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Abstract

Lattice reduction (LR)-aided detectors have been shown great potentials in wireless communications for their low
complexity and low bit-error-rate (BER) performance. The LR algorithms use the unimodular transformation to improve
the orthogonality of the channel matrix. However, the LR algorithms only utilize the channel state information (CSI)
and do not take account for the received signal, which is also important information in enhancing the performance of
the detectors. In this paper, we make a readjustment of the received signal in the LR domain and propose a new
scheme which is based on the log-likelihood-ratio (LLR) criterion to improve the LR-aided detectors. The motivation of
using the LLR criterion is that it utilizes both the received signal and the CSI, so that it can provide exact pairwise error
probabilities (PEPs) of the symbols. Then, in the proposed scheme, we design the LLR-based transformation algorithm
(TA) which uses the unimodular transformation to minimize the PEPs of the symbols by the LLR criterion. Note that
the PEPs of the symbols affect the error propagation in the vertical Bell Laboratories Layered Space-Time (VBLAST)
detector, and decreasing the PEPs can reduce the error propagation in the VBLAST detectors; thus, our LLR-based
TA-aided VBLAST detectors will exhibit better BER performance than the previous LR-aided VBLAST detectors. Both the
BER performance and the computational complexity are demonstrated through the simulation results.
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1 Introduction
The multiple-input multiple-output (MIMO) technology
plays an important role in increasing the spectral effi-
ciency of wireless communications by allowing for spatial
multiplexing [1]. However, with the increase of the num-
ber of antennas, the complexity of the hardware and
the signal processing at both the transmitters and the
receivers are increased [2]. At the receiver side, design-
ing reliable and efficient detectors has become a critical
challenge of the MIMO systems. The maximum likeli-
hood detectors (MLD) [3–5] which are the performance-
optimal detectors suffer from exponential complexity in
terms of the number of the transmitted signal, and they
are not practical when the number of the transmitted sig-
nal becomes large. The linear detectors (LD) [6], including
the zero forcing (ZF) and theminimummean square error
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(MMSE) LDs, can provide polynomial complexity. How-
ever, the bit-error-rate (BER) performance of the LDs is
far inferior to the MLD. To improve the BER performance
of the LDs, the decision feedback equalization, which uti-
lizes the successive interference cancelation (SIC) scheme,
can cancel the interference between different antennas
and exhibit better BER performance than the LDs. To
further improve the BER performance, the well-known
vertical Bell Laboratories Layered Space-Time (VBLAST)
detector [7–10], using both the SIC scheme and the order-
ing process, can provide excellent performance, while the
error propagation is a critical problem in the VBLAST
detector. Some other non-linear detectors were proposed
to reduce the gap between the LDs and the MLD. The
likelihood ascent search [11] and reactive tabu search [12]
can provide well BER performance for low-order mod-
ulations, however exhibit performance degradation for
higher-order quadrature amplitude modulation (QAM).
The layered tabu search [13] was proposed to further
improve the BER performance for higher-order QAM.
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However, this algorithm brings large complexity when the
constellation size is large.
Recently, an efficient scheme called lattice reduction

[14–18] has been shown great potential in MIMO detec-
tions. The lattice reduction (LR) algorithm attempts to
change the orthogonality of the channel matrix, as the
orthogonality of the channel matrix largely affects the per-
formance of the MIMO system [15]. As the well-known
LR algorithm, Lenstra, Lenstra, and Lovasz (LLL) algo-
rithm has firstly been considered for LR-aided detection
[16]. It allows suboptimum detectors, such as the LDs and
the VLBAST detectors, to exploit all the available diversity
[16], while it has polynomial complexity. Many LR algo-
rithms have been developed to improve the performance
of the LLL algorithm. The LR algorithm improving the
minimum Euclidean distance of the LR-aided LDs, which
can improve the BER performance of the LR-aided LDs,
is proposed in [17]. Element-based lattice reduction (ELR)
algorithm [15], a low complexity LR algorithm, was pro-
posed to reduce the diagonal elements of the noise covari-
ance matrix. The ELR-aided detectors show better BER
performance than other LR-aided detectors, especially
for large MIMO systems [15]. An improved ELR algo-
rithm [18] is proposed to enhance the BER performance
of the ELR algorithm; however, it brings large complexity
increase. As it needs to solve a closest vector problem by
the sphere decoding method [4, 5], which requires expo-
nential complexity, it will be complexity expensive and
impractical when the number of the transmitted signal
becomes moderate and large. Moreover, [19, 20] proposed
some efficient ways to reduce the complexity of the LR
algorithm.
As shown above, the previous LR algorithms aim to

use unimodular transformation to change the orthogo-
nality of the channel matrix, such that the gap between
the suboptimal detectors and the MLD is reduced. How-
ever, these LR algorithms do not take the received signal
into consideration. In fact, the received signal is impor-
tant information in the MIMO detection. It can partially
reflect the received noise and is also useful in enhanc-
ing the BER performance of the LR-aided detectors. In
this paper, we make a readjustment of the received sig-
nal in the LR domain and propose a scheme to improve
the LR-aided detectors. The proposed scheme is based
on a new criterion called the log-likelihood-ratio (LLR)
criterion, which utilizes both the received signal and the
channel state information (CSI). Then, by the LLR crite-
rion, we propose our LLR-based transformation algorithm
(TA) which targets to use the unimodular transforma-
tion to minimize the pairwise error probabilities (PEPs) of
the symbols, while these PEPs are deduced exactly in this
paper by the information of the CSI and the received sig-
nal. We show that the PEPs affect the error propagation of
the VBLAST detector, and decreasing the PEPs can reduce

the error propagation and enhance the BER performance
of the VBLAST detector. In our proposed algorithm, a
standard LR algorithm such as LLL or ELR algorithm is
performed as the initial stage, where the LLL and the ELR
algorithm is the classical LR algorithms as shown above,
then an algorithm decreasing the PEPs of the symbols is
shown. The simulation results validate that our LLR-based
TA-aided VBLAST detectors can provide substantial BER
performance gain over the pervious LR-aided VBLAST
detectors, while only moderate computational complexity
is increased.
Notation: (·)T is the transpose of (·), and (·)† is the

pseudo-inverse of (·). We write Ai,j for the entry in the ith
row and jth column of the matrix A, ai for the ith entry in
a. ai and ai denote for the ith row and the ith column of
the matrix A, respectively.

2 Preliminary
2.1 Systemmodel
Consider a MIMO system with Nt transmitted antennas
and Nr received antennas as

rc = Hcsc + wc, (1)

where rc ∈ C
Nr is the received signal, Hc ∈ C

Nr×Nt is the
channel matrix. The entries ofHc are represented as inde-
pendent and identically distributed variables drawn from
CN

(
0, 1

Nt

)
. sc ∈ C

Nt is the transmitted signal indepen-
dent and identically drawn from the MQAM constella-
tion, whereM is the constellation size, and the covariance
matrix of sc is σ 2

scI.wc ∈C
Nr is a zero-mean white Gaussian

random vector with covariance matrix σ 2I. Moreover, the
number of the transmitted signal is assumed to be less
than or equal to the number of the received signal.
Note that (1) is equivalent to the real input-output

model [14]

r = H s + w, (2)

where

r =
[
R(rc)T , I(rc)T

]T
,

s =
[
R(sc)T , I(sc)T

]T
,

w =
[
R(wc)T , I(wc)T

]T
,

and

H =
[
R(Hc) −I(Hc)
I(Hc) R(Hc)

]
.

We know r ∈ R
K , w ∈ R

K , s ∈ R
N , and H ∈ R

K×N ,
where K = 2Nr and N = 2Nt .

2.2 The LR-aided detectors
Note the orthogonality of the channel matrix largely
affects the performance of the MIMO detection and the



Song et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:9 Page 3 of 10

gap of the BER performance between the suboptimal
detectors (e.g., the LDs and the VBLAST detectors) and
the MLD is mainly due to the orthogonality [15]. It has
been shown that the more orthogonal the channel matrix
is, the smaller the gap between the suboptimal detectors
and the MLD will be. The LR technique is one technique
that can change the orthogonality of the channel matrix
and reduce the gap between the suboptimal detectors and
the MLD.
As shown above, the orthogonality of the channel

matrix is crucial to the MIMO detection. The previous
LR algorithms aim to find a unimodular transformation
H̄ = HT [14], where T is a unimodular matrix (i.e., all the
entries of T are integers, and the determinant of T is ±1),
such that H̄ is more orthogonal. In our paper, we aim to
find a unimodular transformation H̄ = HT to minimize
the PEPs of the symbols.
The LR-aided detectors and our TA-aided detectors in

ZF criterion based on H̄ are performed as follows [14, 15].
Note

r = HTT−1s + w = H̄s̄ + w, (3)

where H̄ = HT, and s̄ = T−1s. To make (3) be more
easily analyzed, we transform the domain of the detected
symbol be consecutive integers as follows [15]. We apply
scaling and shifting on s, i.e., (s − 1N×1) /2 where 1N×1 ∈
R
N×1 is the matrix with entries 1, and the constellation

set is transferred to consecutive integer sets. Then, set-
ting x = T−1 (s − 1N×1) /2, the set of the element of x is
consecutive integer set too, and we have

s̄ = T−1s = 2x + T−11N×1. (4)

Then substituting (4) into (3), (3) can be written as

y = H̄x + n, (5)

where y = (
r − H̄T−11N×1

)
/2, n = w/2, whose variance

is σ 2
n = σ 2/8. Considering (5), the channel matrix is more

orthogonal than the channel matrix in (2), and the domain
of the elements in x is consecutive integer set. Wubben
and Seethaler [21] shows that it is complicated to consider
the domain of x, and with no prior knowledge of x, the
element of x is assumed to be drawn from the integer set
Z with equal probability.
Considering (5), the suboptimal MIMO detectors such

as the LDs or the VBLAST detectors can be used to obtain
the estimation x̂ of x. Once we get the estimation of x, and
from (4), the estimation of s̄ can be calculated as [15]

ˆ̄s = 2x̂ + T−11N×1. (6)

As s = Tŝ, then we can obtain the estimation ŝ by
quantizing Tˆ̄s to the constellation set as

ŝ = Q
(
Tˆ̄s

)
, (7)

where Q(·) denotes componentwise quantization.

As the detectors in theMMSE criterion can provide bet-
ter performance than the detectors in ZF criterion, here
we describe the and our TA-aided detectors in the MMSE
criterion. For the MMSE detectors [15], we only need to
replace the channel matrix H and the signal r in the ZF
criterion by the extended matrix

HMMSE =
(

H
1
ρ
I

)
, rMMSE =

(
r
0

)
, (8)

where ρ2 = σ 2
sc

σ 2 , σ 2
sc , and σ 2 are defined above.

3 The LLR-based transformation algorithm
In this section, we will describe our LLR-based TA in both
the ZF and the MMSE criterion. Our LLR-based TA uti-
lizes both the CSI information and the received signal and
aims to find a unimodular transformation H̄ = HT to
minimize the PEPs of the detected symbol in the VBLAST
detectors, whileminimizing the PEPs is helpful to enhance
the BER performance of the VBLAST detectors.

3.1 LLR criterion for our transformation algorithm
Considering (5), in the first step of the ZF VBLAST detec-
tor, we should multiply (5) by the equalization matrix
H̄† = T−1H†, where (·)† is the pseudo-inverse operation,
then we have

ȳ = x + n̄, (9)

where ȳ = T−1H†y and n̄ = T−1H†n̄. Then, the covari-
ance matrix C of n̄ will be

C = σ 2
nT−1H†

(
T−1H†

)T
= σ 2

nT−1
(
HTH

)−1 (
T−1)T . (10)

Considering the lth component of (9), we have

ȳl = xl + n̄l, (11)

where ȳl, xl, and n̄l denote the lth component of ȳ, x,
and n̄, respectively. From (10), it is easy to know that the
variance of the noise n̄l, l = 1, · · · ,N is σ 2

n̄l = Cl,l.
As xl is drawn from the setZ, then it is easy to know that∑

z∈Z
P (xl = z|ȳl) = 1. (12)

Denote

�l,z (C, ȳ) = ln
P

(
xl = x̂l|ȳl

)
P (xl = z|ȳl) (13)

as the pairwise LLR [22], where z is a component in the set
of xl (i.e., Z), and x̂l is the estimation of the component xl.
If we want to detect the component xl in the first step of
the ZF VBLAST detector, then xl will be detected as the
component in the set of xl that is closest to ȳ, i.e., x̂l =⌊
ȳl

⌉
, where �·� is the rounding function [14].
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Then from (12), (13), the PEP of the component xl, can
be calculated as

P
(
xl �= x̂l|ȳl

)
= 1 − P

(
xl = x̂l|ȳl

)
= 1 − P

(
xl = x̂l|ȳl

)
∑

z∈Z P (xl = z|ȳl)
= 1 − 1∑

z∈Z
P(xl=z|ȳl)
P(xl=x̂l|ȳl)

= 1 − 1∑
z∈Z exp

(−�l,z (C, ȳ)
) . (14)

As shown in Section 2, each symbol is transmitted with
equal probability. Then from [9], (13) can be written as

�l,z (C, ȳ) = ln
P

(
ȳl|xl = x̂l

)
P (ȳl|xl = z)

. (15)

For ∀z ∈ Z, we have

P (ȳl|xl = z) = 1√
2πCl,l

exp
(

− (ȳl − z)2

2Cl,l

)
. (16)

Then from (16), (15) can be simplified as

�l,z (C, ȳ) = ln

1√
2πCl,l

exp
(

− (ȳl−x̂l)
2

2Cl,l

)
1√
2πCl,l

exp
(
− (ȳl−z)2

2Cl,l

)

= −
(
ȳl − x̂l

)2
2Cl,l

+ (ȳl − z)2

2Cl,l
. (17)

Substituting (17) into (14), we can get the PEPs of the
symbols xl, l = 1, 2, · · · ,N .
Considering (14), it is complicated to analyze the sum-

mation in the denominator, as the summation has infin-
ity terms. Actually, similar with [23], we can simplify
the summation by only considering the dominant terms.
Note that, the term exp

(−�l,z (C, ȳ)
)
in the summa-

tion decreases exponentially with (ȳl − z)2. So it can be
known that, when z is chosen to be close to ȳl, the terms
exp

(−�l,z (C, ȳ)
)
will be the dominant terms. Set Dl as

the set whose components are the B integers closest to ȳl,
then the PEPs can be approximated as

P
(
xl �= x̂l|ȳl

) ≈ 1 − 1∑
z∈Dl

exp
(−�l,z (C, ȳ)

) . (18)

In fact, decreasing the PEPs is not beneficial to the
orthogonality of the channel matrix, and the proposed
LLR-based algorithm which aims to decrease the PEPs in
(18) will not help to enhance the BER performance of the
LR-aided ZF LD. However, for the VBLAST detector, we
find that the PEPs directly affect the error probability of
the first detected symbol in the VBLAST detector. Note
that the error probability of the first detected symbol in
the VBLAST detector is a key factor affecting the error

propagation of the VBLAST detector, which is impor-
tant to the BER performance of the VBLAST detector.
Decreasing the PEPs will help to reduce the error propa-
gation, and the BER performance of the VBLAST detector
will be enhanced.
As minimizing the PEPs can improve the BER perfor-

mance of the VBLAST detector, our target is to design a
unimodular matrix such that the PEPs will be minimized.
The problem can be formulated as follows.
As the largest PEP will result in symbol error with large

probability, we target to minimize the largest PEP at first,
i.e., we find a unimodular matrix T such that

min
T

max
l

P
(
xl �= x̂l|ȳl

)
(19)

s.t. C = σ 2
nT−1

(
HTH

)−1 (
T−1)T

ȳ = T−1H†y.

Note the solution in (19) is not unique, and there may
exist many solutions in the problem (19). Secondly, we tar-
get to find a unimodular matrix to minimize the second
largest PEP, which is also crucial to the BER performance,
while keeping the largest PEP unchanged. Then, we can
further minimize the third largest PEP, the forth one, and
so on. This process continues until all the PEPs cannot be
decreased.
Then, above process shows the LLR criterion for the ZF

VBLAST detectors. Now, we propose the LLR criterion
for the MMSE VBLAST detectors. For (5), [18] shows that
in the first step of MMSE VBLAST detector, and by some
manipulation, we have

ȳMMSE = x + n̄MMSE, (20)

where ȳMMSE = T−1 (HMMSE)
† y, n̄MMSE is the noise, and

its covariance matrix is

CMMSE = σ 2
nT−1

(
(HMMSE)

T HMMSE
)−1 (

T−1)T .

(21)

Comparing (20) with (9), the formulation in ZF and
MMSE criterions are similar; then, the LLR criterion in
MMSE case can be derived in the similar process as the
LLR criterion in the ZF case, andwe omit the process here.

3.2 The description of the LLR-based transformation
algorithm

In this subsection, we propose our LLR-based TA to min-
imize the PEPs as described in the last subsection. The
proposed algorithm consists of two stages. In the first
stage, a previous LR algorithm such as LLL or ELR is
performed. In the second stage, we aim to find a uni-
modular matrix to minimize the PEPs as described above.
The advantage of the two-stage algorithm is that it can
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ensure performance improvement for problems of differ-
ent dimensions and different modulations. Moreover, it
can alleviate the computational complexity.
In fact, the solution to minimize the PEPs in the second

stage cannot be obtained straightforward, and finding the
global optimal solution is computationally expensive. So,
we develop one iterative algorithm to find the solution as
follows. The iterative algorithm is suboptimal.
Before we give our proposed algorithm, we define the

row-addition operation which will be used in each itera-
tion in the second stage of our algorithm.
Definition (row-addition operation): Let Uk,i denote the

N × N matrix with a one at the (k, i)th entry and zero
elsewhere. Then, a row-addition operation on the matrix
T−1 is defined as

T−1 ← (
λk,iUk,i + I

)
T−1, (22)

where λk,i is an integer and
∣∣λk,i∣∣ is called the step length.

From (22), we know after the row-addition operation,
the matrix T−1 can be obtained by updating the kth row
of T−1 as

t′k ← t′k + λk,it′i, (23)

where t′k , t
′
i(i �= k) is the kth and the ith row of T−1,

respectively, while other rows of the matrix T−1 remain
unchanged.
Moreover, if a row-addition operation is performed as

(22), it is easy to verify that T will be updated as

T ← T
(
λk,iUk,i + I

)−1 . (24)

Note that(
λk,iUk,i + I

)−1 = −λk,iUk,i + I. (25)

Then, the unimodular matrix T and the channel matrix
H̄ (i.e.,HT) will be updated as

T ← T
(−λk,iUk,i + I

)
,

H̄ ← H̄
(−λk,iUk,i + I

)
,

and similar with (23), they can be obtained by updating
the ith column of T and the ith column of H̄ as

ti ← ti − λk,itk ,

h̄i ← h̄i − λk,ih̄
k ,

where tk and ti are the kth and the ith columns of T, and
h̄k and h̄i are the kth and the ith columns of H̄.
From the discussion above, after one row-addition oper-

ation on the matrix T−1, the matrix T is still unimodular
[14]. In each iteration of our algorithm, we use one row-
addition operation to update the matrix T−1 such that the
PEPs of the detected symbols are minimized.
Considering (9), if we perform a row-addition operation

on the matrix T−1 as (23), then (9) will be updated as

ỹ = x̃ + ñ, (26)

where ỹ = (
λk,iUk,i + I

)
ȳ, x̃ = (

λk,iUk,i + I
)
x̄, and

ñ = (
λk,iUk,i + I

)
n̄. Then ỹ, x̃ can be easily obtained by

updating kth component of ȳ and x in (9) as

ȳk ← λk,iȳi + ȳk ,
xk ← λk,ixi + xk .

The covariance matrix C̄ of ñ will be

C̄ = (
λk,iUk,i + I

)
C

(
λk,iUk,i + I

)T ,
= (

λk,iUk,i + I
)
C

(
λk,iUi,k + I

)
, (27)

where C is the covariance matrix of n̄, Uk,i, and Ui,k are
defined above. The matrix C̄ can be obtained by updating
the matrix C as

ck ← ck + λk,ici, (28)
ck ← ck + λk,ici, (29)

and ci, ci denotes for the ith row and the ith column of
C, respectively. From above, the variance C̄j,j of the noise
ñj, j �= k remain unchanged, and the variance of the noise
ñk will be updated as

σ 2
ñk = C̄k,k = Ck,k + 2λk,iCi,k + λ2k,iCi,i. (30)

Considering (26), we know that the pairwise LLR
�l,z (C, ȳ) , l �= k remain unchanged, while the pair-
wise LLR �k,z (C, ȳ) is changed as �k,z

(
C̄, ỹ, λk,i

)
, and the

updated pairwise LLR �k,z
(
C̄, ỹ, λk,i

)
is defined as

�k,z
(
C̄, ỹ, λk,i

) = ln
P

(
x̃k = ˆ̃xk|ỹk

)
P

(
x̃k = z|ỹk

) , (31)

where ỹk = λk,iȳi + ȳk , ˆ̃xk = ⌊
ỹk

⌉
, and �·� is the rounding

operation as defined above.
From Section 2, each symbol of x̃k is transmitted with

equal probability; then from [9], we have

�k,z
(
C̄, ỹ, λk,i

) = ln
P

(
ỹk|x̃k = ˆ̃xk

)
P

(
ỹk|x̃k = z

) , (32)

where z is a component in the set of x̃k , and

P
(
ỹk|x̃k = z

) = 1√
2πC̄k,k

exp
(

− (ỹk − z)2

2C̄k,k

)
. (33)

Substituting (33) into (32), we can get

�k,z
(
C̄, ỹ, λk,i

) = −
(
ỹk − ˆ̃xk

)2
2C̄k,k

+ (ỹk − z)2

2C̄k,k
. (34)

After the row-addition operation, only the PEP of the
kth component is changed. Similar with (14), the PEP can
be formulated as

Pi
(
x̃k �= ˆ̃xk|ỹk

)
= 1 − 1∑

z∈Z exp
(−�k,z

(
C̄, ỹ, λk,i

)) .
(35)
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For (35), we only consider the dominant terms in the
summation, which is similar with (18); then the PEP above
can be written as

Pi
(
x̃k �= ˆ̃xk|ỹk

)
≈ 1 − 1∑

z∈D̃k
exp

(−�k,z
(
C̄, ỹ, λk,i

)) ,
(36)

where D̃k is the set whose components are the B integers
closest to ˆ̃xk .
Our target is to minimize the PEPs in each itera-

tion, such that we can obtain the minimum PEPs of
the detected symbols. To minimize the PEP in (36), the
parameter λk,i in (36) should satisfy that

λ∗
k,i = arg min

λk,i∈Z
Pi

(
x̃k �= ˆ̃xk|ỹk

)
= arg min

λk,i∈Z
∑
z∈D̃k

exp
(−�k,z

(
C̄, ỹ, λk,i

))
. (37)

However, the problem in (37) is complicated, and it is
hard to obtain the exact solution. Now, we propose the
fixed step length (FSL) method to solve it, which means
the step length

∣∣λi,k∣∣ is constrained to be a constant c (i.e.,
c = 1, 2, · · · ). Then (37) can be written as

λ∗
k,i = arg min|λk,i|=c

∑
z∈D̃k

exp
(−�k,z

(
C̄, ỹ, λk,i

))
. (38)

Substituting λk,i = ±c into the function in (38), we can
get two values, and by comparing the two values, we can
obtain the solution in (38). Now, a problem is that how
to choose the constant c. In fact, the constant c should
not be too large. As shown above, a standard LR algo-
rithm is used in the first stage of our algorithm. While
these LR algorithms aim to find a unimodular matrix such
that the channel matrix is more orthogonal. However, in
the second stage, the row-addition operation will destroy
the orthogonality formed in the initial stage, and a large
c will seriously destroy the orthogonality of the matrix H̄.
Then, it will be hard to decrease the PEP if the constant
c is large. The above process describes the detail of one
iteration given the pair (k, i).
Now, we will describe our LLR-based algorithm. We

perform the LLL or the ELR algorithm in the initial stage,
and we can get (9).
Then, we use (14) to find the largest PEP P

(
xk �= x̂k|ȳk

)
at first. Using the method above, and for each pair
(k, i)(i �= k), we can get Pi

(
x̃k �= ˆ̃xk|ỹk

)
. If the small-

est one is smaller than the largest PEP, use it to update
P

(
xk �= x̂k|ȳk

)
, and go on to decrease the largest PEP.

Otherwise, begin to decrease the second largest PEP. If
the second largest PEP can be decreased, update it, then
return to decrease the largest PEP, and go on with the
above process until the second largest PEP cannot be
decreased. Then, we can further decrease the third largest

PEP, the forth one, and so on. This process continues until
no PEP can be decreased.
The whole process is described in Table 1.
The above process shows the LLR-based TA in ZF crite-

rion. Now, we briefly discuss the LLR-based TA in MMSE
criterion. As shown above, to obtain the LLR criterion in
MMSE criterion, we need to replace the matrix H and
r in the LLR criterion in ZF criterion by the extended
matrixHMMSE and rMMSE. So replacingH and r in Table 1
by HMMSE and rMMSE, we can get the LLR-based TA in
MMSE criterion.

4 The simulation and the analysis
In this section, we validate the performance of our LLR-
based TA-aided VBLAST detectors through the computer
simulations in different MIMO systems. As shown in
Section 2, we simulate the figures in the uncoded systems.
The channel is a Rayleigh fading channel. The entries
of H are modeled as independent and identically dis-
tributed complex Gaussian variables with zero mean and
1
N variance. The elements of the transmitted signal are
drawn from theMQAM constellation. The signal to noise
ratio (SNR) is defined as the average received energy per
information bit divided by σ 2 [15, 17]. Our LLL-LLR and

Table 1 The description of the LLR-based TA in ZF criterion

Input: real matrix H, r and the parameter c and K.

Output: unimodular real matrix T.

Perform standard LR algorithm such as LLL or ELR on H and generate

the reduced basis H̄ and unimodular matrix T;

Using (14) to get the PEP of each component, and set j = 1;

Do

If j = N + 1

break;

end

Find the jth largest PEP P
(
xk �= x̂k|ȳk

)
;

Using (38) to obtain λ∗
k,i and get Pi

(
x̃k �= ˆ̃xk|ỹk

)
, i �= k ;

Calculate i∗ = argmini Pi
(
x̃k �= ˆ̃xk|ỹk

)
;

If Pi∗
(
x̃k �= ˆ̃xk|ỹk

)
< P

(
xk �= x̂k|ȳk

)
Set j = 1,

ȳk ← ȳk + λk,i∗ ȳi∗ ,

ti ← ti
∗ − λk,i∗ tk ;

hi ← hi
∗ − λk,i∗hk ;

Using (28) and (29) to update the covariance matrix C;

Use Pi∗
(
x̃k �= ˆ̃xk|ỹk

)
to update P

(
xk �= x̂k|ȳk

)
;

else

j = j + 1;

End if

While (true)
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ELR-LLR TAs use the LLL and the ELR as the initial
stage, and we set B = 3. We compare the performance of
the LLL-LLR and ELR-LLR-aided VBLAST detectors with
the LLL [16] and the ELR-aided LDs [15] and VBLAST
detectors.

4.1 The BER comparison of the VBLAST detector with SNR
ordering

In this subsection, the VBLAST detector we used is shown
in [8]. It is the classical VBLAST detector whose ordering
process is based on the SNR. In Figs. 1, 2, 3, 4, 5 and 6, we
use this kind of VBLAST detector, and it is represented as
“VB1.”
Figures 1 and 2 compare the BER performance of our

ELR-LLR- and LLL-LLR-aided VBLAST detectors for dif-
ferent constant c with the previous LR-aided detectors
in the 8 × 8 system with 16QAM modulation. The con-
stant c is set to be 1 and 2. Figure 1 simulates the BER
performance of these detectors in ZF criterion, while
Fig. 2 simulates the BER performance in the MMSE
criterion. The two figures show that all the VBLAST
detectors have better BER performance than the previous
LR-aided LDs, and the LLL-LLR- and the ELR-LLR-aided
VBLAST detectors can provide significant BER perfor-
mance gain over the LLL- and the ELR-aided VBLAST
detectors, respectively, in both the ZF and the MMSE
criterion. The two figures also show that our ELR-LLR-
and LLL-LLR-aided VBLAST detectors for c = 1 out-
perform the detectors for c = 2. This is because with
the increase of c, the orthogonality of H̄ formed in the
initial stage will be destroyed more seriously, and it
will be harder to obtain small PEPs, which will result
in worse BER performance of the VBLAST detectors.
From these figures, we can find that the proposed
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Fig. 1 The comparison of the BER of different ZF detectors in 8 × 8
system with 16QAM
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Fig. 2 The comparison of the BER of different MMSE detectors in
8 × 8 system with 16QAM

LLL-LLR- (c = 1) and the ELR-LLR-aided (c = 1)
VBLAST detectors achieve about 1 dB gain over the LLL-
and the ELR-aided VBLAST detectors at BER = 10−5,
respectively.
As shown above, the smaller the constant c is, the bet-

ter the BER performance of our proposed detector will be.
When the constant c is set to be 1, the BER performance of
our detector will be the best. In the following, the constant
c is set to be 1.
Figures 3 and 4 compare the BER performance of our

ELR-LLR- and LLL-LLR-aided VBLAST detectors with
the LR-aided LDs and VBLAST detectors in 8 × 8 system
with 4QAM modulation. Figures 5 and 6 compare the
BER performance of these detectors in 6 × 6 system with
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Fig. 3 The comparison of the BER of different ZF detectors in 8 × 8
system with 4QAM
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Fig. 4 The comparison of the BER of different MMSE detectors in
8 × 8 system with 4QAM

4QAMmodulation. Figures 3 and 5 compare the BER per-
formance of different ZF detectors, while Figs. 4 and 6
compare the BER performance of different MMSE detec-
tors. From these figures, we find that our LLR-based
TA-aided VBLAST detectors still provide substantial BER
performance gain than the previous LR-aided VBLAST
detectors in different MIMO systems.

4.2 The BER comparison of the VBLAST detector with LLR
ordering

In [9, 10], an efficient VBLAST detector whose ordering
process is based on the LLR is proposed. It shows better
BER performance than the VBLAST detector whose
ordering process is based on the SNR, while it will bring
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Fig. 5 The comparison of the BER of different ZF detectors in 6 × 6
system with 4QAM
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Fig. 6 The comparison of the BER of different MMSE detectors in
6 × 6 system with 4QAM

complexity increase. It aims at minimizing the PEP in
each stage of the VBLAST detector, where the PEP is
calculated as Eq. (14) as shown in Section 3. In this sub-
section, the VBLAST detector in [9, 10] is utilized, and it
is represented as “VB2” in Figs. 7 and 8.
Figures 7 and 8 compare the BER performance of dif-

ferent detectors in 8 × 8 system with 16QAM modula-
tion. Figure 7 compares the BER performance of different
ZF detectors, while Fig. 8 compares the BER perfor-
mance of different MMSE detectors. From these figures,
we also find that our LLR-based TA-aided VBLAST
detector can provide BER performance gain than the
previous LR-aided VBLAST detectors in different MIMO
systems.
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Fig. 7 The comparison of the BER of different ZF detectors in 8 × 8
system with 16QAM
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Fig. 8 The comparison of the BER of different MMSE detectors in
8 × 8 system with 16QAM

4.3 The simulation results of the complexity
As the LLL (ELR) is used as the initial stage of our algo-
rithm, then the computational complexity of our LLL-LLR
(ELR-LLR) will be larger than that of the LLL (ELR) algo-
rithm. It is validated by Figs. 9 and 10. Figure 9 shows the
empirical CDFs of the total number of arithmetic opera-
tions for different algorithms in ZF criterion with 8 × 8
16QAM system at 20 dB, while the comparison of the
complexity of these algorithms in MMSE criterion with
8 × 8 16QAM system at 20 dB is shown in Fig. 10. The
comparison in other MIMO systems is similar with the
comparison in 8 × 8 16QAM system, and we omit the
figure. As we know, the complexity of the ELR and LLL
algorithms is polynomial in the MIMO system, and the
polynomial complexity is acceptable in theMIMO system.
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Fig. 9 CDFs of the number of floating point operations for different
algorithms in ZF criterion (Nr = Nt = 8, SNR = 20 dB)

From the simulation results, we find that the complexity
of our ELR-LLR and LLL-LLR is no more than twice the
complexity of the ELR and LLL algorithm, respectively.
Then, the complexity of our algorithm is also polyno-
mial, and the complexity of ELR-LLR and LLL-LLR has
the same order as the complexity of ELR and LLL, respec-
tively, which means the complexity of our algorithm is
acceptable in the MIMO system. Then, we know that the
complexity increase is moderate and acceptable in the
MIMO system.Moreover, Figs. 9 and 10 also show that the
computational complexity of our algorithm for c = 1 is
larger than that for c = 2. As is shown above, it is easier to
obtain small PEPs for small c, which means the number of
updates will be larger, and the computational complexity
will also be larger.

5 Conclusions
In this paper, we made a readjustment of the received
signal in the LR domain and proposed a new scheme
to improve the LR algorithm. Unlike the LR algorithm
which utilized the unimodular transformation to change
the orthogonality of the channel matrix, the proposed
scheme targeted to use the unimodular transformation to
decrease the PEPs of the symbols, while the PEPs affected
the error propagation in the VBLAST detectors. In our
designed TA, the standard algorithm such as the LLL or
the ELR algorithm was used as the initial stage. Then, a
new algorithm was shown to decrease the PEPs of the
detected symbols in the VBLAST detector. The simu-
lations showed that our LLR-based TA-aided VBLAST
detectors substantially improved the BER performance of
the LLL- and the ELR-aided VBLAST detectors, while
it only brought moderate increase in the computational
complexity.
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