorithm
costs O((m> 4 m>L)n) finite field operations.

Assume that rk(T;) follows the probability distribu-
tion t = (fo,t1,...,tm), ie, Pr{tk(T)) = i} = ¢ for
i =0,1,...,m We have the following theorem, which is
the footstone for the analysis of the above BP decoding
algorithm.

Theorem 2. Let D be a fixed matrix with m rows and
rk(D) = w. Then,

m (m=i)(m—w)[ W
Pr{rk([TjD]) =m} = Z 1 [m—z]

o [7]

i—1 w__ 1
where ['/] = [1iZ, ’;i_;
cient. This implies that, given that w of the m packets in a
chunk B; have been decoded due to the decoding of other

chunks, the probability that chunk B; becomes decodable
is By.

ti é ﬁw;

is the Gaussian binomial coeffi-
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Proof. The proof is based on the uniformity property of
transfer matrices given in Lemma 1 together with count-
ing. For a subspace U, denote its dimension by dim(U).
Since

rk([T;D]) = rk(T)) + rk(D) — dim({T;) N (D)),
we have that, foranym —w < i < m,
Pr{rk([T;D]) = m|rk(T;) = i}
= Pr{dim({T;) N (D)) = i+ w — m|dim((T})) = i}.
As there are [’L"] i-dimensional subspaces of IF;”, and
gD im=—w) [m"il] i-dimensional subspaces of F7 such that
dim((T;) N (D)) =r + w — i (Refs. [33, 34]), by Lemma 1,
we have
Pr{dim((Tj) N (D)) = i + w — m|dim((T})) = i}
_ )
[7]
Therefore,

Pr{rk([T;D]) = m}

= Y Pr{rk([T;D]) = m|rk(T)) = i} Pr{rk(T)) = i}
i=0
(mfi)(WHW)[ w ]

_ o 1 m—i
- LT

i

t;.

O

q(m—i)(m—w) [mW

Let ¢} = ; g be the probability that a chunk
B; is decodable givlen that rk(T;) = i and w out of the m
packets in B; have been decoded due to the decoding of
other chunks. We can easily show that ¢}, is an increasing
function of the finite field size g. Here, we give some val-
ues of ¢/ with different i and w for ¢ = 2 and g = 256
in Table 2. From this table, we can see that the value of
¢} could be much larger when g = 256. In particular,
for all the instances such that i + w = m, the probabil-
ity that B; is decodable is close to 1 when g = 256, while
it is less than 0.4 when g = 2. Therefore, the chunked
codes could perform better when larger finite field is used

Table 2 Some values of ¢} for different j and w

w 2 4 6

i qg=2 g =256 qg=2 g = 256 qg=2 g = 256
26 - - - - 02933 0.9961
27 - - - - 0.5687 1.0000
28 - - 0.3076 0.9961 0.7823 1.0000
29 - - 0.6152 1.0000 0.8940 1.0000
30 0.3750 0.9961 0.8203 1.0000 0.9536 1.0000
31 0.7500  1.0000 0.9375  1.0000 0.9844  1.0000
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(also see Section 4). On the other hand, using larger finite
field would incur more computation cost as well as more
coefficient vector overhead. How to choose the proper
parameters such as the chunk size and the size of finite
field depends on the application scenario, which is beyond
the scope of the paper.

2.4 Achievable rate

Definition 3 (Achievable rate). We say that a rate R is
achievable by chunked codes using BP decoding if for any
constant € > 0, there exists a chunked code with k >
(R — €)mn input packets and #n chunks for all sufficiently
large n such that with probability at least 1 — €, when the
BP decoding stops, at least (R — €)mn input packets are
recovered.

Remark 1. It is not necessary that the chunked code
recovers all the input packets. When all the input pack-
ets are required to be recovered by the destination node,
we can either retransmit the input packets that are not
recovered or use the precode technique as in Raptor
codes [29].

Our objective is to design an efficient class of overlapped
chunked codes according to the given rank distribution. A
natural upper bound on the achievable rates of chunked
codes is established as follows.

Proposition 3. The achievable rate of chunked codes for
transfer matrices with rank distribution t = (ty,t1,. .., ty)
is upper bounded by t/m, where

t=Elk(T)]= ) it;.

i=1

Proof. Assume that A = £/m + §, § > 0 is achievable by
chunked codes. Fix € = §/2, by the definition of achiev-
able rates, there exists a chunked code with # chunks for
all sufficiently large n such that at least (A — €)mn input
packets are recovered with probability at least 1 — €.

Note that in the decoding of a chunked code, only
received packets of a chunk with linearly independent
coefficient vectors are useful. Therefore, the number of
decodable input packets is upper bounded by Z;’Zl rk(T}).
Then, we have the decoding error probability

n
Pere = Pr { Y "rk(T)) < (A — €)mn
j=1

n

> rk(T)) < &+ md/2)n

j=1

=DPr

_m28_2n
>]1—e 12t ,
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where the last inequality follows from the Chernoff
bound. For a sufficiently large n, we have Py > €, a
contradiction! O

3 Expander chunked codes
In this section, we introduce a family of overlapped chun-
ked codes, named EC codes.”

3.1 Code description

An EC code has three parameters: the number of chunks
n, chunk size m, and degree d (3 < d < m). Without loss
of generality, in the following, we assume that dx is even.?
Let k = n(m — d/2). An EC code is generated by a d-
regular graph G(V, E), called the generator (graph), where
V ={1,2,...,n}is the node set and E is the edge set. We
will discuss the design of G later in this paper. The chunks
in the EC code are constructed by the following steps.

1. Label each edge e € E with a distinct integer in
{1,...,k}, and denote the integer by i,. Label the rest
k —nd/2 = (im — d)n integers in {1, . . ., k} evenly to
the n nodes in V, and denote the set of integers
labelled to node v by Z;,.

2. Form n chunks {Z,,1 < v < n}, where

T, = T, U {i, : e is incident to nodev}.

Due to the one-to-one correspondence between nodes
in G and the chunks, we equate a node with its corre-
sponding chunk henceforth in the discussion. We call Z,
chunk v and i, an overlapping packet of chunk v.

As discussed in the previous section, EC code can be
encoded causally. Specifically, the first step of the con-
struction can be done as follows, where each index in
{1,2,...,k} is used in an increasing order. First, label node
1 with the first m —d indices and label the d edges incident
to node 1 in an arbitrary order with the next d indices.
Then, label node 2 with the next m — d indices and label
each of the edges incident to node 2 but unlabelled with a
next index, and so on. Clearly, for any chunk v, the largest
index in Z, is less than or equal to mv. See Fig. 1 for

10,11 8 6,7
N/ l > T, = {1,2,3,4,5}
o = {3,6,7,8,9}
Ty = {8,10,11,12,13}
14,15 1,2
T, = {9,12,14,15, 16}
Is = {5,16,17,18,19}
% | " T = {4,13,19, 20,21}
17,18 19 20,21
Fig. 1 An EC code withn = 6, m = 5 and d = 3. The generator graph
of the code is a 3-regular graph with 6 nodes
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an illustration of this assignment of indices such that the
chunks are suitable for causal encoding.

3.2 Achievable rates
The performance of EC code with a particular generator
graph is difficult to analyze. Instead, we analyze the per-
formance of an EC code with a random d-regular graph
as the generator. There are various probability models for
random d-regular graphs. We adopt the uniform model,
i.e., G is uniformly chosen from all d-regular graphs with
node set V. One can obtain the similar result for the
permutation model, the perfect matching model [35], etc.
The details of the performance analysis are provided in
the next subsection; here, we first characterize the achiev-
able rates of EC codes under BP decoding. To state the
main result, we need to introduce some notations. For any
3 < d < m, define a function «;(y) over the interval [0, 1]
as

d—1 d—1
)= ( )yw(l — ) B, 4)
w=0 w
where B, is defined in Theorem 2. Note that
oq(0) = Bo =t > 0, (5)
and
ai(») =1, y€[0,1]. (6)

We can further check that «;(y) is monotonically
increasing in y. With function «,4(y) and its functional
powers, we introduce a sequence

@4(0),05(0), 3(0), ... ., (7)
where o:f;rl(O) = ay (afi(O)) for all i > 0. This sequence
is well defined since the range of o, is in [0, 1]. Further,
since ay(0) > 0 and «oy(y) is monotonically increasing,
we can check inductively that the sequence in (7) is also
monotonically increasing. Since the sequence is bounded

above, it must converge. Denote
o) = llirgo a;(O).
We further define
Td = ad+1((¥:§);
and
A =1—(1—ah

Theorem 4. EC codes with the degree d and chunk size
m can achieve a rate at least t;(1 — d/m) + Agd/(2m).

Note that, for any fixed degree d, the achievable rate
given in Theorem 4 is easy to calculate numerically. Thus,
we can easily find a proper degree d to maximize the
achievable rate.



Tang et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:106

3.3 Performance analysis

We provide an analysis of the BP decoding of the EC code
with a random d-regular graph as the generator and prove
Theorem 4.

Definition 4. For any generator graph G = (V, E), the
[ neighborhood of a node v € V, denoted by G;(v), is the
subgraph of G induced by all the nodes u with distance at
most [ to v.

After [ + 1 iterations of the BP decoding, whether all
the input packets in chunk v are recovered is determined
by G;(v). Hence, we study the BP decoding performance
Gi(v).

Definition 5. For any generator graph G = (V,E), a
node v € V is said to be / decodable if all the input pack-
ets in chunk v can be decoded when the decoding process
is applied on G;(v).

In the following, we set

1
[ = \;3 log,;_; nJ .

We first show that a random regular graph has the
locally tree-like property, i.e., almost all the nodes in G
have their / neighborhoods being trees.

Lemma 5. For a random d-regular graph G with n
nodes, let T be the number of nodes with their [ neighbor-
hoods being trees. Then, for any constant € > 0,

Pr{T > (1—en} > 1-0 (n3/e).

Proof. Let X, be the number of cycles of length r in G.
One important fact is that a node whose / neighborhood
is not a tree must belong to a cycle with length less than
or equal to 2/ 4 1. Therefore,

20+1

n—T< Z rX,. (8)
r=3

Since (d — 1)2%*! = o(n), it was shown in [36] that, for
any3 <r <2/ +1,

E[X.] = da-1r (1+O<r(r+d)))

2r n

d—1"
= o), ©)
r
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Taking expectation on both sides of (8) and substituting
(9) gives

2[+1

> rEX]

r=3
20+1

-y

r=3
-0 ((d _ 1)2l+1)
= O (n23).

Finally, by Markov’s inequality, we get

Eln—T]

IA

(d-1)

(1+0(1))

Pr{iT <(1—¢€)n} =Prin—T > en}

E[ln—T]
- en
< O 3e).

O

Now, we show the probability that a node v is / decod-
able given that G;(v) is a tree. Note that the tree-based
analysis of EC codes can be viewed as a variation of the
and-or-tree analysis used for LT and LDPC codes.

Lemma 6. Let v € V be a node such that G;(v) is a tree.
Then, for any constant € > 0 and sufficiently large n,

e the probability that chunk v is | decodable is at least
(1 —e)ty, and

e the probability that an overlapping packet in chunk v
can be recovered by BP decoding on G;(v) is at least
(1—e)r,.

Proof. We first prove the first part. Consider the tree
G;(v) rooted at v. Clearly, the root v has d children nodes
and all other internal nodes have d — 1 children nodes.
Let h; be the probability that a node u at level i (here, we
assume that the node v is at level / and the leaves are at
level 0) is decodable when the decoding process of u is
restricted within the subtree of G;(v) rooted at u. In the
following, we calculate /; in a bottom-up fashion.

For a leaf node #, since it cannot get any help from other
chunks in G;(v),

ho = Pr{rk(T,) = m} = t,,, = Bo.

For any node u atlevel i, 1 < i < [—1, suppose that w out
of the d—1 children nodes v' of node u are decodable when
the decoding process of V' is restricted within the sub-
tree of G;(v) rooted at v'. Note that each of these children
nodes (regarded as chunks) overlaps with chunk u« at a
distinct packet. Therefore, when decoding u, these w over-
lapping packets provide additional w linearly independent
coding vectors beyond T,,. According to Theorem 2, the
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probability that u is decodable is f,,. Since the local decod-
ing processes of all the children nodes of node u are
mutually independent, we have

d—1

d—1
Z( . )h;tl(l—hi_nd—l—wm

w=0

= ag(hi-1).

h;

By induction, we have
hi=a1(0), i=0,1,...,1— 1

Similarly, since the node v in the level / has d children
nodes,

d

d
> ( )h;“la — ) B
w=0 w

= agr1(hi—1)
@gi1(a}0)).

hy

When n — oo, which implies [ — oo, afi(O) - a.
Therefore, h; — t; as o441(y) is continuous. Hence, for
any constant € > 0,

hy>1—-e)1y

for n sufficiently large.

Next, we prove the second part. Let u be an arbitrary
children of node v. According to the above analysis, we
know that node u is decodable with probability #;_; =
afi (0). Meanwhile, under the condition that chunk # is not
decodable, we can consider a new tree obtained by delet-
ing the subtree rooted at u# from G;(v). Similarly, we can
show that node v can be decoded on the new tree with
probability ay(h;_1) = otf;“l(O). Therefore, the common
packet of chunk # and chunk v can be decoded with proba-
bility at least 1—(1—0{(2 (0))(1—czél+1 (0)), which approaches
A4 when # goes to infinity. The proof is accomplished. [

Lemma 5 and Lemma 6 together give a bound on the
expected number of packets that can be recovered by BP
decoding. Finally, we complete the proof of Theorem 4 by
showing that the number of recovered packets is sharply
concentrated to its expectation.

Proof of Theorem 4. Let Z be the number of input pack-
ets recovered when the decoding process of every chunk
is restricted within its / neighborhoods, and let T be
the number of nodes whose [ neighborhood is a tree.
According to Lemma 6 and noting that each chunk has
m — d non-overlapping packets and each of the d overlap-
ping packets only appear in two chunks, we have that for
sufficiently large #,
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E[ZIT] > (1 — €/4)(ty(m — d) + Agd/2)T. (10)

Now;, consider an exposure martingale on G as follows.
Let

Zy =E[Z]T], (11)
andfori=1,2,...,n,let
Zi = E[Z|T11T2; .. ~;Ti’ T]’

where T; denotes the transfer matrix of chunk B;. The
sequence Zy, Z1, . . ., Zy gives a standard Doob martingale
[37]. Recall that the decoding process of each node v is
restricted within the / neighborhood G;(v). Therefore, the
exposure of T, affects the expected number of recovered
packets by at most the number of nodes in G;(v) times the
chunk size. More precisely, for each 1 < i < #,

12— Zia| < mlGw)] = © (@ = 1') = © (n3).

Applying the Azuma-Hoeffding inequality [37], we have

Pr {zn < Zo— Z(rd(m —d)+ /\dd/2)T}

€ 2
<exp(- (g(fd(”’l —d)+ )deZ/Z)T) (12)
2n (2 (n/3))
= exp (—Q (62}’11/3)) .

Combining (10), (11), and (12) and noting that Z,, = Z,
we get

Pr{Z = (1 - %)(rd(m —d)+ A(;161/2)T} < exp (-0 (2n'/3)).
(13)

Finally, since T > (1 — €/2)n almost surely according
to Lemma 5, and Z is a natural lower bound on the num-
ber of packets that can be decoded by the BP decoding
algorithm, we complete the proof of Theorem 4. O

3.4 Generator graph design

The above performance analysis implies that most d-
regular graphs have the locally tree-like structure and
hence the corresponding EC codes have the desired BP
decoding performance. Therefore, the generator graph G
can be designed randomly. That is, we randomly gener-
ated a d-regular graph as the generator graph, which can
be done in expected O(n) time by the McKay-Wormald
algorithm [38]. We will use this approach in our perfor-
mance evaluation.

Since a randomly generated d-regular graph lacks a
structure, we may need the whole adjacency matrix to pre-
serve the graph. Note that the adjacency matrix is sparse
and hence can be compressed. Alternatively, we may just
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save the seed of the pseudorandom generator used for
generating the d-regular graph.

Structured d-regular graphs can further simplify
the generation and/or preservation of the EC code.
When d = 8, Margulis’ method [39] gives a struc-
tured 8-regular graph. However, currently, we do not
have an efficient algorithm for generating structured reg-
ular graphs with any parameters d and n. Construction
of structured regular graphs is of independent inter-
est in mathematics and computer sciences, and many
researches have been conducted on developing new
approaches [40].

4 Performance evaluation

In this section, we evaluate the performance of EC codes
with comparison against the state-of-the-art overlapped
chunked codes (H2T codes [11] and random annex codes
(RAC) [12]) and coded chunked codes (BATS codes [14]
and L-chunked (LC) codes [17]). In all the evaluations,
unless specified, we use m = 32 and g = 256, which
gives a good balance between the achievable rates and the
encoding/decoding cost.

4.1 Random transfer rank distributions

The performance of EC codes, as well as of BATS
codes and LC codes, depends on the rank distribution
t = (to,t1,...,tm). So, we first evaluate the perfor-
mance of EC codes for general rank distributions, which
may provide some guidance on the application of EC
codes.

Recall that the achievable rate of chunked codes is upper
bounded by ¢/m (see Proposition 3). For each fixed value
t/m = 0.5,0.6,0.7,0.8, we sample a number of rank dis-
tributions* and derive the corresponding achievable rates
of EC codes, BATS codes, and LC codes numerically. For
BATS and LC codes, the achievable rate is obtained by
solving the corresponding degree distribution optimiza-
tion problem. For EC codes, the achievable rate is given by
Theorem 4 with an optimized d. In particular, in order to
see how the finite field size g affects the performance of
EC codes, the achievable rate of EC codes for g = 2 is also
evaluated.

The results are summarized in Table 3. From the table,
we see that EC codes with g = 256 can achieve higher
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rates than with ¢ = 2, which is consistent with the analy-
sis given in Section 2. Also, when ¢/m = 0.5, the average
achievable rate of EC codes is much lower than the upper
bound 0.5. (Actually, EC codes perform worse when /m is
lower.) The reason is roughly as follows: each input packet
in an EC code is duplicated at most once, so the total
number of packets in an EC code nm is no more than 2k,
where k is the number of input packets. When ¢/m = 0.5,
the effective number of received packets (removing the
packets in each chunk that have linearly dependent coeffi-
cient vectors) is about nm/2 < k. We see that EC codes in
this case may not have enough redundancy for recovering
a significant fraction of the input packets.

When the value of £/m becomes larger, the achievable
rate of EC codes consistently becomes more close to £/m.
When £/m = 0.8, for example, the average achievable rate
of EC codes is nearly 90 % of £/m. It is not surprising to see
that both BATS codes and LC codes outperform EC codes
due to the much more complicated encoding process and
degree distribution optimization in the former codes.

By comparing the maximum and minimum achievable
rates, we notice that the performance of EC codes varies
significantly for different rank distributions, especially
when #/m is relatively small. When #/m = 0.5, for some
rank distributions, EC codes achieve more than 80 % of
t/m; while for some other rank distributions, EC codes
can only achieve less than half of the rate of BATS/LC
codes.

In many potential applications of chunked codes, the
rank distributions of the transfer matrices have cer-
tain features, instead of occurring purely randomly. For
instance, the number of packets in a chunk received by
the destination node is a summation of multiple binomial
random variables, which can be roughly approximated by
a Poisson random variable. Also, in an optimized trans-
mission scheme, if the average packet loss rate over the
network is higher, the number M; of packets transmit-
ted for each chunk usually also becomes larger, so that
the average rank ¢ has a relatively large value [18]. In
practice, EC codes can benefit from these features of
rank distributions and achieve much higher rates than a
rank distribution randomly generated. Therefore, in the
remainder of this section, we focus on the performance of
EC codes in a practical scenario.

Table 3 Achievable rates of EC/BATS/LC codes with 10 random rank distributions

t/m=05 t/m =106 t/m=07 t/m=08
Average Min. Max. Average Min. Max. Average Min. Max. Average Min. Max
EC(g=2 0.103 0.015 0.172 0.500 0487 0511 0.569 0.547 0.589 0677 0.645 0.691
EC 0.294 0.184 0411 0.523 0.508 0.532 0.591 0.569 0619 0.719 0.694 0.740
BATS 0497 0495 0498 0.598 0.598 0.598 0.698 0.696 0.699 0.798 0.798 0.759
LC 0478 0470 0486 0.581 0.570 0.592 0.687 0.673 0.697 0.786 0.778 0.792




Tang et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:106

S aiy a2 t

Fig. 2 Line network with length three. Node s: source node, node t:
destination node

4.2 Line networks

We consider a line network formed by tandem homo-
geneous links, each of which has the same packet loss
probability €. Figure 2 illustrates a line network of length
three. Line networks are generic building blocks of more
complicated communication networks and have attracted
a lot of research interests [19-21]. The chunk transmis-
sion schemes of line networks can be extended to general
unicast networks and some multicast networks [14, 18],
preserving the optimality. In order to compare with the
line network capacity directly, we instead evaluate the
achievable network transmission rate, i.e., the number of
packets that are transmitted on average by one use of the
network reliably.

We use the near-optimal chunk transmission scheme
described in [18] over the line network. In this scheme,
the chunks are transmitted in a sequential manner, and
every node v, except for the destination node, trans-
mits M packets of each chunk Bj, where MY is an
integer-valued random variable. For the source node s,
M;S) is just the variable M; defined in Section 2.2. For

all the network nodes and chunks, M;s) has the same

mean value M. For a fixed M, the distribution of Mj(v)
is optimized hop-by-hop according to the number of j
packets received/possessed by node v. The value of M is
chosen such that £/M is maximized, which is an upper
bound on the network transmission rate that can be
achieved by any chunked code under this transmission
scheme.

We evaluate the performance of EC, BATS, and LC
codes in line networks with different network lengths
and packet loss probabilities. The results as well as some
important parameters are summarized in Tables 4, 5 and
6. From these tables, we can see that when the network
length or packet loss probability is larger, the optimized

Table 4 Achievable network transmission rates of chunked
codes in line networks with € = 0.1
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Table 5 Achievable network transmission rates of chunked
codes in line networks with € = 0.2

Network length EC LC BATS t/M M
2 0.743 0.764 0772 0773 35
3 0718 0752 0.756 0757 36
4 0.702 0.741 0.745 0.746 365
5 0691 0732 0737 0738 37
6 0682 0727 0731 0731 375

M is also larger, keeping /M at a high value, close to
the network capacity (note that if the computational cost
and/or buffer size of intermediate nodes is restricted to
be O(1), the network capacity is smaller than 1 — ¢ and
decreases when the network length grows [20, 21]). More-
over, EC codes can achieve a network transmission rate
that is about 91% ~ 97% of the bound £/M and is
about 80% ~ 94.5% of the network capacity 1 — e.
This demonstrates the great real-world potential of EC
codes.

4.3 Comparison with overlapped chunked codes

We then compare EC codes with two overlapped chun-
ked codes: the chunked code with a head-to-tail type of
overlapping (H2T) [11] and random annex codes (RAC)
[12]. Since we do not have the analytical results to calcu-
late the achievable rates of these two codes, we conduct
simulations in line networks with ¢ = 0.2 and lengths
four and ten for the performance comparison. For each
code and each length, we perform 10,000 runs of the sim-
ulation. In all the runs, the number of chunks in each
code is set to be 500, which thus fixes the same transmis-
sion cost. The parameters involved in H2T and RAC are
chosen optimally in the sense that the average number of
decodable input packets is maximized. Note that given the
parameters of a chunked code, the number of input pack-
ets is then determined, which varies over different classes
of chunked codes. The empirical cumulative distribution
functions (eCDFs) of the number of decodable input pack-
ets for each code in line networks with lengths four and
ten are plotted in Figs. 3 and 4, respectively. From these

Table 6 Achievable network transmission rates of chunked
codes in line networks with e = 04

Network length EC LC BATS i/ M Network length EC LC BATS i/ i
2 0851 0874 0878 0879 32 2 0.533 0559 0.569 0570 44
3 0825 0852 0.866 0866 33 3 0523 0543 0553 0.554 46
4 0817 0853 0857 0857 33 4 0.504 0539 0.542 0543 48
5 0809 0847 0850 0850 33 5 0493 0523 0534 0534 49
6 0.795 0.840 0844 0845 34 6 0484 0523 0527 0528 50
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3 0.4+ i
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0.2 i
0 ! !
0.6 0.8 1 1.2 1.4
) -10*
number of decodable input packets
Fig. 3 The eCDF of the number of decodable input packets in a line
network with length four. Here, M = 36.5

figures, we can see that EC codes outperform both H2T
and RAC significantly in both line networks.

5 Conclusions

In this paper, we studied the performance of overlapped
chunked codes with constant chunk sizes. We proposed
and analyzed EC codes, a novel class of random regular
graph-based chunked codes, which outperform state-of-
the-art overlapped chunked codes. Compared with coded
chunked codes, EC codes can achieve a rate very close to
that of BATS codes and L-chunked codes in line networks
with a proper optimization of the transmission scheme,
but EC codes can support causal encoding and have lower
encoding complexity.

1 I
—— EC
—RAC
0.8 HOT s
o3
A
O 0.6 |
g
R=!
o 04 |
g
o
0.2 s
0 ! !
0.6 0.8 1 1.2 14

number of decodable input packets10*

Fig. 4 The eCDF of the number of decodable input packets in a line
network with length ten. Here, M = 39
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Endnotes

1For example, network protocols usually have a
maximum transmission unit (MTU) ranging from
hundred to thousand bytes.

2EC codes were motivated by the expander graphs, and
the expansion property was applied in the first analysis of
EC codes to obtain a lower bound on the achievable rates
[31]. In this paper, we provide a better bound on the
achievable rate without an explicit application of the
expansion property, but the name of the code is
preserved.

3If both d and # are odd, then an EC code with #
chunks and degree d can be generated by attaching an
arbitrary chunk to an EC code with # — 1 chunks and
degree d using the described method, which does not
affect the asymptotic performance of EC codes.

*To the best of our knowledge, no efficient algorithms
have been developed for uniformly sampling a rank
distribution with a given mean value. Here, we use the
following method for randomly sampling rank
distributions. For a fixed £, denote a = |£]. We first
sample a distribution (¢, ¢1, . . ., ;) over the set
{0,1,...,a} and a distribution (¢;+1, 442, . . ., by) OVer
theset {a + 1,a + 2,...,m} using the method in [41],
which gives almost uniform sampling of distributions
over the corresponding set. Let n = (32, it; — )/
(Qitay1iti — Y igit)) > 0. Then, we get a distribution
(ﬂfo» Nt .. Nla, (1 - n)tﬂ+1’ (_1 - ﬂ)ta+2» BEEE) (1 - ﬂ)tm),
whose expectation is equal to ¢.
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