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least-mean-squares algorithm.

Acoustic echo cancellation (AEC) is a well-known application of adaptive filters in communication acoustics. To
implement AEC for multichannel reproduction systems, powerful adaptation algorithms like the generalized
frequency-domain adaptive filtering (GFDAF) algorithm are required for satisfactory convergence behavior. In this
paper, the GFDAF algorithm is rigorously derived as an approximation of the block recursive least-squares (RLS)
algorithm. Thereby, the original formulation of the GFDAF algorithm is generalized while avoiding an error that has
been in the original derivation. The presented algorithm formulation is applied to pruned transform-domain
loudspeaker-enclosure-microphone models in a mathematically consistent manner. Such pruned models have
recently been proposed to cope with the tremendous computational demands of massive multichannel AEC. Beyond
its generalization, a regularization of the GFDAF is shown to have a close relation to the well-known block
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1 Introduction

Acoustic echo cancellation (AEC) is generally neces-
sary in full-duplex communication scenarios where loud-
speaker echoes should be removed from a microphone
signal. This is, e. g., necessary for teleconferences where
the microphone signal is sent to far-end communica-
tion partners who would be disturbed when hearing their
own voices. Another application scenario is an acous-
tic human-machine interface where the automatic speech
recognition would be impaired by the loudspeaker feed-
back in microphone signal.

AEC uses an adaptive filter identifying the echo path to
obtain an echo replica that then is subtracted from the
microphone signal [1-7]. Ideally, this is achieved without
distorting the signals of the local acoustic scene in the
microphone signal. This distinguishes AEC from acoustic
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echo suppression, where the microphone signal is filtered
in a way such that a distortion of the local acoustic scene
cannot be avoided [8, 9]. However, acoustic echo suppres-
sion is often also used as a post-filtering method after AEC
[10-15].

The principle of AEC has originally been applied to
cancel the echoes in telephone hybrids [16]. The neces-
sary adaptation algorithms were typically based on the
well-known least-mean-squares (LMS) algorithm [17, 18].
The very popular normalized least-mean-squares (NLMS)
algorithm is closely related to the class of affine projec-
tion algorithm [19, 20] of which efficient implementations
are available [21]. The sparse nature of impulse responses
describing telephone hybrid echoes motivated the for-
mulation of the proportionate normalized least-mean-
squares algorithm (PNLMS) and the improved PNLMS
(IPNLMS) algorithms [22, 23], respectively.

When hands-free telephone sets were introduced,
acoustic echoes became another significant problem in
many telecommunication scenarios. Unlike the echo
paths of telephone hybrids, acoustic echo paths are
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described by significantly longer typically non-sparse
impulse responses, as described by Hénsler in [24, 25].
This increased complexity fueled the search for effi-
cient frequency-subband [26, 27] and discrete Fourier
transform (DFT)-domain algorithms [28-30], where mul-
tiple shorter adaptive filters or individual DFT bins,
respectively, are adapted independently and lead to faster
convergence and increased computational efficiency. As
the block processing of computationally efficient DFT-
domain algorithms implies large algorithmic delays, the
generalized multidelay adaptive filter was developed
which reduces the block size by partitioning the impulse
responses [31, 32]. Note that it is also possible to
reduce this delay on cost of computational efficiency by
choosing an appropriate block-overlap for single-partition
processing [4].

On another track of research, a state-space model of
the acoustic impulse responses was used to apply the
concept of the Kalman filter to AEC [14, 33, 34]. These
approaches feature an inherent step-size control, which
renders a double-talk detection [3, 35] unnecessary. When
the Kalman filter approach is formulated in the frequency
domain, be it single [14] or partitioned block [36], the
framework interestingly delivers an integrated frequency-
domain filter structure and, hence, unites important con-
cepts from adaptive filtering and adaptation control.

Recently emerging multichannel reproduction systems
allow for improving the user experience in many kinds
of telepresence systems but also human-machine inter-
faces, such as multi-party teleconferencing and immer-
sive interactive gaming environments whenever the latter
comprise an acoustic human-machine interface. Such sce-
narios imply the use of a multichannel AEC system where
the typically strong correlation between the various loud-
speaker channels hampers the convergence of adaptation
algorithms [37, 38]. The generalized frequency-domain
adaptive filtering (GFDAF) algorithm has been shown to
largely overcome this problem while retaining compu-
tational efficiency. The GFDAF algorithm was first pre-
sented in [39], being inspired by [30, 40] and incorporating
concepts of [31, 41, 42]. Note that the Kalman filter-based
approaches have also been generalized for the efficient
identification of multiple-input/multiple-output systems
[43].

However, for massive multichannel systems with dozens
of loudspeaker channels, AEC still involves tremen-
dous computational demands and algorithmic challenges.
Wave-domain adaptive filtering (WDAF) has been shown
to overcome these problems by using a physically moti-
vated loudspeaker-enclosure-microphone (LEM) model
[44, 45], which allows to approximate the LEM sys-
tem by a drastically reduced number of loudspeaker-to-
microphone couplings described in the wave-domain. The
resulting models will be referred to as pruned models in
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the following. Due to its desirable properties, the GFDAF
algorithm was also the algorithm of choice for most
WDAF implementations.

This paper presents a comprehensive derivation of the
GFDAF algorithm as an approximation of the well-known
block recursive least-squares (RLS) algorithm with expo-
nential windowing. The presented derivation clearly iden-
tifies all approximations that were implied in the original
derivation such that an additional variant of this algo-
rithm can be formulated. Moreover, a notation is used that
was optimized for conciseness to alleviate further devel-
opment of the algorithm. As a first step towards further
development, the GFDAF algorithm is generalized to use
pruned LEM models, for the first time in a mathematically
consistent manner.

The paper is organized as follows: In Section 2, we
formulate the system identification problem and its rela-
tion to AEC. As the basis for the following main parts
of the paper, the RLS algorithm is briefly reviewed in
Section 3 where it is shown that errors induced in the
filter coefficients decay exponentially during adaptation
using this algorithm. Additionally, a link between the LMS
algorithm and a Tikhonov regularization of the RLS algo-
rithm is shown. In Section 4, the GFDAF algorithm is
rigorously derived as an approximation of the block RLS
algorithm with exponential windowing and then gener-
alized to pruned LEM models in Section 5. The derived
algorithms are briefly evaluated in Section 6 to show the
effect of the individual approximations used in the deriva-
tion. In Section 7, implications of the presented derivation
for real-world implementations are discussed before con-
clusions are presented in Section 8.

2 System identification and acoustic echo
cancellation

In this section, the system identification problem is related

to AEC, and the signal model is introduced along with

Fig. 1.

In the following, the L loudspeaker signals are described
by the matrix X(k) which captures the individual sam-
ples x;(k) of loudspeaker channel / ({ = 0,1,...,L — 1) at
discrete-time instant k. The structure of this matrix will

X(k)
Adaptation fl(”) .
algorithm > h(n) h
e(k) 54 d(k)
)

echo-cancelled signal

Fig. 1 Signal model for system identification and AEC
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be explained and motivated later. These signals are fed
to the LEM system, which is represented by the vector
h that captures the impulse responses of all microphone-
to-loudspeaker paths. The LEM system is assumed to be
time-invariant for the subsequent analysis. The individ-
ual samples of the impulse response from loudspeaker /
to microphone m (m = 0,1,...,M — 1) are denoted by
hy,,1(K) such that microphone signal m is given by

L-1K-1
dm(k) =) Y w1k = Ol (k). (1)
1=0 =0
This implies that the LEM system impulse responses are
considered to be of length K and that additive noise in the
microphone signals is neglected. Although these condi-
tions will not be fulfilled for real-world systems, this does
not limit the applicability of the following derivation.
The discrete-time microphone signals are captured by
the vector

d(k) = (do(k), d1 (k), ..., dy—10k) 7T, (2)
d, (k) = (dpk —P+1),...,du ()T, (3)

where signal segments of length P are considered and
T denotes the transposition. The choice of P will be
discussed later. For system identification, an adaptation
algorithm provides an estimate h(1) of h. Typically, this
estimate is determined implicitly by minimizing a given
norm of the error signal e(k). In the echo cancellation
context, the error signal e(k) contains also the signals of
the local sources in the LEM system, which should then
be further processed and/or transmitted after the acoustic
echoes are removed.

The column vector h(n) of length KLM has the same
structure as h but is dependent on the block-time index
n = |k/N], where N denotes the frame shift of the adap-
tation algorithms as defined later and | -] denotes the floor
operator. The resulting structure of h(n) is then given by

hon) = (83000, 83,00, B, (),
@

. R T
Rl o), .. hATd,LL,I(n))
A R . T
B 00) = (g O ), s K = 1m) , (8)
where ljzm,l(k, n) are estimates of /1, (k).
In order to implement (1) by the multiplication
d(k) = X(k)h, (6)

the MP x LMK matrix X (k) has to be defined as follows.
The loudspeaker signals are first represented by

xi(k) = @ik = P+ 1),...,x,(k)", (7)
which is then used to form
X, (k) = (x;(k), ..., x;)(k— K +1)), (8)
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such that
X (k) =Ly ® Xo(k), X1(k), ..., X —1(k)), 9)

can be defined. Here, ® denotes the Kronecker prod-
uct, and I/ is an M x M identity matrix. The redundant
representation of X(k) in (9), as illustrated by Fig. 2,
allows for describing the microphone signals d(k) as a col-
umn vector. This representation will be exploited later in
Section 5.

The adaptation error signal is then defined by

e(k) = d(k) — X(k)h(n). (10)

Note that k may assume any integer number, while only
the time instants k = #nN will be relevant for the
derivation of the adaptation algorithms presented later. In
real-world implementations, e(k) will be used for further
processing, which suggests to set the microphone signal
segment length P equal to the frame shift N to obtain a
gap-less signal in e(k). However, for generality, P is not
determined by N in the presented derivation.

B |-\ do(k)
d(k) = )
X4 (k)
Xo(k) l X (k)
o r's
X(k) = A SRR
Xo(h) | Xl
X, (k)
|-\ Boo(n
S
h(n) = .

| = column vector

\‘ = convolution matrix according to (8)

Fig. 2 Exemplary structure of matrices to describe a convolution for
L=3M=2
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When minimizing the mean-square error (MSE), i.e.,
solving

argmin {& {eH(k)e(k) 1
h(n)

(11)

with - denoting the Hermitian transpose, the following
normal equation results:

Rh(n) =r, (12)
with

R =& (XA oxXk)}, (13)

r= & {X"kdk)} (14)

being scaled versions of the loudspeaker signal autocor-
relation matrix and the cross-correlation vector of loud-
speaker and microphone signals, respectively. The scaling
results from the P rows of X;(k), which are time-shifted
versions of each other. Since stationarity implies shift
invariance under the expectation operator, R represents
the sum of P identical loudspeaker signal autocorrelation
matrices. The same holds for r with respect to the cross-
correlation vector. If P = 1 is chosen, R and r describe the
loudspeaker signal autocorrelation matrix and the cross-
correlation vector of loudspeaker and microphone signals,
respectively, as they are commonly used in the literature
[17].

3 Recursive least-squares (RLS) and
least-mean-square (LMS) algorithms

In the first part of this section, the well-known RLS
algorithm is briefly reviewed to form the basis for the
subsequent derivations. In Section 3.1, the effect of fil-
ter coefficient errors on the further convergence of the
RLS algorithm is treated. The LMS algorithm is derived
in Section 3.2 in order to establish a link between the
LMS algorithm and a Tikhonov regularization of the RLS
algorithm.

The RLS algorithm as considered here minimizes the
cost function

Jrus(m) =y 2" Ve (WN)e(wN), (15)

v=0

using the exponential window defined by “forgetting fac-
tor” A [17]. The weighted least-squares criterion given by
(15) approximates & {eH(k)e(k)} in (11) and can be used
when the second order moments of the loudspeaker and
microphone signals are unknown. When choosing N =
P = K, (15) is identical to the cost function used in [39]
up to a scaling factor.

Plugging (10) into (15) and setting the Wirtinger gra-
dient [17, 46] of the result to zero leads to an ﬁ(n) that
minimizes (15). This gradient is given by
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M = ZAHXH (wN)X(vN)h(n) — XH (WN)d(vN),
i (n) =
(16)
where aﬁg(n)]RLs(n) = 0 leads to
R(m)h(n) = i(n) (17)
with
R(n) = Z ATVXF (WUN)X(VN) (18)
v=0
= AR — 1) + X (uN)X(nN), (19)
t(n) = Z A"VXH (WNYA(VN) (20)
v=0
=At(n — 1) + XX (uN)d(nN). (21)

Note that ﬁ(n) and r(#) can be seen as recursive estimates
of R and r, respectively, such that (17) approximates the
solution defined by (12). Due to the similarity between
(13) and (18), R(n) shares the structure of R, which is
illustrated in Fig. 3.

In the following, a recursive algorithm determining h(n)
is derived. Multiplying (19) from the right-hand side by
the previously computed filter coefficients ﬁ(n — 1) and
subtracting the result from (21) leads to

#01) — Roh(n — 1) = & (f(n — 1) =R — Dh(1 — 1))
+ X" (N (d(nN) — X(nN)h(n — 1)) .
(22)

Substituting r(n) using (17) and defining the a priori
estimation error

e/ (k) = d(k) — X(bh(n — 1) (23)
N\
RS
Rin) =
' N\
NN
NN
\ = single-channel correlation matrix

Fig. 3 Resulting structure of the loudspeaker signal autocorrelation

matrixforl =3, M =2
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leads to
R(m)h(n) = Rmh(n — 1) + X (uN)e' (uN)
+2 (f'(n 1) =R —Dhn— 1)) (24)

and finally to the explicit formulation of the adaptation
algorithm, assuming that ﬁ(n) is invertible and h(z — 1)
fulfills (17) for n — 1:

h(n) = h(n — 1) + R ()X (nN)e' (nN). (25)

Note that the a priori estimation error €'(k) must be
clearly distinguished from the a posteriori estimation
error e(k), which depends on ﬁ(n) instead of fl(n —1).
Unfortunately, these errors are not correctly distinguished
in [39].

Since (17) describes the solution of a least-squares prob-
lem, R~1(n) can be replaced by the Moore-Penrose pseu-
doinverse, if R(n) is not invertible [17]. However, this is
merely of theoretical interest since the Moore-Penrose
pseudoinverse is expensive to compute, and real-world
implementations will most likely rely on regularization
as described later by (36). Moreover, the inverse R1(n)
can also be computed using the well-known matrix inver-
sion lemma [17]. However, this approach leads only to
an increased efficiency, if (19) describes a rank-deficient
update of R(n), wherea higher rank of the update implies a
lower gain in efficiency. Hence, this approach is less attrac-
tive with growing P. Additionally, the update of the matrix
inverted in (36) is generally full-rank. Thus, this approach
is not discussed in the paper.

3.1 Effect of regularization and approximation errors
For any approximation or regularized version of the RLS
algorithm, (17) will not be fulfilled exactly by h(n — 1).

In that case, A (f'(n -1) - f{(n - l)fl(n - 1)) does not

vanish, and fl(n — 1) can be described by

h(n — 1) = hope(n — 1) + Ah(n — 1), (26)
where the optimal component flopt(n —1) of the filter coef-
ficients fulfills (17) at block time instant # — 1, while the
error component Ah(n) does not. Then, multiplying (24)
with R™1(#) from the left-hand side leads to

h(n) = h(n — 1) + R ()X (uN)e' (nN)
+ AR () (f'(n —1) =R — Dh(n — 1)) (27)

as the adaptation rule to obtain optimal filter coefficients
from previous suboptimal coefficients. When comparing
(25) toA(27) it can be seen that suboptimal filter coeffi-
cients h(n — 1) require an additional correction term in
order to obtain optimal coefficients in h(#). Since this
term is not considered in (25), any perturbation of ﬁ(n -1)
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will lead to suboptimal coefficients in fl(n). The result-
ing error can be determined by subtracting (25) from (27)
and plugging (26) into the result. Then, £(n — 1) — R(n —
1)flopt(n — 1) vanishes, which leads to

Ah(n) = —AR“'(m)R(n — 1) Ah(n — 1). (28)

This gives rise to the question how this error propagates in
the following iterations. Fortunately, recursive application
of (28) leads to

Ah(n+1) = (=) R 1 (n+ DR(# — 1) Ah( — 1),
(29)

Ah(n+2) = (=2)3R 1 (n+ 2)R( — 1) Ah( — 1),
(30)

which shows that any error introduced in h(n) decays
exponentially, while the reconvergence speed is deter-
mined by the parameter A.

3.2 Link between the LMS algorithm and the Tikhonov
regularized RLS algorithm

To establish the link between the LMS algorithm and the
regularized RLS algorithm, the LMS algorithm is briefly
derived in the following. To this end, solving (11) using
the gradient descent method can be viewed as a first step
[17]. In that approach, the filter coefficients ﬁ(n) are deter-
mined computing the gradient of £ {eH (nN)e(nN)} for
h(n — 1),

hn) =h(i—1) + u (r — Rh(n — 1)) , (31)

where p is a parameter to control the step size that could
also be set adaptively [35]. For simplicity, the LMS algo-
rithm uses the instantaneous estimates of (13) and (14)
given by

R ~ X (k)X (k), (32)
r~ X7 (bdk). (33)
This leads to a representation of (31) by
h(n) = h(n — 1) + pX" (1N)
: (d(nN) — X(nN)h(z — 1)) , (34)
=hn — 1) + uX" (nN)e (nN), (35)

where (23) was used to obtain (34) from (35). While
choosing P = N = 1, (35) describes the LMS algorithm
in its most common form, the formulation presented here
allows for block-wise processing of the data.

When comparing (35) to (25), structural similarities can
be exploited to obtain the following equation:

-1
h(n) =h(n — 1) + ((1 —a)R(m) + %IKLM> X" (nN)e' (nN),

(36)
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where « is a parameter of choice with 0 < o < 1. Fora =
0, (36) describes the RLS algorithm (25), for « = 1, the
LMS algorithm (35) is described. By choosing « between
0and 1, the adaptation steps can be continuously varied in
between both algorithms, although the relation is not lin-
ear. Since ﬁ(n) is positive semi-definite, the inverse exists
for any ¢ > 0. Moreover, when computing the inverse,
choosing a larger o can reduce the condition number of
the matrix to be inverted.

A comparable consideration can be found in [47]. How-
ever, the block RLS algorithm used there does only con-
sider the current data block and does not allow for an
exponential time-windowing. Furthermore, the NLMS
algorithm described there is identical to the algorithm that
is most commonly referred to as affine projection algo-
rithm. In [47], it is not possible to continuously vary the
relative weight of the adaptation steps provided by both
algorithms.

4 Generalized frequency-domain adaptive
filtering algorithm

The derivation of the GFDAF algorithm presented in this

section differs from [39] in the following points:

® The derivation is based on replacing the convolution
matrices captured in (25) by DFT-domain
multiplication instead of defining an equivalent to
(15) in the DFT domain. This allows to show the
relation of the GFDAF algorithm to the RLS
algorithm more clearly. A similar approach is known
for the Kalman filter-based AEC [14, 36].

e An erroneous equality used in the original derivation
is clearly identified as an approximation.

e The frame shift N and the lengths of the adaptive
filters K can be chosen independently of the
microphone signal segment length P, as it was already
described for the single-channel frequency-domain
adaptive filtering algorithm [4] and for the Kalman
filter implementations in the DFT-domain
[14, 36, 43].

e The multichannel microphone signals are represented
by a vector d(k) instead of a matrix, which allows for
considering simplified models, as described later.

o A different regularization approach is proposed that
is closely linked to the well-known LMS algorithm.

In [39], a DFT-domain equivalent to (15) was used to
derive the GFDAF algorithm. Since the block RLS algo-
rithm derived in (3), which minimizes (15) involves no
approximations, (25) can be used for further derivations
without restrictions. As a first step, (25) will be rewrit-
ten in the DFT domain such that this representation
can be approximated to formulate the GFDAF algorithm.
It is well-known that a time-domain convolution can
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be facilitated by a DFT-domain multiplication using the
overlap-save method [14, 36]. This approach is described
in the following to ensure compatibility with the notation
used in this paper, aiming at a length-Q DFT-domain rep-
resentation of the loudspeaker signals captured in X(k).
First, the individual loudspeaker signals X;(k) are consid-
ered, where

X, (k) = (0px(q-p), Ip) Xy (k) (O(Qllli)xl() (37)
with

. XP o xP k)

&®_<XM)MWM 39

holds for any matrices X;A)(k), X;B) (k), and X;C) (k) of
compatible dimensions. Since X;(k) is a Toeplitz matrix,
X;A)(k), X;B)(k), and XEC) (k) can be chosen such that
X, (k) is a circulant matrix that can be diagonalized by the
DFT matrix. The entries of the Q x Q DFT matrix F in

row p column ¢ are given by
1 JehenE

[FQ]p,q = \/6
where j is used as the imaginary unit. The symmetric
definition of the DFT using the scaling factor 1/4/Q in
(39) is crucial for the following considerations, although a
different scaling factor was used in [39]. This leads to

X, (k) = FoXi(hE]

= /Q Diag {Fox)(k)}

where xé(k) is defined like x;(k) but capturing signal
segments of length Q instead of P. To describe the filter-
ing through a multiple-input/multiple-output system, the
individual matrices X, (k) are captured by

X(k) = IM ® (Xo(k)v X] (k)¢ ce 7&[171(/()) ’ (4'2)

as it is also described by [39, 43]. The structure of X(k) is
illustrated in Fig. 4.
Using X (k), it is possible to write

X(k) = Wo1 X(k)W1o,

Fox(k Fsz(k)
FQXl
FQX? \\\

\ = diagonal matrix

Fig. 4 Structure of the DFT-domain loudspeaker signals for L = 3,

(39)

(40)
(41)

(43)

FQX1
Foxg(k)

M=2
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where the matrices

Wor =1y ® ((Opx(pr),Ip) Fg) )

I
Wio =Tm @ (FQ (O(Q—Ili)xk ))

are used to transform signal vectors from and to the DFT
domain as well as for discrete-time truncation and zero-
padding operations. An example for the structure of the
matrices described by (44) and (45) is shown in Fig. 5.
Note that Q = P + K — 1 is not necessary following, but
Q > P+ K — 1is assumed. This is different to [39], where
only the case Q = 2P = 2K was covered.
For the further derivations,

(44)

(45)

Sm) = 218(n — 1) + XX (IN)WH W X(nN) ~ (46)

Wo =

Wiy =

- = fully occupied P x ) matrix

= fully occupied ) x K matrix

Fig. 5 Structure of the windowing matrices forL = 3, M = 2
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is defined, where (43) and (19) can be used to verify that
R(n) = WH(S(mW 1o (47)

holds. The matrix S(1) can be interpreted as an estimate
of the DFT-domain power spectral density of the loud-
speaker signals. Considering (25) and replacing R(n) by
(47) and X* (nN) by (43) results in

~ ~ N -1
Bon) = ho1 — 1) + (WS W1o ) us)

- WX (nN)YW e/ (nN),

which represents the same time-domain update equation
as (25) but is based on DFT-domain representations of the
involved signals X (k) and €’ (k).

In (48), the size of the generally fully occupied matrix
W%S(Vl)wlo and its inverse preclude a real-world imple-
mentation of this algorithm for larger filter lengths or
a larger number of loudspeaker channels. To overcome
this obstacle, it was proposed in [39] to invert a sparse
approximation of S(n) rather than inverting W%S(n)wlo
in (48).

As X(k) is sparse, the lack of sparsity in S(n) can be
attributed to the term W{le(n which represents win-
dowing with a rectangular window in the time domain.
Considering the definition of the DFT matrix given by
(39), evaluating Wf){lwm leads to

W{)—QWOI =Iy® (FQDiag {w} Fg) , (49)

with
1 Q_l k( ;)271
FoDiag {w} FZ = — w(k) Q) 50
[FoDiag (w)Fg| Q;:o: (k) (50)

where w (k) describes an appropriate rectangular window

function with the vector representation
T

w(@Q—-1)".

For w(k) = 1, (50) would describe an identity matrix,
while the definition of

_J1forQ-P<k<Q
w (k) = {0 otherwise

w = (w(0), w(1),... (51)

(52)

describes the time-domain windowing according to (44).

As described in [39], (50) can be identified as a finite
geometric series, which allows to write (52) as

[FQDiag (w} E ]M
g forc =1

= (Q-P)(n—¢) 2% 53
_61 =0 therwise. (53)

i(n—) 28
1_el<n 2o}

It can be shown that the resulting circulant matrix cap-
tures an infinite series of sinc functions, multiplied by
an exponential phase term to represent the time-domain



Schneider and Kellermann EURASIP Journal on Advances in Signal Processing (2016) 2016:6

shift or asymmetry of the window in each row. The max-
imum of this function is located on the main diagonal,
which suggests an approximation of W{;’lwm by an iden-
tity matrix. The approximation tends to be more accu-
rate, the narrower the main lobe of the sinc function is
or, equivalently, the larger the time-domain window is.
Hence, WSIIW(M can be better approximated by a scaled
identity matrix the larger P is, where
o p
W01W01 ~ IMQ*. (54-)
Q
This is an important generalization relative to [39], since
P is a parameter of choice in contrast to [39], where only
the special case Q = 2P was considered. Note that the
same result was already obtained for the Kalman filter
implementations in the DFT-domain [14, 36, 43].
Using (54), (46) can be approximated by

S0 =28(m—1) + ng(nNmmN) (55)
where the structure of §(») is illustrated in Fig. 6. Replac-
ing S(n) by S(n) in (48) does not lead to an obvious
advantage, yet. Therefore, another approximation is used:
. -1 -
(WitsnWio)  ~ Wi ™ n W, (56)
where S_l(n) is now the inverse of a sparse matrix that is
inexpensive to compute when exploiting the matrix struc-
ture accordingly. Erroneously, (56) was not identified as an
approximation in [39] but as an equality. This is discussed

in Appendix A, where using (56) is also justified.
Eventually, (56) can be used to approximate R 1(n) in
the DFT-domain, which distinguishes the GFDAF algo-
rithm from the RLS algorithm. Not only that this leads to
tremendous computational savings, it also decouples the
adaptation of the individual DFT bins [39]. As a result,

\ = diagonal matrix

Fig. 6 lllustration of the structure of the matrix Stnyforl =3,M=2
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there are Q-independent inverses of L x L matrices to be
determined, instead of the inverse of one LK x LK matrix.
This explains the robustness of this algorithm, which is
described by:

N A o —1
h(n) = h(n — 1) + W, (§(n) + D(n)) Wio

~R~1(n)

-WHXH (nNYWE & (nN), (57)

=XH (uN)e'(nN)

where the step-size parameter u can be viewed as
accounting for the inaccuracy of the approximation. This
allows for using a step size close to or even larger than u =
1, according to the needs of the considered application
scenario. Furthermore, the matrix
D(n) = A(m)Igim (58)
is used for regularization which is generally necessary
for real-world implementations since §(1) will typically
exhibit a large condition number or even become singular
for signals X(k) with small spectral flatness or when the
loudspeaker signals are strongly correlated.
A straightforward approach is to use a regularization

weight function that is proportional to the loudspeaker
signal power as defined by

L
A(n) = AA(n—1) + % Y X nN)x(nN),  (59)
=1

where the non-negative parameter § can be chosen to
control the regularization and the multiplication by P is
used to ensure the balance with the weight of the diago-
nal of S$(n). Introducing D(#) into (57) describes a simple
Tikhonov regularization where typical choices for é are
values close to zero. In Section 3.2, it was shown that
such a Tikhonov regularization of the RLS algorithm is
closely related to the LMS algorithm. The same holds for
the GFDAF algorithm, such that a large § would force
the GFDAF algorithm to approach the adaptation steps of
the LMS algorithm. Since the LMS algorithm is a well-
understood algorithm, this regularization can easily be
justified. Still, any § > 0 would lead to suboptimal filter
coefficients. In Section 3.1, it was shown that filter coef-
ficient errors will decay exponentially for the RLS algo-
rithm. Since the GFDAF algorithm approximates the RLS
algorithm, it can be expected to inherit this property such
that suboptimal filter coefficients are not a major issue.
Note that due to disregarding the approximation (56) (see
also Appendix A), the algorithm variant described by (57)
could not be presented in [39].
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For efficient implementations, it is common to imple-
ment the time-domain convolution in the DFT domain.
Accordingly, the a priori error signal can be expressed by

€ (k) = d(k) — Wor X(k)Wioh(n — 1). (60)

Any multiplication with W1 implies LM DFTs, while a
multiplication with Wy, implies M DFTs. To decrease the
computational demands, four multiplications by W can
be eliminated by approximations. First, WmWﬁ) can be
approximated in the same way as WIO{IW(H by

K

WioWi ~ ILMQa: (61)

where K has the same role as P in (54). In (57), this leads to

R R K . -1
hn) = Rer=1) + o Wi (300 + D)

X" (nNYW G € (nN), (62)

where the time-domain windowing by WmWﬁ) is omit-
ted. Furthermore, when considering

h(n) = W1oh(n), (63)

the matrix WII"{) can also be neglected which leads to the
so-called unconstrained variant [39, 41] of this algorithm
given by

~ ~ K/ -1

h(y=hn —1)+u5(§(n)+D<n>) XH (nNYWH /(1N
(64)

In that case, (60) is also simplified to

€ (k) = d(k) — Wo; X(k)h(n — 1). (65)

The time-domain windowing operations applied to the
error signal cannot be neglected for the definition of the
algorithm. Otherwise, the adaptive filter would converge
to a solution for cyclic convolution and not to a solu-
tion for linear convolution with the time-domain filter
coefficients.

5 Pruned loudspeaker-enclosure-microphone
models

In this section, the adaptation algorithms described above
are generalized to allow for system identification or AEC
using pruned LEM models. Considering the structure of
ﬁ(n) described in (4), it is possible to define a matrix V
that implies certain components in h(n) to be zero. This is
done by requiring

VIVh(n) = h(n) (66)

within this section, which implies that certain coefficients
in h(n) are zero. Note that this is the only definition nec-
essary to generalize the considered adaptation algorithms
to pruned LEM models.
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The values of V can be defined by
VIV = Diag {v}, (67)
where component ¢ of the vector v is given by
_ | 1 if [h], is modeled,
vle = { 0 otherwise. (68)

At the same time, a multiplication by V from the left-hand
side would prune the zero-valued coefficients from ﬁ(n).
Exemplary structures of V and VIV are shown in Fig. 7.
Note that the following derivation of the RLS algorithm
allows to choose freely whether any of the coefficients
of h is modeled or not. This comprises the simplified
model proposed in [45], but it would also allow for choos-
ing individual impulse response lengths for each modeled
loudspeaker-to-microphone path. However, the deriva-
tion of the GFDAF algorithm in Sec. 4 is based on DFTs
of the same lengths, which precludes choosing v arbitrar-
ily. Hence, for the GFDAEF, it is only possible to model
either all or none of the coefficients describing a certain
loudspeaker-to-microphone path.

To derive an adaptation algorithm for pruned models,

the error signal (10) must be modified according to
es(k) = d(k) — X(k)VIVh(n). (69)

For the RLS algorithm, this results in the cost function

Jag(m =Y 2" el hN)es(vN), (70)

v=0

N

VIV =

N

N

Fig. 7 Exemplary structure of the matrices VV and V'V for L =3, M =2

\ = diagonal identity matrix
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where the derivation of the adaptation algorithm uses
exactly the same steps as shown above. Consequently,
considering the derivation above, while replacing h(n) by
Vfl(n) and X(k) by X (%) VT results in the desired algo-
rithm. The latter replacement implies a further replace-
ment of f{(n) by Vﬁ(n)VT.

Then, assuming Vf{(n)VT to be invertible results in

Vh(n) = Vh(n — 1) + (Vf{(n)VT)_l VX (uN)e (nN).
(71)

At this point, a definition of the a priori estimation error
for pruned LEM models might be expected, which would
then be used instead of e (nN). However, this is not
necessary since (71) already implies that all unmodeled
coefficients are set to zero in ﬁ(n). It can be seen from (71)
that the dimensions of the involved inverse can be reduced
when using pruned models.

Multiplying (71) by VT from the left-hand side and
requiring

(II(LM - VTV) h() = Ogzarx1, (72)

which is implied by (66), leads to an explicit formulation
of the algorithm given by

hon) = VIVR( — 1) + VT (vfwT)f1 VX" (nN)e' (nN).

(73)

For pruned models, the gradient descent approach
described in (31) is given by

ho) = h(r— 1) + uVTV (R —eVTVh(n — 1)) .
(74)
Plugging (32) and (33) into (74) results in the LMS update
h(n) = h(n — 1) + wVIVXH (1N)
- (d(nN) — X(uN)VIVh(z — 1)) ., (75)

where (23) and (66) can be used to formulate the LMS
algorithm for pruned models:

h(n) = h(n — 1) + uVIVX? (uN)e' (nN). (76)

As the GFDAF algorithm approximates the RLS algo-
rithm, the formulation of the RLS algorithm for simplified
models can be straightforwardly translated to obtain

h(n) = VIVR(1 — 1)+ WH VT (V(S(n) + D(n)) VT)_1

VW1 oW X (nN)YWi e/ (nN) (77)

by comparing (57) and (73). Note that the term VIV can
be omitted as along as ﬁ(n — 1) fulfills (66). The formula-
tions of (62) and (64) can be obtained in the same manner,
where (64) requires a redefinition of V to consider the
doubled number of coefficients in ﬁ(n), compared to ﬁ(n).
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When comparing (73), (77), and (75) to (36) and (57),
it can be seen that the relation of the regularized GFDAF
algorithm to the LMS algorithm can also be established
for simplified LEM models.

6 Evaluation results

In this section, a brief experimental evaluation of the
treated adaptation algorithms is presented. This evalua-
tion is focused on the effects of the approximations used
in the derivation of the GFDAF algorithm. Hence, the
RLS algorithm given by (25) is compared to the three pre-
sented variants of the GFDAF algorithm, given by (57),
(62), and (64). To this end, the following AEC scenario is
considered: two loudspeaker signals (L = 2) carry a stereo
recording of a speech signal superimposed by mutually
uncorrelated white Gaussian noise signals such that a
signal-to-noise ratio (SNR) of 20dB results on average.
This rather low SNR was chosen to avoid using a regular-
ization in the first two experiments that would otherwise
obscure insights into the influence of the approximations
used for the GFDAF algorithm. From the loudspeaker sig-
nals, two microphone signals (M = 2) have been obtained
through convolution with four impulse responses, mea-
sured in a room with a reverberation time T of approxi-
mately 0.36 s.

Using a sampling frequency of 8kHz, the impulse
responses were truncated to 128 samples such that the
adaptive filters could, in theory, perfectly model the
impulse responses with the chosen K = 128. This choice
was imposed by the large computational demands of the
RLS algorithm. To simulate microphone noise, mutually
uncorrelated white Gaussian noise signals were added to
the microphones such that a signal-to-noise ratio of 40 dB
results on average.

The three experiments last for a simulated time span of
60 s, where no adaptation is performed during the first 3
s in order to obtain sufficiently well-conditioned matrices
f{(n) and S(n) prior to their inversion. Note that no regu-
larization was used (§ = 0), unless stated otherwise, and
both matrices, f{(n) and $(n), were initialized with zero
values. In the course of the experiment, two events are
simulated to challenge the robustness of the algorithms.
First, the impulse responses used to determine the micro-
phone signals are exchanged at £ = 23 s to investigate the
robustness against sudden changes in the room impulse
response. Second, a sample of snare drum hit is added to
the microphone signals at ¢ = 43 s as an example of a
strong impulsive local source, where the maximum ampli-
tude of the snare drum sample was chosen to be twice
the maximum amplitude of the microphone signal. For the
assessment, two measures have been considered, the echo
return loss enhancement (ERLE) and the normalized sys-
tem misalignment (NMA). The ERLE measures the AEC
performance and is given by
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(78)

ERLE(n) = 20log,, <||d(nN)||2) ,

lle(nN)|l2

where ||-||2 denotes the Euclidean norm. Note that the
actual microphone signal was only used for the adaptation
of the filters, while the noise-free microphone signal was
used to determine the ERLE. This measure was termed
“true ERLE” in [48] and allows to assess the echo cancella-
tion performance also during perturbation. On the other
hand, the NMA is defined by

(79)

fl n)—h
NMAG) = 20logsg (W) ,

where ||-||r denotes the Frobenius norm and measures the
system identification accuracy.

The results of this experiment can be seen in Fig. 8,
where A = 099, = 1,K = 128,P = 128,Q = 256,
and N = 64 have been chosen for all algorithms (if
applicable). It can be seen that the RLS algorithm shows
the best performance in terms of ERLE and NMA. This
is an expected result since it uses no approximations. It
can be furthermore seen that the approximation intro-
duced with the algorithm described by (57) leads to a
slower convergence. The approximations used for (62)
leads to a further reduction in convergence speed, while
the algorithm described by (64) shows nearly an identical
performance compared to using (62). It can be seen that
the reconvergence behavior after the impulse response
change and the perturbation of the microphone signal is
very similar to the initial convergence. However, it can
be seen that the algorithm described by (57) shows a low
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robustness at some time instants. Note that the break-
down in ERLE and NMA that exceed the scale of the plot
reach up to —100 and 100dB, respectively. After that, a
stable reconvergence can be seen. An explanation for this
sudden breakdown can be found when considering (55) in
conjunction with (62), which describes a GFDAF variant
that does not exhibit this property. It can be shown that

§ 7 (mX (nN) (80)

yields a matrix with entries that are weighted inversely
proportional to the weights of the corresponding entries
in X (uN). This is because X (1N) is also considered in
S(n), while all DFT bins are decoupled. However, when
considering

o —1
™ (Wi oW X (nN), (81)

as implied by (57), the DFT bins are no longer decou-
pled because of the time-domain windowing by WmW]l'{).
Thus, it is possible that a sharp spectral peak in
X(nN) leaks into the neighboring bins in the product

W10W%XH (nN). On the other hand, Sil(n) does not
describe a time-domain windowing, which implies that
a sharp spectral peak in X(nN) will not not be spread
in $(n). Due to this mismatch, the entries in the matrix
resulting from (81) can exhibit a relatively strong weight,
which implies larger adaptation steps and can lead to
problems in some cases.

While comparing the considered algorithm using iden-
tical parameters for all of them allows to investigate the
properties of the individual algorithms, it is not a fair per-
formance comparison. Hence, an optimal step size u for

ERLE

NMA

time in seconds

Fig. 8 ERLE and NMA for an AEC experiment with identical algorithm parameters
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the variants of the GFDAF algorithm was determined by
subsequent increasing p until no further improvement in
ERLE was noticeable. The optimal step sizes determined
for (57), (62) and, (64) were u = 1.2, u = 3.1, and
n = 2.4, respectively. This is actually a surprising result
since approximations typically call for a more conserva-
tive step size. For performance evaluation, the experiment
described above was repeated using these step sizes, while
all other parameters were kept. The results presented in
Fig. 9 show that all variants of the GFDAF algorithm are
able to approach the performance of the RLS algorithm,
which is shown for comparison. As expected, the robust-
ness of the algorithm described by (57) is obviously even
more reduced when pu is increased.

In Fig. 10, the experiment described for Fig. 8 was
repeated, were the variants of the GFDAF algorithm have
been regularized, while the RLS algorithm was not reg-
ularized to allow for a comparison. As explained above,
larger values of § will result in adaptation steps of the
GFDAF algorithm that are closer to the adaptation steps
the LMS algorithm would provide. Since the GFDAF
algorithm is superior to the LMS algorithm in terms of
convergence speed, § should be chosen as low as pos-
sible. As the algorithms described by (62) and (64) do
not depend strongly on a regularization in the considered
scenario, § = 0.03 was chosen. This choice represents
a compromise between the optimum regularization of
the algorithm described by (57) and not hampering the
convergence of the other algorithms.

As expected, the convergence speed of the all regular-
ized algorithms is slightly reduced, while the impact of the
impulse in the microphone signal is also slightly reduced
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by the regularization. The most interesting results are
those for the algorithm described by (57). While the reg-
ularization mitigates the robustness problem, it is not
able to prevent the divergence completely. At the same
time, the NMA achieved by this algorithm during nor-
mal convergence of this algorithm is improved, such that
it achieves a better system identification than the RLS
algorithm. Note that the RLS is optimal with respect to
increasing ERLE, but not necessarily optimal to decrease
the NMA, as it would be the case for the Kalman filter-
based approaches.

Results of an evaluation with a varied microphone-
signal segment size are not presented as the effect of
varying the P was only marginal in the considered experi-
mental scenario.

7 Real-world implementations of the GFDAF
algorithm

In this section, some notes on the implementation of the
GFDAF algorithm are given. The most attractive vari-
ants for implementation of this algorithm are given by
(62) and (64), as also proposed in [39]. In both cases, the
term (S(n) —|—D(n)) 1XH(nN) needs to be computed.
Considering the dimensions of the involved matrices, it
becomes clear that a real-world implementation must
exploit sparsity in order to be feasible. The structures
of the relevant matrices are illustrated in Figs. 4 and 6
and can be considered straightforwardly. For computing

. -1
(§(n) +D(n)) X7 (uN), all DFT-bins can be treated

independently, which allows for a straightforward paral-
lelization of the algorithm. This can be beneficial for the

60 oo s
I ; 1 A " I 1“‘ 2 y 4 f
N 0 ikl
= W HEY [ f 47
=00 v AT AT
& i L |
0 ‘u\'”, r":\! ‘r‘ 1
[TITant L
—20 ‘ —RLS--- (57) (62) o (64) "”‘H J \‘ | :
[] |
0 10 20 30 10 20 o
time in seconds
20 ‘ ——RLS--- (57) (62) o (64) “v \\ ‘\\\ 3
3 | )
= ‘ :
Z | ‘
time in seconds
Fig. 9 ERLE and NMA for an AEC experiment with adjusted algorithm step sizes




Schneider and Kellermann EURASIP Journal on Advances in Signal Processing (2016) 2016:6

Page 13 of 15

ERLE
[\~
S

Y !
‘r‘AII AL
AN RN D]

TGORLA
]

NMA

Fig. 10 ERLE and NMA for an AEC experiment with regularized algorithms

time in seconds

implementation of the algorithm on multi-core proces-
sors [49]. Since (S(Vz) + D(n)) is positive semi-definite,
it is possible to use the Cholesky decomposition for an
efficient computation.

Still, for M > 1, the definition (42) implies redundancy
in X(k) that is propagated into $(#) such that it appears
as if the derivation given above would not describe an
efficient implementation. Equation 55 in conjunction with
(42) and the well-known identity

AC®BD = (A®B)(C®D) (82)

can be used to show that §(#) can also be obtained by

Sim =1y ®8 ), (83)

where S/(n) is equal to S(n) for M = 1. Additionally, the
Kronecker product has the property

A®B) l1=A"T1@B, (84)

which implies that this redundancy does not increase the
computational effort for inverting S(n). Finally, the cost

N -1
of computing <§(n) —|—D(n)> X" (uN) dominates the

overall effort and is proportional to QL. When accepting
some restrictions on the regularization, this value may be
reduced to QL? [39]. While this constitutes a considerable
effort, it has to be considered that the RLS algorithm (25)
would imply a computational effort proportional to (KL)?,
noting that typically K, Q > L.

When considering the term <V (S(n) + D(n)) VT> in
(77), it can be seen that (83) and (84) are not gen-
erally applicable to determine its inverse. Thus, care

must be taken that V reduces the matrix dimensions
sufficiently such that a computational advantage is
achieved compared to general models. It has been shown
that WDAF allows for sufficiently simplified models
to decrease the computational demands [45]. When
coupling W wave-domain loudspeaker signals to each
wave-domain microphone signal, the cost of comput-

ing (V (S(n) + D(n)) VT) VXH(WN) is proportional to
QW?3M, which implies computational savings whenever

W3M < L3. A value of W = 3 is already sufficient for
many application scenarios [45].

8 Conclusions

The GFDAF algorithm was presented as an approximation
of the block RLS algorithm with exponential windowing,
such that the microphone signal block length can be cho-
sen independently from the modeled impulse response
length, as it is also possible for other adaptive filtering
approaches. An error in the original derivation of the
GFDAF algorithm was identified, and it was shown that
the erroneous equality can be used as a reasonable approx-
imation. Furthermore, it was shown that a Tikhonov reg-
ularization of the GFDAF algorithm has a close relation to
the well-known LMS algorithm. The notation of the pre-
sented derivation was optimized for conciseness to allow
further development of this algorithm. This was exploited
to formulate the GFDAF algorithm for simplified LEM
models, which constitutes an original contribution of this
paper. Moreover, a newly found variant of the GFDAF
algorithm, which omits an approximation inherent to
the original derivation, potentially shows an increased
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convergence speed, while some robustness issues still have
to be solved. This can be an avenue for future research.

Appendix A: Approximating the inverse of a power
spectral density matrix

For the derivation of the GFDAF algorithm, the following
approximation is crucial:

A—1 ~ -1
WIS o) ~ (WiiSmWio) Wi, (85)

Unfortunately, (85) was mistaken for an equivalence in
[39], and it was claimed that multiplying S(n)Wlo from
the right-hand side would prove this. However, S(n)Wlo
is a singular matrix which invalidates this proof. In the fol-
lowing, (85) is analyzed for the case L = M = 1,Q = 2K,
which is chosen for the sake of brevity and can be straight-
forwardly extended to scenarios with different L, M, Q,
and K.

Since the dimensions of S(n) are larger than those of
R(n), a further matrix has be defined to represent S(n) in
the time domain:

Ry(n) = FS(n)Fq. (86)
The definitions of R(x) and S(n) in (18) and (46), respec-
tively, (40) and (44) can be used to obtain

Rom) = Y o (x,(vN)x§C>(vN))H

v=0
. (xl(uN)x}Q(vN)) (87)
R(n) Rc(n)
(. . . 88
<R’5(n> Rcc(”)) (58

To determine the inverse of Ry(n) , the block-matrix
inversion can be used. It is given by

-1
(23)-(£3)
with
A'=(A-BD'C) ", (90)
B =-A'B(D-CA'B) ", (91)
¢ =-D'c(A-BD'C)", (92)
D' = (D-CA'B) ", (93)

where A, B, C, and D are arbitrary matrices of compatible
dimensions. Considering WmWﬁ) in (85), it is clear that
only A’ and B’ are relevant in our case, which are given by

A A N N -1
A’ = (R = ReOnRERE () (94)
B = R '(mRc(n)
N Apr A N —1
(Rectn ~ REOR Ren) —, (99)
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The matrices R(n) and Rcc(n) estimate the autocorre-
lation matrices of X;(vN) and X;C)(\)N), while ﬁc(n)
describes the cross-correlation between both. Assum-
ing that f{(n) and f{CC(n) are well-conditioned, while
their entries exhibit significantly stronger weights than
those in Rc(n), the terms f{c(n)f{gé(n)f{g (n) and
ﬁg (n)IA{’l(n)IA{C(n) are of no importance. Hence, A’
approximates R~1(1) while the influence of B is small,
which justifies the use of (85) as an approximation.
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