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Abstract

For heavily cluttered environments with low target detection probabilities, tracking filters may fail to estimate the
true number of targets and their trajectories. Smoothing may be needed to refine the estimates based on collected
measurements. However, due to uncertainties in target motions, heavy clutter, and low target detection probabilities,
the forward prediction and the backward prediction may not be properly matched in the smoothing algorithms, so
that the smoothing algorithms may fail to detect the true target trajectories. In this paper, we propose a new
smoothing algorithm to overcome such difficulties. This algorithm employs two independent integrated probabilistic
data association (IPDA) tracking filters: one running forward in time (fIPDA) and the other running backward in time
(bIPDA). The proposed algorithm utilizes bIPDA multi-tracks in each fIPDA path track for fusing through data
association to obtain the smoothing innovation in a fixed-lag interval. The smoothing innovation is used to obtain the
smoothing data association probabilities which update the target trajectory state and the probability of target
existence. The fIPDA tracks are updated after smoothing using the smoothing data association probabilities, which
makes the fIPDA path tracks robust for maneuvering target tracking in clutter. This significantly improves the target
state estimation accuracy compared to the IPDA. The proposed algorithm is called fixed-lag smoothing data
association based on IPDA (FLIPDA-S). A simulation study shows that the proposed algorithm improves false track
discrimination performance for maneuvering target tracking in clutter.
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1 Introduction
In target tracking, sensors detect targets as well as various
unwanted objects in the surveillance area. Information
about the targets’ prior existence in the surveillance area
is not known. The objects’ sources are also unknown, with
some possible sources being terrain reflections, thermal
noise, and clouds. The unwanted objects are generally
known as clutter. In a cluttered environment, the tar-
get measurements are present with a low probability of
detection Pp in each scan.

Tracks are initialized and updated using the measure-
ments obtained in each scan. Track initialization in a
cluttered environment results in both true tracks and
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false tracks. True tracks always follow the target mea-
surements, whereas false tracks do not follow the target
measurements. A technique called false track discrim-
ination (FTD) is used to confirm the true tracks and
terminate the false tracks. Almost all target-tracking algo-
rithms employ track quality measures to achieve FTD. But
the standard probabilistic data association (PDA) [1] does
not provide a track quality measure for FTD. The multiple
hypothesis tracker (MHT) [2] uses a sequential probability
ratio as a track quality measure for FTD. In [3], the authors
proposed a track-oriented MHT algorithm and applied a
smoothing velocity vector for reduction of the false track
establishment.

Integrated probabilistic data association (IPDA) [4, 5]
introduces recursive formulae for data association and
employs the probability of target existence as a track
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quality measure. The practical considerations for IPDA
are discussed in [6]. IPDA is extended for maneuvering
target tracking in [7] and [8]. The probability hypothesis
density (PHD) algorithm [9, 10] estimates the number of
targets and their trajectories without having the track-to-
measurement association. A multi-scan data association-
based integrated track splitting (ITS) algorithm [11, 12]
updates the target state estimation in the current scan
more accurately at the cost of increasing computational
complexity. ITS also utilizes the probability of target exis-
tence as a track quality measure.

For target tracking in densely populated cluttered envi-
ronments with a low probability of target detection, it
becomes difficult to know the number of targets and
their behavior in nature. In addition, the target trackers
with autonomous track management function often fail to
track the true targets in such environments. Smoothing
may be needed to refine the tracking results. The smooth-
ing algorithms use future scan information to improve
the target state estimation accuracy in the current scan,
at the cost of smoothing lag. The basic techniques of
smoothing estimation are described in [13, 14], and [15].
A limited number of publications focus on smoothing tar-
get tracking. Augmented state fixed-lag smoothing based
on the joint PDA (JPDA) algorithm is proposed in [16] for
tracking multiple maneuvering targets in clutter. However,
[16] does not provide a track quality measure for FTD.
In [17], the authors applied IPDA to an augmented state
system for fixed-lag smoothing and utilized the smooth-
ing target existence probability as a track quality measure
for FTD. In [18], the authors applied the fixed-interval
Rauch-Tung-Striebel (RTS) [14, 15] smoothing formulae
to the MHT algorithm to track a maneuvering target with-
out a track quality measure for FTD. The fixed-interval
smoothing IPDA (sIPDA) [19] uses the RTS smoothing
formulae with the Fraser-Potter [20] approach to calculate
the smoothing predictions and innovations.

In smoothing algorithms, the forward track prediction
and the backward track prediction are based on mea-
surements collected in a fixed-lag smoothing interval
[k, N]. In the smoothing interval, the fusion of forward
track prediction and backward track prediction is per-
formed at scan k. Therefore, in an environment with
densely populated clutter, low detection probabilities, and
uncertain target motion, the forward predicted state and
the backward predicted state may lie far away such that
their contributions to establish the fused predicted state
may be insignificant, which results in bad fusion per-
formance. Due to this, fusion of forward prediction and
backward prediction becomes a challenging issue. Thus,
smoothing algorithm may fail to detect the true target tra-
jectories. For such difficult environments, we propose a
new smoothing algorithm called fixed-lag smoothing data
association based on IPDA (FLIPDA-S). The proposed
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algorithm considers a constant-velocity model to deal
with the problems of tracking a maneuvering target in
a cluttered environment. A constant-velocity model is a
dynamic model of a tracking filter that describes the tar-
get motion using a 4-dimensional state vector composed
of 2-dimensional position and 2-dimensional velocity. The
proposed work uses an arbitrary size of the smoothing
interval [k, N], where the first scan of each smoothing
interval faces fixed-lag smoothing, such that the fixed-lag
of the proposed algorithm is N — k. Unlike sIPDA [19],
the proposed FLIPDA-S algorithm does not use the RTS
algorithm for smoothing.

The proposed FLIPDA-S algorithm employs two inde-
pendent IPDA filters, where the first IPDA filter runs in
the forward (fIPDA) direction and the other runs in the
backward (bIPDA) direction. The FLIPDA-S algorithm
utilizes bIPDA multi-track state predictions. The back-
ward multi-track state predictions at each scan in the
smoothing interval are obtained recursively by utilizing
the sensor measurements starting from the end of the
smoothing interval to the beginning of the smoothing
interval. The fIPDA tracks are initialized and maintained
by using the sensor measurements at each scan. At each
scan in the fixed-lag interval, the forward track state
prediction of FLIPDA-S is used to produce smoothing
innovations associating with the multiple tracks gener-
ated from bIPDA. In this fusion, each track in the forward
path treats the backward path tracks as the measure-
ments for data association. The smoothing data associ-
ation probabilities, smoothed target trajectory state, and
smoothed target existence probability are obtained by
applying the smoothing innovations to the sensor mea-
surements received at scan k in the fixed-lag smoothing
interval [k, N]. FLIPDA-S uses smoothing data associa-
tion probabilities to update and propagate the existing
forward tracks to the next smoothing interval. In the
next fixed-lag interval, the FLIPDA-S uses each updated
forward track and new forward tracks (initialized by
fIPDA) to fuse with the backward path multiple tracks
to smooth the target trajectory state and the probabil-
ity of target existence. This procedure continues in each
subsequent interval, which significantly improves both
the target trajectory state estimation accuracy and the
FTD. The simulation study of Section 5 shows improved
FTD performance of FLIPDA-S as compared with sIPDA
and IPDA for maneuvering target tracking in a cluttered
environment.

The rest of this paper is organized as follows: The tar-
get and measurement models are discussed in Section 2.
The fixed-lag smoothing data association algorithm based
on IPDA (FLIPDA-S) is proposed in Section 3. Practical
considerations of FLIPDA-S are presented in Section 4,
followed by descriptions and results of the simulation in
Section 5. This paper is concluded in Section 6.
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2 Model dynamics

This section describes the target model and the sen-
sor model. In this paper, we assume that the sensor has
infinite resolution.

2.1 Target model

The target existence event in scan k is a random event and
is denoted by xy. If the target trajectory state at scan k is
denoted by xy, then the target trajectory propagates by

xp = Fap_1 +vi1 (1)

where F is the forward state propagation matrix and vx_
is the zero-mean white Gaussian plant noise sequence
with known covariance matrix Q. Equation (1) can be
rewritten for the backward trajectory state x; propagation
as

X = FpXpp + Vi1 (2)

where F), is the backward state propagation matrix and
Vi+1 is the zero-mean white Gaussian backward plant
noise sequence with known covariance matrix Q,. These
matrices are expressed below:

=[a ] ®
T* T3
a2 oh

Q=g ) (4)
TB
712 T212

Fy=F! (5)

and
Q,=F'QF " (6)

where I, is the 2 x 2 identity matrix, O; is the 2 x 2
null matrix, the scalar quantity ¢ is the target acceleration
uncertainty, and T is the sampling time.

2.2 Sensor model
The target measurement at each scan k is

zx = Hxy + wy (7)

where H is the measurement matrix, and wy is the zero-
mean white Gaussian measurement noise sequence with
known covariance matrix R.

In addition to target measurements, the sensor also
returns clutter measurements, which follow Poisson dis-
tributions [21]. The clutter measurement density p; is
a function of the measurement specified in the surveil-
lance coordinate system, and it is assumed to be known or
estimated [21].

The measurement set does not have prior knowledge
about their sources. Z; is the measurement set received
at scan k, and my is the number of measurements in Zj
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received at scan k. Let ZK = {Zk, zk1 } be the cumulative

set of measurements from the initial scan to the current
scan k. The measurement set Z*~1 gives the measurement
information from the initial scan to scan k — 1. bIPDA fil-
ter uses sensor measurements Z** (where superscript k+
indicates the scan index starting from scan N to scan k
in the smoothing interval) for backward track estimation.

Let ZFt = {Zk, Zk+1+} be the cumulative set of measure-

ments from scan k + 1 to the current scan k. If the ith
measurement of Z; is 2y ;, then the clutter measurement
density at zy ; is px; = p (zk,i).

3 Fixed-lag smoothing data association based on
the IPDA algorithm (FLIPDA-S)

In this section, we propose the fixed-lag smoothing data
association algorithm based on IPDA (FLIPDA-S) with an
arbitrary size of the smoothing interval [ k, N]. FLIPDA-S
smoothens the target trajectory estimation and the tar-
get existence probability at each scan in the fixed-lag
smoothing interval.

The forward IPDA [4] initializes the new multiple for-
ward tracks based on measurements ZX received in the
first scan k of the smoothing interval. FLIPDA-S uses
IPDA [4] in the backward direction. In the backward path,
new multiple backward tracks are initialized and updated
using measurements Z* received at each scan in the
smoothing interval, ranging from scan N to scan k such
that Z* = {Zy, Zy11,...,Zn}. At each scan, FLIPDA-S
fuses each forward track state prediction p {xk| Xk,Zk’l}
with backward path multiple track state predictions
p{x,’(l X5, ZKTF 1 using the data association procedure
to obtain information fusion state predictions needed to
calculate the smoothing innovations. In the fusion, the
backward path tracks assume the role of measurements
of the forward path tracks for data association. The infor-
mation fusion state prediction is updated through data
association probabilities to obtain the smoothing innova-
tion, which is used for calculating smoothing data associa-
tion probabilities and the smoothed target trajectory state.
FLIPDA-S uses the smoothing data association probabili-
ties to update the existing forward tracks at the first scan
k of the smoothing interval. Then, FLIPDA-S uses the
updated forward track state estimations to propagate the
existing forward tracks to the next smoothing interval
[k + 1,N + 1]. The smoothed probability of target exis-
tence is also calculated at each scan. At the end of each
smoothing interval, the fixed-lag scan (first scan of each
interval) is selected to calculate FLIPDA-S statistics (true
track confirmation rates and estimation errors), and a
new scan is appended for the next smoothing interval.
The procedure continues for each subsequent smoothing
interval.
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3.1 Forward IPDA (fIPDA)

This section describes the initialization of fIPDA [4]
tracks using sensor measurement Zj received in the first
scan of every smoothing interval. fI[PDA waits bIPDA for
an arbitrary lag time in each interval to initialize each new
forward track based on sensor measurements Z; received
in each fixed-lag interval. The procedure is as follows.

3.1.1 Notation

Xk—1k—1 and Pi_jx—1 are the mean and covariance,
respectively, of the forward track state estimate for scan
k—1 conditioned on Zk~1, Xk|k—1 and Py are the mean
and covariance, respectively, of the forward track state
prediction for scan k conditioned on ZK1 yy is the tar-
get existence event in the forward track, P { Xk_1|z’<*1}
is the probability of target existence for scan k — 1 con-
ditioned on Z*¥~1, and P {Xk|Zk_1] is the probability of

target existence for scan k conditioned on ZK~1,

3.1.2 Forward track initialization

Measurements of the first scan of two consecutive
smoothing intervals are used to initialize new forward
tracks (two point differencing [6]) with an initial probabil-
ity of target existence P { Xk—11ZF1 } Each forward track
carries a unique forward track identification number.

3.1.3 fIPDA track propagation

The fIPDA recursion at scan k starts with the
updated track probability density function (pdf)
p[xk_1|xk_1,Zk_1] at scan k — 1. The fIPDA target

existence probability follows the Markov chain one model
[5] and propagates by

Pz} = prap {01247 ®)

where py; is the fIPDA target existence transition proba-
bility [5]. Note that in [5], the Markov chain two model is
also described but it is useful for occluded target tracking,
which is not the subject of this paper.

Each forward track propagates by using a Kalman filter
propagation:

[#k1k—1, Prjk—1] = KFp (»’Ackfl\kflrj)kfl\kfbl:; Q)
)

where KF,, is the Kalman filter propagation, and the for-
ward track state prediction and its covariance matrix are
given by

Xik—1 = FXr_1jx—1

Pyi—1 = FPi 11 FT +Q (10)
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3.2 Backward IPDA (bIPDA)

The proposed algorithm uses an IPDA [4] filter in the
backward direction. The bIPDA procedure starts from
the scan N of the smoothing interval [k, N], and the
bIPDA tracks move backward until they reach scan k. The
procedure is as follows.

3.2.1 Notation

Let te {11, 72,...,74} be the label of backward tracks.
. AT .
Xii1jkr14 and Py iy i, are the mean and covariance of
the backward track state estimate for scan k + 1 con-
ditioned on ZKT1*. &7, | and Pj;,,, are the mean
and covariance of backward track state prediction for
scan k conditioned on Z¥*1*. The backward track state
estimate and its covariance for scan k conditioned on

N AT . .

Z*T are denoted by &%, and Py, respectively. x7 is
the target existence event in the backward path track,
P{ XF +1|Zk+1+} is the backward probability of target

existence for scan k + 1 conditioned on ZXt1*, and
P { XF |Zk+1+} is the backward probability of target exis-

tence for scan k conditioned on ZK*1t,

3.2.2 Backward track initialization

The backward tracks are initialized in each scan using
sensor measurements. Each pair of measurements in con-
secutive scans may initialize a new backward track (two
point differencing [6]) with an initial backward probability
of target existence, P [ Xis1 |Zk+1+}. Therefore, there are
no backward tracks in the last two scans of each smooth-
ing interval. Each new backward track carries a unique
backward track identification number.

3.2.3 Backward track propagation
The bIPDA recursion at scan k starts with the updated

track pdf, p {x,§+1|x,f+1,Z"+”} at scan k 4 1. The bIPDA

probability of target existence follows the Markov chain
one model [5] and propagates by

P{X}flzk+1+} zp?,lp[xl:+llzl<+1+] (11)

where pil is the bIPDA target existence transition proba-
bility [5]. Each backward track propagates by the Kalman
filter propagation:

— =T A AT
[xlz\k+1+’Pk|k+1+:| = KFp (xlr<+1|k+1+fpk+1|k+1+’Fb’ Qb)
(12)
where KF,, is the Kalman filter propagation, and the back-

ward track state prediction and its covariance matrix are
expressed by

=T _ AT
X1+ = o1k

=T AT T
Py = FpPryipy11 )y +Qp (13)
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3.2.4 bIPDA measurement selection

At each scan k in the smoothing interval, each back-
ward track selects a subset of validated measurements
zz,l. from the measurement set Z; received at scan k. A
measurement selection procedure [5] is used to select the
validated measurements zii for each backward track. The
validation measurements selection criterion is given by

T
A{f-‘-l-‘r S 1

k+1+
14+ A =g

(14)
k+1+

where A; and Sii 14+ denote the measurement zj;

innovation and its covariance with respect to each back-

ward track:

AFTY =z — Hx (15)

Skr14 = HPy o (HT +R (16)

and g is the validation selection threshold, which depends
on the gating probability Pg [6, 22]. In the 2-dimensional
surveillance situation, g is selected as 9.21, which corre-
sponds on the gating probability P = 0.99. The vali-

dated measurement zfi ; selected by each backward track
is defined by
T ._
2= {zk; ARFIF SkiHAfﬁL” < g} (17)

3.2.5 bIPDA measurement likelihood
At each scan k, each backward track calculates the mea-
surement likelihood of validated measurement z]lj ; by [4]

PLi=r (zz,«lk + 1+,Z"+1+) =

1 -
b . Hx 4 T Q). 2
QN<Z/<J’H"/T<|/<+1+’HPk|k+1+H +R)’ 2y € Zk
0; z, ¢ Zy
(18)

3.2.6 bIPDA track update
The backward measurement likelihood ratio is expressed
by

my b

Pri
Ab=1 —PDPG+PDPGZ%
i1 Pk,i

(19)

The updated bIPDA probability of target existence [4, 6]
at scan k is given by

Aip{X]flzk+l+}
1= (1- A7) P {xp124+1+]

At each scan k, each backward track state is updated
by using the validated measurements z,ljl. fori > 0
(i = O corresponds to the non-existence event). The

Py 24} = (20)
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data association probabilities corresponding to feasible
track-to-measurement association events become

1—PpPg;i=0

1
b _
Bei= 17 3 (21)
k| PpPc—L; i>0
Pk,i

Each backward track state estimate is updated by apply-
ing zz, ; in the Kalman filter update equation.
["_CIZ\k+1+’I_)/T<Ik+1+:| ; i=0
[&lzlkﬁi’j)lzlkﬂ] =
KFy (ZZZ':R: ‘_“/T<|k+1+’1_)lr<\k+1+)? i>0
(22)

where KFy is the Kalman filter estimation update defined
by

Sk = HP/T<|/<+1+HT +R
BT Tg-1
Ky = Pyjey14H S

A _ b _
s = Fpyry + Kk <Zk,i - Hx/i|k+1+> (23)

AT =_T _T
Py = Prjpy1 — KiHPpp gy

Using (21), the Gaussian mixture [19] of updated back-
ward track state estimate (22) becomes

mp
AT b ot
Ry = O Be i (24)
i=1

and

my
B b (HF AT AT AT AT T
P =) B (P ke Fhgperi (Bhgi,) T) —Epr (R
i=1
(25)

3.3 Information fusion state prediction and innovation
At the first scan of each fixed-lag smoothing interval,
the information fusion state prediction and innovation
are formed by fusing each forward track prediction with
backward path multi-track predictions falling in their val-
idation region, as illustrated in Fig. 1.

Figure 1 shows an example of the fusion procedure,
where o indicates forward track prediction and x indi-
cates backward track predictions inside the validation gate
created by the forward prediction. The fusion is based on
the following assumptions:

e the bIPDA multi-track prediction p {x,ﬁ |X;,Zk+1+}
(where, 1 is the label of a backward track) received at
scan k, assumes the role of a measurement to be used
by the forward tracks.

e All backward tracks are mutually exclusive
measurements.
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Fig. 1 Procedure for fusion of each fIPDA track with multiple bIPDA tracks (z1, T2, ..., Tn)

Fusion

e (1 — Pp)N=**1 s the non-detection probability
(probability that a track does not exist in the interval
[k, N1).

e Pj =1— (1 - Pp)N =K1 is the probability that the
track does exist in the interval [ k, N].

o The false track density of bIPDA satisfies

Pr,i ™~ A (26)

where ,olf’ ; is the false track density of bIPDA, ny, is the total
number of backward false tracks inside the surveillance
region, and A is the area of the surveillance region. The
procedure is as follows.

3.3.1 Information fusion measurement selection
In the fusion, the bIPDA track predictions form a set of
measurements at scan k. Each forward track prediction
fuses with a subset of selected backward track predictions.
A measurement selection procedure [5] is used to select
the validated backward track predictions to ensure that
the forward track prediction and the backward track pre-
diction are properly matched. The measurement selection
criterion is [5]
AS AN < g (27)
where A{f and Sy represent the measurement innovation
and its covariance with respect to each track 7. Here,

Af = H5‘11<\k+1+ — Hxpjr—1 (28)

S =H (I);lk et I),dk,l) HT (29)

The backward tracks which satisfy (27) are said to be
inside the validation gate and they form a set of vali-
dated measurements associated with the forward track.
The information fusion state prediction is obtained by
using the information fusion formulae [13, 23].

[®xik=1, Prii—1] 5 if T is a false track

=n ] _
EZAE
- - nT n . .
IFy (x/r<\k+1+’xklkfl'Pk\k+1+’Pklkfl'H); if T is the true track

(30)

where IFy is the information fusion filter update, 7 is the
label of the fusion track, and

-1

(PZ)‘I _ (I)k\k—1)_1 + (P,ilkHJr) (31)

-n =n = -1 _ =T -1_
% =Lk [(Pk|k—1) Fhlk—1 7+ (Pk|k+1+) xik+1+] :
(32)
3.3.2 Measurement likelihood of selected measurement
The measurement likelihood pZ of the track predictions

of fIPDA and bIPDA for the validated backward track t
becomes
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1 — - T D . .

%N (xlr(\k+1+'xk\k—l’l)k|k+1+ +Pk\k—1); if v is the true track
n

b=

0; if T is a false track

(33)

3.3.3 Information fusion filter update
The measurement likelihood ratio A,’: of the validated
measurements satisfies

mi
Af=1—PhPG+PpPe Y 2k
n=1"k

(34)

where m1 is the number of validated backward tracks.
Data association probabilities for the fusion tracks are
calculated by

1 — PjPg; if n is a false fusion track

B! 1
k Py
T’

k

1
T AT
k1 PiPg if n is the true fusion track

(35)

The Gaussian mixture [19] of (30) can be obtained by
using the data association probabilities of (35) as

mp
XIN\k = Z Blx] (36)
n=1
and
mg
= = —n -m\T - - T
Pave =87 (PL+ & &)") — B (Biwe)
n=1
(37)

The FLIPDA-S target existence probability for the fusion
step at scan k is obtained by combining the predicted for-
ward existence probability and measurement likelihood
ratio obtained from the validated backward tracks. Using
(8) and (34), the target existence probability for the fusion
step is found to be

e

1—(1—A})P [Xk|z’<—1]

Pz = (38)

where superscript N\k implies the interval composed of
[0,k —1]U[k+ 1,N].

3.4 Fixed-lag smoothing IPDA (FLIPDA-S)

At the first scan of the fixed-lag smoothing interval [ k, N7,
the FLIPDA-S track update is performed with the mea-
surements inside the validation gate created by the fusion
track represented by (36) and (37).
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3.4.1 FLIPDA-S measurement selection

The validated measurements z; ; (where, superscript s
denotes the smoothing step) are obtained by applying (36)
and (37) to a validation selection criterion.

KNk T g1 AKINV

A; KIN\K D

=g (39)

here ANV and § he | ion of
where A; and Sk|n\k represent the innovation of zy ;
and its covariance, respectively, such as

kIN\k

A =z — Hxgn (40)

Sinvk = HPnHT + R (41)

3.4.2 FLIPDA-S Measurement likelihood
The smoothing likelihood measurement p; ; of z; ; for
each fusion track satisfies

pL=p (z?(’i|ZN\k> =
1 _ -
P—GN (zﬁ(,l-;Hx/qN\k,HPk\N\kHT + R) 2y, € Zi

0; Zi(,i¢zk

3.4.3 FLIPDA-S update
The FLIPDA-S measurement likelihood ratio Aj at scan k is

S
My

Pri
A} =1— PpPg +PpPg » | —*
i=1 Phi

(43)

where m1;_is the number of the smoothing validated mea-
surements.

The smoothed target existence probability [4, 6] can be
obtained by using (38)

AP {Xk|zN\k}

P{xlzN} = (44)

1— (1= A9 P [z

At scan k of the fixed-lag smoothing interval [k, N],
each fusion track is updated by using smoothing valida-
tion measurements zj(,i, where each feasible measurement
outcome i > 0 generates a smoothing data association
probability defined by

1—PpPg;i=0

1
=t us)
> p .
Ak PDPGﬂ; i>0
Pk,i

The FLIPDA-S smoothing track state is updated by using
the validation measurements z; ; in the Kalman filter
estimation update:
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[®ia Prinne ] 5 i=0
I:’A‘kIN,ika|N,i:| = )
KFy (Zi,fR’ a'ékw\k,Pkw\k); i>0

(46)

and the FLIPDA-S track output is a Gaussian mixture [19]
of (46) and can be obtained by using (45).

"y
XN = 2 BLAKIN (47)

=

and
« " A T T
PN =) B (Pkw,i + &n,i (Brni) ) — &N (Fn)
i=1

(48)

where the subscript k,N indicates that the calculated
smoothed value for scan k is conditioned on ZN.

3.5 Forward IPDA update for the next interval

In this section, we describe how the FLIPDA-S algo-
rithm uses the smoothing data association probabilities
obtained in (45) to update and propagate each fIPDA track
for the next smoothing interval.

3.5.1 fIPDA measurement likelihood

Each forward track calculates the measurement likelihood
Pk, based on the smoothing validation measurement z; ;
selected by (39).

1 _ -
=N (245 Haxe—1, HPi—1H' +R); 23, € Zg
pi={" ’
[
0; wa‘ & Zg
(49)

3.5.2 fIPDA track update
The forward track measurement likelihood ratio Aj is
defined by

o
Ag=1-PpPG+PpPg Y
i—1 Pk,i

(50)

The updated fIPDA probability of target existence at
scan k is [4, 6]

aparas

1= (1= Ap P iz

P [Xk|zk} - (51)
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At scan k of the fixed-lag smoothing interval [k, N], each
forward track state is updated by using selected smooth-
ing validation measurements zf”. for i > 0 such as
[®kk—1, Prj—1] 5 i=0

[’Acklk,zﬁpk\k,i] = B
KFy (Zf(,i,Ry?_CkM—l,Pk\k—l); i>0
(52)

and the smoothing data association f; ; obtained in (45) is
used to update each forward track state estimation (52) by

"y

Fk = ) BL &k (53)
i=1

and

~ m,‘( 2 T T

Py =) By, (Pk\k,i + &gk (Rk ki) ) — &k (Bxge)
i=1

(54)

The updated forward track estimation (based on the
smoothing data association probabilities) is propagated to
the next smoothing interval [ k41, N+1], where the oldest
target trajectory state (the first scan of a smoothing inter-
val) is discarded and a new scan is appended. FLIPDA-S
uses each existing updated forward track along with some
new forward tracks (initialized by fIPDA) to fuse with
multiple backward tracks in the next interval. Thus, the
procedure is recycled to smooth the target trajectory state
and the probability of target existence. This significantly
improves target state estimation accuracy and FTD for
smoothing maneuvering target trajectories as shown in
Section 5.

4 Practical considerations

This section presents practical considerations for the
proposed work and its application in the simulation of
Section 5.

4.1 Smoothing delay time limit

The smoothing target tracking algorithm has some prede-
fined limited smoothing delay. The amount of smoothing
delay depends on the application of the algorithm. A
higher smoothing delay means that more measurements
are available, which significantly reduces the estimation
error. In this paper, a fixed-lag sliding smoothing inter-
val procedure is used to limit the smoothing delay. In this
case, the fixed-lag smoothing corresponds to only the first
scan of each smoothing interval and to all the scans in the
last smoothing interval in the simulation.

The smoothing interval [k, N] consists of N —k+1 scans.
The first scan of each smoothing interval is discarded,
and a new scan is appended for the next smoothing inter-
val, except the last smoothing interval. The FLIPDA-S
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statistics (the estimation errors and the true track confir-
mation rates) are accumulated for only the first scan of
each smoothing interval, as well as for all the scans in the
last smoothing interval. Let the current interval includes
scans [ = 3,...,7. After the fixed-lag smoothing, the new
interval contains [ = 4,...,8, and its fIPDA recursion
starts at k = 4, by using the fIPDA predicted track state,
p {x4| X4, Z3 }, and the forward tracks are propagated after
fixed-lag smoothing to the next interval. The new smooth-
ing interval does not contain the existing backward tracks
at the beginning of the new interval, and bIPDA initializes
and updates the new tracks based on the measurements
Zj received from scan N to scan k.

4.2 Track management

The FLIPDA-S employs a track management procedure.
Without track management, multiple fIPDA tracks and/or
bIPDA tracks might follow the same target. The track
management merges close tracks (following the same tar-
get) [6] and eliminates those tracks having lower probabil-
ity of target existence. This approach is well defined in the
literature and is omitted here.

4.3 False track discrimination (FTD)
FLIPDA-S provides the probability of target existence as
a track quality measure. In the proposed algorithm, we
apply the following FTD procedure:

e fIPDA tracks and bIPDA tracks are initialized for
each smoothing interval.

e During the fIPDA and bIPDA procedures, each track
is terminated if its updated probability of target
existence falls below a predetermined termination
threshold. This step eliminates the majority of false
tracks.

e The updated FLIPDA-S probability of target
existence is used to confirm and terminate tracks.
FLIPDA-S tracks are confirmed when the updated
FLIPDA-S probability of target existence exceeds a
predetermined confirmation threshold and
terminated when it falls below a predetermined
termination threshold. The maximum smoothing is
achieved at the first scan of each fixed-lag smoothing
interval, once a FLIPDA-S track is confirmed.

e Each confirmed FLIPDA-S track stays confirmed
until track termination.

4.4 FLIPDA-S track output

All confirmed tracks are used for output. Each output
track consists of the FLIPDA-S trajectory estimate &y x,
defined by (47). FLIPDA-S statistics generate only the
results of confirmed true tracks, which must satisfy the
true track test condition [19]. In this experiment, the
following true track test condition [19] is used:
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Arn" Py Arn < 20 (55)

where Agny = X n — xx is the difference between the
FLIPDA-S track state smoother and the true target tra-
jectory state at scan k, and Py is the track initialization
covariance matrix [13];

R R/T ] (56)

Pop = [R/T 2R/T?

In addition, each confirmed track may become a false
track if it meets the following false track test condition
(19],

Arn" Py iy > 40 (57)
5 Simulations

In this paper, the performance of FLIPDA-S is compared
with the performance of sIPDA [19] and IPDA [4]. A
maneuvering target trajectory in a cluttered environment
is considered in the 2-dimensional surveillance area. The
surveillance area is 800 m long along the x-axis and 600 m
wide along the y-axis. The target trajectory state vector xx
defined in (1) consists of 2-dimensional position and 2-

dimensional velocity vectors, such that x; = [x, ¥, X, y] T.
A linear sensor returns the target position measurements
with probability of detection Pp = 0.8 and sensor noise
covariance R = 25I,m?. The clutter measurement density
is equal to 1 x 10~*m~2. It is anticipated that all smoothing
algorithms show similar performance for an environment
with zero clutter measurement density.

The simulation consists of 1000 runs where each run has
48 scans. The target initial position is [50 m, 200 m]”. The
assumed maximum target velocity for track initialization
[13] is 25 m/s. In the surveillance region, the target moves
with a uniform motion of 15 m/s for the first 24 s of the
running time, and then the target maneuvers with a con-
stant angular velocity of @ = 0.06 rad/s, until the end of
the running time. The maneuvering dynamics of the tar-
get corresponding to the motion under the assumption of
coordinated turn is defined by the following matrix [6].

10 sinwlT/w —1-—coswTl/w
For— 011—-coswT/w sinwT /w
=100 coswT —sinwT ’

00 sinwT coswT

(58)

Figure 2 shows the surveillance area and motion of the
maneuvering target trajectory in clutter accumulated for
one simulation run.

The FLIPDA-S uses Markov chain one model [5] of tar-
get existence for track initiation and propagation with the
fIPDA state transition probability of p;; = 0.98 and the
bIPDA state transition probability of pfl =1

Roughly 1,344,000 (28 per scan) false tracks are initial-
ized per experiment. The work is done on the platform
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Fig. 2 Maneuvering target trajectory in clutter, inside the surveillance area

(Window 7, 2.8 GHz Intel core 2 duo CPU and MAT-
LAB R2008a), where IPDA, sIPDA, and FLIPDA-S have
average execution time of 0.03 s/scan, 0.08 sec/scan, and
0.06 sec/scan, respectively, for tracking a maneuvering tar-
get. The execution time for any track depends on many
factors including the probability of detection, number of
tracks, clutter measurement density, area of surveillance
region, and track management procedure. In this envi-
ronment, false tracks consume majority of computational
resources. In addition, the computational complexity

becomes twice if the number of targets and clutter mea-
surements increase in the surveillance region. However,
the proposed track management and FTD procedures ter-
minate majority of false tracks and the efficiency of false
track termination is reflected in the execution time.
Figures 3 and 4 show the performance (confirmed true
track rates and smoothing position estimation errors) of
FLIPDA-S with different smoothing lags. It is obvious that
increasing the lag size improves smoothing performance
as seen from reduction of the RMS estimation errors

100
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8 4ol
€
£
O gl
20
10l —#— FLIPDA-S(Lag=2){
- — = FLIPDA-S(Lag=3)
: —6— FLIPDA-S(Lag=4)
0 @ 1 1 1 1 1 T T T
0 5 10 15 20 25 30 35 40 45
Time [s]
Fig. 3 Confirmed true track rates of FLIPDA-S (lag = 4), FLIPDA-S (lag = 3), and FLIPDA-S (lag = 2)
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Fig. 4 Confirmed true track RMS position error of FLIPDA-S (lag = 4), FLIPDA-S (lag = 3), and FLIPDA-S (lag = 2)

and the true track management performance depicted in
Figs. 3 and 4.

Both FLIPDA-S and sIPDA have the same smoothing
interval, for a fair comparison. The initial probability of
target existence for the algorithms IPDA, sIPDA, and
FLIPDA-S are the same and the confirmation threshold
for the algorithms are tuned to get the same number of
confirmed false tracks (=68). Figure 5 shows confirmed

false track rates of FLIPDA-S, sIPDA, and IPDA. In Fig. 5,
the confirmed false track rates are evaluated as the sum
of confirmed false tracks per scan received from entire
simulation runs.

Figure 6 shows the true track confirmation rates of
IPDA, sIPDA, and FLIPDA-S. Figure 6 provides a mean-
ingful FTD comparison. When k < N, the FLIPDA-S and
sIPDA state estimates are based on ZN, and the IPDA state

0.1 T

% IPDA
—#— sIPDA (Lag=4)
0.09 | —e— FLIPDA-S (Lag=4)

0.08 -

Confirmed False Track Rates [%]

0 5 10 15 20
Time [s]

Fig. 5 Confirmed false track rates of FLIPDA-S (lag = 4), sIPDA (lag = 4), and IPDA

25 30 35 40 45
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Fig. 6 Confirmed true track rates of FLIPDA-S (lag = 4), sIPDA (lag = 4), and IPDA

estimate is based on Z¥. Therefore, FLIPDA-S and sIPDA
use more measurements than IPDA and have improved
performance over IPDA. The smoothing data association
used by FLIPDA-S provides fast buildup of the probability
of target existence and has higher confirmation rate over
sIPDA and IPDA, as shown in Fig. 6.

Figure 7 show the RMS error statistics (representing the
position estimation errors of the trajectory state) of the

confirmed true tracks of the algorithms in comparison.
In the last scan of each simulation run, the FLIPDA-S,
sIPDA, and IPDA state estimates are based on measure-
ment ZN and the RMS errors of the confirmed true tracks
of the algorithms converge to the same value. As men-
tioned in Section 3.2.2, the backward tracks do not exist
in the last two scans of each smoothing interval. Note that
the backward tracks of the proposed algorithm use less
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Fig. 7 Confirmed true track RMS position error of FLIPDA-S (lag = 4), sIPDA (lag = 4), and IPDA
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measurement information as compared to the measure-
ments available for the backward tracks of sSIPDA [19] in
each smoothing interval. This results in the RMS error dif-
ference between FLIPDA-S and sIPDA as shown in Fig. 7.
sIPDA, which is not a fixed-lag smoothing algorithm, uti-
lizes the RTS equation for backward track generation,
so that a backward track is generated for each forward
track and it survives until the last scan of the smoothing
interval. Therefore, the backward track is available from
the last scan of the smoothing interval. Note also that as
shown in Fig. 6, the number of confirmed true tracks of
the proposed algorithm is much larger than that of sSIPDA
for RMS error statistics calculation in Fig. 7.

6 Conclusions

This paper presents a new smoothing algorithm called
fixed-lag smoothing data association algorithm based on
IPDA (FLIPDA-S) for tracking maneuvering targets in
clutter using a constant-velocity model. At the first scan
of each smoothing interval, the smoothing data associa-
tion probabilities, the smoothing target trajectory estima-
tion, and the smoothed target existence probability are
obtained by using smoothing innovations. In the fusion,
each fIPDA track prediction (including both the updated
forward tracks based on smoothing data association prob-
abilities and the new initialized forward tracks) fuses with
the validated bIPDA track predictions through data asso-
ciation to obtain the information fusion state predictions,
which is used for calculating the smoothing innovations.
The simulation study shows a significant improvement in
the target state estimation accuracy and FTD as compared
to the IPDA. The FTD benefit of FLIPDA-S over sIPDA
and IPDA is demonstrated by the effectiveness of apply-
ing smoothing data association algorithm to the tracking
of maneuvering targets in clutter.
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