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Abstract

Several information recovery systems use functions to determine similarity among objects in a collection. Such
functions require a similarity threshold, from which it becomes possible to decide on the similarity between two given
objects. Thus, depending on its value, the results returned by systems in a search may be satisfactory or not. However,
the definition of similarity thresholds is difficult because it depends on several factors. Typically, specialists fix a
threshold value for a given system, which is used in all searches. However, an expert-defined value is quite costly and
not always possible. Therefore, this study proposes an approach for automatic and online estimation of the similarity
threshold value, to be specifically used by content-based visual information retrieval system (image and video) search
engines. The experimental results obtained with the proposed approach prove rather promising. For example, for one
of the case studies, the performance of the proposed approach achieved 99.5 % efficiency in comparison with that
obtained by a specialist using an empirical similarity threshold. Moreover, such automated approach becomes more
scalable and less costly.
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1 Introduction
Nowadays, multimedia databases are applied in vari-
ous fields, storing large amounts of data. Thereby, the
development of image and video content-based retrieval
systems (capable of efficiently managing such data) has
increased as well the academic interest in the area [1, 2].
For the development of such systems, some inherent prob-
lems must be solved: the selection of appropriate descrip-
tors to represent images [1, 3]; the selection of appropriate
similarity function to measure the similarity of the images
being compared [1, 4]; and the definition of a suitable
similarity threshold to be used by the systems [5–9].
The scope of possible techniques to solve the problems

involved in the retrieval of content-based visual infor-
mation makes necessary to use metrics that can assess
the quality of the results obtained by different tech-
niques. Such systems recover not only equal but also
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images similar to the searched image, making it necessary
to evaluate responses returned to users. In this regard,
some evaluation metrics are commonly used to describe
the results obtained on an information retrieval system,
namely precision, recall and F1 [10], which are classical
metrics commonly used in information retrieval tasks.
After pre-processing input images (consultation), infor-

mation retrieval systems compare them to the collection
system and categorize them as either similar or dissim-
ilar. Such verification is done through a similarity func-
tion f, which measures similarity between images. After
image comparison, the result of the similarity function is
tested against a δ similarity threshold to determine image
similarity (the similarity threshold’s minimum acceptable
score [6–9]). Images compared with the input image
whose similarity values are greater or equal to δ are
considered similar, and the remaining are considered dis-
similar. Typically, the values calculated by the similarity
function f and defined for the value of δ similarity thresh-
old are in a [0,1] range [5]; therefore, the closer the value
returned by f is to 1, the more similar such images are.
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Often, the solutions used to define δ are based on
specialist-developed templates for specific searches,
aimed at representing the entire collection. For each
search, templates compute precision, recall and F1 val-
ues, considering different δ values. In this case, δ values
maximizing F1 measurements for the highest number of
searches are selected and fed to the information retrieval
system. Setting the δ value in this fashion is laborious,
making it unfeasible in most cases (mainly because of the
need to know the entire collection).
Considering, for example, Fig. 1a, b, c, d displays

the results of analysis of four separate (content-based
retrieval) searches per image with the SAPTE system
(a content-based multimedia information retrieval sys-
tem [11, 12] (FLA Conceição, FLC Pádua, ACM Pereira,
GT Assis, GD Silva, AAB Andrade: Semiodiscursive
Analysis of TV Newscasts based on Data Mining and
Image Pre-processing, to appear). For each image anal-
ysis result (Fig. 1a, b, c, d), corresponding F1 values
are determined for different similarity threshold values.
Here, the searched images are part of templates specifi-
cally designed to evaluate the system’s performance; such
images consist of key frames extracted from Rede Minas
TV videos, present in SAPTE.
Figure 1a, b, c, d shows that to obtain the largest F1 value

for a given search, a distinct δ value should also be consid-
ered for producing the best results. Therefore, automatic
online setting of a δ value increases search effectiveness.
To automatically estimate δ in online applications, this

study advocates the use of a metric based on internal cri-
teria, possible to calculate without human intervention, as
opposed to F1 calculation tied to external criteria and thus
impossible to automate. Suchmetric is the silhouette coef-
ficient [13] used to evaluate image clusters returning val-
ues within a [−1 . . . 1] interval (better clusters presenting
values closer to 1).
Our approach with automatic and online estimation of

the objective similarity threshold through a dynamic sim-
ilarity threshold value associated to individual searches
enhances the efficiency of content-based visual infor-
mation retrieval. More efficient automatic information
retrieval (without human intervention) contributes to
generate specific web page repositories, along with
improved information retrieval system feedback to users.
An example of improved search feedback to users is pro-

vided by SAPTE systems, as shown in Fig. 2a, b. These
respectively represent the response of SAPTE to a given
search using δ = 0.83 (expert defined) and δ = 0.86 (esti-
mated by this study’s approach). In Fig. 2a, the definition
of a fixed threshold reached 0.53 in terms of F1 for a spe-
cific search, whereas this study’s proposal F1 reached a
more efficient 0.89 (Fig. 2b).
The main contribution of the present work consists

in to present and validate a new effective and efficient

Fig. 1 F1 values obtained in searches extracted from a CAPTE
collection template considering different δ values
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Fig. 2 Results returned by a search held with a fixed δ (expert-defined) and a dynamic δ (estimated automatically)

approach, named automatic setting similarity threshold
(ASTS), to automatically estimate similarity thresholds
in content-based visual information retrieval (CBVIR)
problems. As far as we know, this is the first work in
the literature to propose a simple and successful solu-
tion for such a problem, which is specially challenging
in online applications. We claim that ASTS represents
a promising alternative to the current solutions, which
are commonly based on specialist-developed templates.
Unfortunately, the threshold setting processes of those
solutions are prone to human error and demand on sig-
nificant time and financial costs. Moreover, even though
the aforementioned templates are computed by consid-
ering only subsets of specific searches, their application
is extended to searches involving the entire dataset, what
frequently produces unsatisfactory results to end-users.
Unlike those solutions, ASTS is capable to automatically
and online estimate similarity thresholds associated to
individual searches, enhancing the effectiveness and the
efficiency of CBVIR processes.
This paper is organized as follows: Section 2 presents

related work. Section 3 presents and discusses our pro-
posed approach. Section 4 presents experimental results.
Section 5 shows final considerations and future work.

2 Related work
Among studies aimed at improving content-based visual
information retrieval systems, this one particularly
addresses effectiveness improvement (i.e. system’s quality
improvements through search, setting the automatic and
online similarity threshold to be adopted).
Previous works outlined (aimed at improving such sys-

tems) address the development of techniques solving

several related problems, namely the description mode of
images contained in the system [2, 14–16], selection of the
best similarity function [4, 17–19], creation of user pro-
files [20], machine learning, task clustering and indexing,
stochastic algorithms [3, 20–26] and similarity threshold
estimation [5–7, 9, 27, 28], the latter being the problem
addressed in this paper.
For instance, in [3], the authors present a method

that combines a k-means clustering algorithm with a
B + tree structure to improve system results obtained
through search, returning only images of the closest clus-
ters. Another study [22] aims at improved search results.
Here, we combine an evolutionary stochastic algorithm
(particle swarm optimization) with feedback relevance
to understand, by iterative learning, the most relevant
features to users and then properly consider the image
feature descriptors according to what was learned dur-
ing the interaction with the user. In a previous study
[21], a two-stepped recovery of multimedia information
was developed, with content-based visual information
retrieval being performed only in the second stage. The
first step consists of searching the collection for a top-
K cluster, and only after this, the cluster formation was
compared by content-based visual information retrieval.
Content-based visual information retrieval occurs on a
reduced cluster of the collection, thus enhancing recovery
efficiency.
Based on collection samples, a semi-automatic

approach for the estimation of recall and precision val-
ues for various similarity thresholds minimizes efforts
involved by static similarity threshold definitions [28, 29].
It requires expert input only where the number of distinct
objects contained in each sample is concerned and uses
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two techniques to reduce human interaction, namely
(i) sample use and (ii) similarity cluster process. Hence,
the formed groups are used for automatic calculation of
recall and precision then that resultant groups contain
only objects that represent singular real objects. These
clusters identify relevant objects so that when a particular
object cluster is used for search, all its remaining objects
are labeled relevant. Consequently, this approach gener-
ates a table of estimated recall and precision values from
which it becomes possible to determine the appropriate
similarity threshold for the application. Despite signifi-
cantly reducing heavy expert reliance (usual in classical
approaches), the proposed approach depends on special-
ist intervention to indicate the number of distinct objects
contained in each sample. This limits the size of gener-
ated samples and reduces the number of distinct objects,
making it possible for specialists to quantify them.
A new approach [5] combines two strategies to elimi-

nate human intervention [28, 29], during the recall and
precision values estimation process. They are (i) use of
agglomerative hierarchical clustering algorithms and (ii)
use of the silhouette coefficient for cluster evaluation.
The first form clusters from different similarity thresholds
without notifying the number of groups to be gener-
ated. Those are evaluated by the silhouette coefficient
selecting the cluster with the highest silhouette coeffi-
cient value. Expert dependency is thus eliminated from
the estimation process of the best similarity threshold and
similarity function. This process is based on the premise
that selected clusters (according to the validation of the
clustering process) properly partition examined objects,
meaning that each group represents only one real object.
This premise, for example, was very important for the
high linear correlation between the silhouette coefficient
and F1 formally recorded in [5]. In expert-prepared tem-
plates used for recall and precision calculation, subjective
external criteria may come into play. The absence of such
information during the silhouette coefficient calculation
potentially affects the linear correlation between this and
F1 values.
In another study [5], the authors obtained relevant

results by eliminating human intervention during the esti-
mation of static similarity thresholds used by the sys-
tem. However, the resultant information was used only as
metadata for future similar applications, given the high
computational cost of calculating silhouette coefficients,
various different clusters and similarity functions for the
entire collection (which excludes it from the dynamic def-
inition of similarity thresholds). Despite being defined
automatically, similarity threshold values remain used as
a static similarity threshold, set and fixed for a given
application. However, given that different searches may
require different similarity threshold values, the definition
of a single value for the latter ultimately compromises the

efficiency of searches. Another relevant question regard-
ing the use of a single similarity threshold value is that it
may lose quality with the addition of new objects to the
collection.
Unlike the previous methods, this work proposes an

automatic and online approach, named automatic set-
ting similarity threshold (ASTS), capable of estimating
the most suitable similarity threshold value in accordance
with the silhouette coefficient for individual searches,
without any previous knowledge of the collection. The
silhouette coefficient, originally proposed in [13] for inter-
pretation and validation of consistency within general
clusters of data, is used as a simple quality measure of
the clustering step of ASTS, allowing the automatic esti-
mation of similarity thresholds associated to individual
searches. Note that the silhouette coefficient is an inter-
nal evaluation measure [30], which does not require an
evaluated dataset, i.e. it does not require matching data
instances to be known. As a result, our approach does not
require human intervention.

3 Proposed approach
When using information retrieval systems, users expect
to obtain a set of images somewhat connected with the
searched object. Thus, provided answers should match
the best image cluster present in the collection (collection
images similar to the query). A previous study [13] indi-
cates that a silhouette coefficient is a good cluster quality
indicator, suggesting that this metric leads to a good F1
value if a good answer is obtained for any given search.
Figure 3 shows the proposed approach for automatic

online setting of similarity thresholds. It can be described
as follows: during searches, an input image supplied to the
search system goes through a preprocessing (module 1)
responsible for extracting the image’s signature. A search
and comparison (module 2) then analyzes the image sig-
natures stored in the repository (database) and compares
them with the desired image using a similarity function.
Importantly, the visual signatures of images are based

on color, shape and texture information and are estimated
by using the method proposed in [12]. In that work, the
authors address the development of a unified approach
to content-based indexing and retrieval of digital videos
from television archives and estimate visual signatures to
represent key frames of video recordings. More specifi-
cally, by using the method described in [12], we compute
a visual signature for each image involved in our problem,
containing 79 components (54 refer to color, 18 refer to
texture and 7 refer to shape positions).
To ensure good recall, a low similarity threshold value

(δ ≈ 0) is initially considered. When obtaining the result
of the search and comparison module (possibly with high
recall), the cluster of returned images is refined to increase
the response’s accuracy. Such refinement regroups the
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Fig. 3 Overview of the proposed approach

cluster of images initially returned by the search and com-
parison module into two clusters: (i) similar and (ii) dis-
similar images to the query image. This step is executed by
the similarity threshold automatic setting (module 3). The
grouping is based on different similarity threshold values
(δ0, . . . , δi−1, δi, δi+1, . . . , δn), where the group of similar
images contains objects with a degree of similarity greater
than the δi similarity threshold value and the dissimilar
images contain the remaining ones. Each δi is thus asso-
ciated with a cluster evaluated by a silhouette coefficient
(γ ). The latter is associated with its corresponding δi. Each
δi associated with a cluster is hereby also associated with
a γi (γ0, . . . , γi−1, γi, γi+1, . . . , γn). Finally, users receive a

group of similar images (module 4) tied to the largest
γi value and to a more appropriate similarity threshold.
In other words, it is a cluster of similar images match-
ing the group that obtained the best silhouette coefficient
evaluation.
Algorithm 1 generically describes the proposed

approach steps to such an extent that it encompasses
implementations ranging from deterministic algorithms
such as ASTS proposed in this study and presented in
Section 3.2. The proposed approach does not previously
establish a stop condition, in a way that such a condi-
tion is set according to the implementation and what is
expected of the application being used.
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Algorithm 1: Proposed approach
Input: query image iq, silimilarity threshold δ ≈ 0
Output: Sub-cluster of similar images (Cm) associated

with the best δ

1 Search of iq with a δ collection similarity threshold;
2 Response set I from the system;
repeat

3 Generate new δ value;
4 Regroup I according to δ in a sub-cluster of similar

images (Cm) and dissimilar images sub-cluster (Ct);
5 Evaluate Cm and Ct generated from δ, to obtain the

γ related to this evaluation;
until a stop criterion is achieved;

6 Return a sub-cluster of similar images (Cm) associated
with the hightest γ value;

This section is arranged as follows. In Section 3.1, we
present the complexity analysis of the proposed approach.
In Section 3.2, we present the ASTS algorithm, which is
used to define the similarity threshold.

3.1 Complexity analysis
Once the silhouette coefficient is calculated for different
pairs (δ, [Cm,Ct]), its computational cost is determined
considering that the proposal tries to solve the problem
online. The computational cost of the similarity thresh-
old setting strategy uses a silhouette coefficient function
to select the best answer. Algorithm 1 acts as the basis
for this strategy cost calculation since it presents the
proposed approach.
The operations related to distance calculation between

vectors are used here as a metric to determine the com-
putational cost of silhouette coefficients, adopting the for-
mula used to calculate computational costs, as defined in
[13]. The cohesion’s computational cost is given byO(nm−
1), where nm is the amount of images in a Cm cluster,
and the computational cost of separation is O

(∑K
j=1 n

j
t

)
,

where K is the number of groups of dissimilar images (Ct)
and nt is the number of images in each group Cj

t . The
amount of clusters for the proposed approach is always
two (one of similar images and other of dissimilar images
to the query image). The result (K = 1) thus reduces
the separation computational cost toO(nt). The silhouette
coefficient calculation cost for a single object isO(nm−1+
nt); the silhouette coefficient calculation cost for cluster
equals O

(
n2m − nm + nt

)
. The total computational cost is

O
(
n2m

)
for each cluster silhouette coefficient calculation.

The computational silhouette coefficient is therefore dic-
tated by the quantity of images in Cm: the more images
in a group, the higher is the computational cost of its
silhouette coefficient calculation.

The computational cost of the proposed approach is
defined by the number of times the silhouette coefficient
calculation is performed. If N equals the number of times
a silhouette coefficient is calculated to define the similar-
ity threshold, the proposed approach cost is O

(
N × n2m

)
.

Thus, our proposed algorithm presents constant run-
ning time (apart from silhouette coefficient computation,
which presents squared complexity).
Once the computational cost of the silhouette coeffi-

cient and the used similarity threshold setting strategy
is known, adjustments can be made to achieve a better
balance between runtime and effectiveness.

3.2 ASTS algorithm
The ASTS algorithm is a deterministic algorithm designed
for automatic setting of similarity thresholds on the basis
of a greedy paradigm. It consists of the heuristic used
to estimate the best similarity threshold used in image
searches (module 3 in Fig. 3). The ASTS is based on two
steps: first, different similarity thresholds are explored to
evaluate the quality of each one; second, the thresholds
close to the best similarity threshold found by step 1 are
exploited.
ASTS implementation requires establishing the follow-

ing variables: l′ and l′′ – are the lower and upper limits for
δ, respectively; α is the increment value of l′ to l′′, which
generates δ values having the initial exploration function
(δ1, . . . , δi−1, δi, δi+1, . . . , δn), and α < (l′′ − l′); β evalu-
ates the answers closer to the best solution found until
then (with β < α). The operation performed with the aid
of β values is made through increases and decreases of
the δ value associated with the best solution. Algorithm 2
details the ASTS operation.
According to Algorithm 2, once input variables (l′, l′′,

α, β) are defined and a set of answers (I) is obtained via
an information retrieval system, Eq. 1 generates δ values
contained within an l′ to l′′ range (line 1). A cluster is
made from each δ value (δ1, . . . , δi−1, δi, δi+1, . . . , δn) gen-
erated by Eq. 1 so that for each δi, there is a cluster
(Cδi

m,Cδi
t ) (line 3). For each cluster (Cδi

m,Cδi
t ) generated by

δi, a silhouette coefficient (γδi ) associated with the clus-
ter is calculated reflecting its quality (line 4). This cluster
generator method and respective silhouette coefficient
evaluation is repeated for all δ values generated in Eq. 1
(line 2).
Once all solutions generated for the initial operation

are evaluated, the solution with the highest γδi value
is selected to ensure that it is the best one. The solu-
tion is then stored in two clusters with two variables((

δ+
better, γ

+
better

)
,
(
δ−
better, γ

−
better

))
upon which improve-

ment is refined by increases and decreases (line 5). Thus,
the refining process of

(
δ+
better, γ

+
better

)
is accomplished by

increases and decreases in β values to the same β value in(
δ−
better, γ

−
better

)
.
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Algorithm 2: ASTS
Input: I, l′, l′′, α, β
Output: R

1 generation of the initial δ values for exploration of the
search space:

δi =
⎧⎨
⎩
l′ se i = 1,
δi−1 + α se 1 < i < n,
l′′ se i = n

n = l′′ − l′

α
+ 1 (1)

/* Creation of clusters for each
threshold generated by Eq. 1,
being evaluated by the silhouette
coefficient */

2 for todo δi do
3 reassembles the answer set I, acording to δi, into

two subgroups Cδi
m and Cδi

t ;
4 compute the silhouette coefficient γδi to get Cδi

m e
Cδi
t ;

end
5 selects δi associated with the highest γδi , assigning it to

δ+
better and γ +

better ; the same values are assigned to δ−
better

and γ −
better ;

/* Refinement of the best similarity
threshold found earlier and
defined in δ+

better and γ +
betterthrough β

increases */
6 repeat
7 δx = δ+

melhor + β ;
8 reassembles the answer set I according to δx into

two subgroups Cδx
m and Cδx

t ;
9 compute silhouette coefficient γδx to obtain Cδx

m

and Cδx
t ;

10 the γ +
better value is replaced by γδx if γδx > γ +

better ;
until (γ +

better ≤ γδx ) or (δ
+
better − α ≤ δx ≤ δ+

better + α) or
(l′ ≤ δx ≤ l′′);
/* Refinement of the previous best

similarity threshold and defined
by δ−

better and γ −
better by β decreases */

11 repeat
12 δx = δ−

better − β ;
13 reassembles the answer set I according to δx into

two subgroups Cδx
m and Cδx

t ;
14 compute silhouette coefficient γδx forC

δx
m andCδx

t ;
15 γ −

better is replaced by γδx if γδx > γ −
better ;

until (γ −
better ≤ γδx ) or (δ

−
better − α ≤ δx ≤ δ−

better + α) or
(l′ ≤ δx ≤ l′′);

16 Assigns R to the Cm cluster associated with the
greatest value between γ +

better and γ −
better ;

With the best current solution selected, δ values are
increased and decreased through β . These produce new δx
similarity thresholds, which in turn generate new clusters
that are evaluated and related to γδx values (lines 7, 8, 9, 12,
13, and 14). This procedure is repeated until a certain δx
similarity threshold produces a γδx worse than that of the
current best solution, i.e. γ +

better > γx e γ −
better > γx or until

a limit value is reached:
(
δ+
better − α ≤ δx ≤ δ+

better + α
)
e(

δ−
better − α ≤ δx ≤ δ−

better + α
)
or (l′ ≤ δx ≤ l′′) (lines 6

and 11). When a better solution is found, it replaces the
current best (rows 10 and 15). Identical in their logic, both
second and third operations repeat Algorithm 2 blocks
(lines 6 and 11, respectively); while the first explores
solutions close to the best current solution by similarity
threshold increases, the second does so with decreases in
the same value.
After finishing exploring solutions close to the initially

selected better similarity threshold, Algorithm 2 returns
to users a cluster of similar images associated with the
highest value of γ – in range γ +

better and γ −
better.

4 Experimental results
To better present experimental results, this section is
divided into four subsections. Section 4.1 describes exper-
imental planning. Section 4.3 details the baselines used for
performance comparison. Section 4.4 analyzes the linear
correlation between F1 and silhouette coefficient metrics.
Finally, Section 4.5 presents experimental results obtained
by the proposed approach, comparing them against those
of the defined baseline.

4.1 Experiment planning
The first experimental step was to select and organize the
templates of three collections: “CAPTE” [11, 12], “Corel”
[31] and “The INRIA Holidays dataset” [32].
The “CAPTE” collection consists of a set of 575 key

frames extracted from 90 video blocks found on 11 TV
shows aired on Rede Minas television channel [12]. The
CAPTE collection is mainly composed of face images
from the mentioned TV shows. The “Corel” collection
consists of approximately 10,000 general purpose images,
which are then reduced to 202 and distributed among
32 similar images classes manually labeled by researchers
[31] (the template that was used in this study). “The INRIA
Holidays dataset” collection [32] consists of 1491 gen-
eral images separated into 316 semantically similar image
classes.
With the collections and respective templates defined

and ready to be used, its images were processed, generat-
ing a database of image signatures for each one of them.
A previously described method [12] was used to estimate
images signatures (module 3 in Fig. 3).
To calculate image similarity, five functions were ana-

lyzed to assess the similarity function with best F1
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results, namely cosine of the θ angle, Manhattan dis-
tance, Euclidean distance, Pearson correlation coefficient
and histogram intersection. These similarity functions
were chosen because for their low computational cost and
workability of the image signatures used.

4.2 Evaluation metric
We use a standard evaluation metric in information
retrieval literature: f -measure (F1). This metric is defined
in terms of precision (P) and recall (R). Precision is
the ratio of the number of correctly returned images
to the total number of returned images. Recall is the
ratio of the number of correctly returned images to the
total number of images that should be returned accord-
ing to ground truth information. Finally, F1 measure is
defined as the harmonic mean of precision and recall, as
given by

F1 = 2 × P × R
P + R

4.3 Baselines
Following, we detail each baseline used for performance
comparison.

4.3.1 Threshold impact on performance
With the collections, the image description and the sim-
ilarity functions established for each pair [template of a
collection/similarity function], we calculated the F1 val-
ues associated with different values of similarity threshold.
This threshold was expanded from zero to one, by 0.01
increments.
Hence, it was possible to determine which similarity

threshold leads to higher F1 (optimal δbest) for a given
search using a specific similarity function. The optimal δ

can thus be formally defined in Eq. 2:

δbest = argmax
(
F1gk ,fδi

)
, (2)

where gk represents the template related to a particular
collection search k, f is the similarity function used and δi,
for i = 1, . . . , n represents the similarity threshold consid-
ered. The optimal delta represents the value of similarity
threshold associated with the highest F1 in a given search
k for a specific collection when using similarity functions
f. It is expected that optimal δ values close to the automat-
ically set similarity threshold proposed (δγ ) produce more
effective results.
Figure 4a, b, c presents the cumulative F1 sum reached

by each pair [collection/similarity function] for all tested
δ values, representing “CAPTE”, “The INRIA Holidays
dataset” and “Corel” collections, respectively.
Figure 4a, b, c also shows that a unique similarity

threshold value does not guarantee optimumperformance

Fig. 4 Curve of the cumulative F1 sum for each pair [f, δ]: similarity
function f ; similarity threshold considered δ

in a content-based visual information retrieval system.
However, it can produce satisfactory results if well
defined. Through these figures, it is possible to determine
similarity thresholds for each similarity function, leading
to the system’s greatest cumulative F1 sum. These simi-
larity thresholds (fixed δ) form the baseline, as presented
in Table 1. Cumulative F1 sum values for each fixed δ are
used to compare and validate the results achieved with the
approach proposed hereby (Table 2).
From Table 2, we observe that the best F1 values for

all collections is given by the similarity function based on
the Manhattan’s distance, excepting “Corel benchmark”
collection.



Bessas et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:32 Page 9 of 16

Table 1 Fixed δ values defined for each pair [collection/similarity
function]

f CAPTE INRIA Corel

Cosine of the θ angle 0.82 0.96 0.85

Pearson correlation coefficient 0.88 0.97 0.91

Histogram intersection 0.78 0.98 0.69

Euclidean distance 0.40 0.72 0.45

Manhattan distance 0.56 0.70 0.40

4.3.2 k-means analysis
Given that our proposed approach is based on cluster-
ing similar images, we investigate the performance of
k-means algorithm [33] retrieving relevant images. The k-
means algorithm is a classical method for clustering. Here,
we represent images by their descriptors and vary the
number of clusters (i.e. the k parameter) to evaluate the
performance of k-means when compared to our proposed
approach.
Specifically, we start by finding an initial set of images

by conducting a query over the whole dataset. Hence,
this set is used as input to k-means and a given number
of expected clusters (i.e. k parameter). Finally, given the
returned clusters found by k-means, we return to the user
the cluster of images that have the highest average simi-
larity value among the images within the cluster and the
input image (i.e. the one used as query).
In Table 3, we present the results of cumulative F1 mea-

sure with distinct k values. The best results obtained by
k-means refer to “Corel” datasets, which is also the best
results for our approach (i.e. ASTS) when considering k
equals to 4 and 8. For all tested k values, the proposed
approach presents better results than the strong baseline,
i.e. the k-means algorithm.
Moreover, the experiments show that as we increase the

values of k, the performance of the k-means algorithm
also increases. We believe that this happens because as
we increase the number of clusters, the precision also
increases. Another possibility is that precision increases
but recall decreases, which is a well known trade-off in
information retrieval literature. We avoid this by limiting
the number of generated clusters to avoid empty empty
groups of images.

Table 2 Cumulative F1 sum for each pair [collection/similarity
function] for fixed δ values set (Table 1)

f CAPTE INRIA Corel

Cosine of the θ angle 31.73 211.96 20.68

Pearson correlation coefficient 29.55 207.22 19.65

Histogram intersection 39.18 134.87 21.97

Euclidean distance 31.73 211.10 20.57

Manhattan distance 39.18 216.90 21.92

Table 3 Cumulative F1 sum for k-means algorithm with distinct
k values

k CAPTE INRIA Corel

k = 2 3.9492 6.0073 9.2071

k = 4 5.6523 9.6352 14.1657

k = 8 - 13.6408 18.3246

We also compare the performance of k-means algorithm
and our proposed approach. For this comparison, we used
the cumulative F1 measure and the Euclidean distance as
similarity metric. The results are summarized in Table 4.
We vary the k values for each query for all datasets and
present the mean, standard deviation, absolute F1 values
and the relative gains of our approach over the k-means
algorithm.
The results presented in Table 4 show that the per-

formance of our ASTS algorithm is mostly higher than
the performance of the k-means baseline. A different
behavior is observed for the “Corel” dataset when con-
sidering k = 4 and k = 8. Note that the performance
of the k-means algorithm is worst than the performance
of our approach when using fixed δ. We observe that our
approach presents a better performance than the tested
baseline. Besides the lower performance of k-means, it
has a disadvantage that the number of clusters needs to
be specified beforehand. This can be difficult for large
datasets and, as shown in experiments, has consider-
able impact on the method’s performance. Contrarily, the
proposed ASTS algorithm avoids this problem, which rep-
resents an advantage for researchers and practitioners.
Finally, we observe that even when keeping fixed values
for δ the proposed ASTS algorithm has a higher perfor-
mance than k-means algorithm for datasets “CAPTE” and
“The INRIA Holidays dataset”.

4.4 Linear correlation
A high linear correlation between F1 and silhouette coef-
ficients ensures quality in this approach’s estimations.
Therefore, for each collection searched, linear correlation
between these metrics was calculated. For all collections,
observations revealed both high and low/almost non-
linear correlation between the metrics. Only the “Corel”
collection obtained results where the linear correlation
was less than zero.
However, a good linear correlation between these met-

rics is not always guaranteed because F1 calculations
consider external criteria absent during the silhouette
coefficient calculation (which works with internal cri-
teria). To calculate F1, specialists may include subjec-
tive criteria for deciding on similarity or dissimilarity of
search-returned images: criteria missing on the charac-
teristics described by the images signatures that directly
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Table 4 Cumulative F1 sum reached by ASTS and k-means for each k value

CAPTE

k value F1 mean Standard deviation Cumulative F1 sum by k-means Cumulative F1 sum k-means relative to δγ

2 0.0658 0.0669 3.9492 13.18 %

4 0.0942 0.1014 5.6523 18.86 %

The INRIA Holidays dataset

k value F1 mean Standard deviation Cumulative F1 sum by k-means Cumulative F1 sum k-means relative to δγ

2 0.0190 0.0429 6.0073 3.3 %

4 0.0304 0.0728 9.6352 5.3 %

8 0.0431 0.1125 13.5408 7.5 %

Corel benchmark

k value F1 mean Standard deviation Cumulative F1 sum by k-means Cumulative F1 sum k-means relative to δγ

2 0.2877 0.2474 9.2071 86.92 %

4 0.4426 0.3378 14.1657 133.73 %

8 0.5726 0.3562 18.3246 172.99 %

affect cluster evaluation through silhouette coefficient cal-
culation. Therefore, a higher or lower linear correlation
between F1 and silhouette coefficient may be obtained for
different templates of the same collection.
Figure 5a, b, c1 maps the linear correlation between such

metrics for each search of the “CAPTE”, “Corel” and “The
INRIA Holidays dataset” collections. The “CAPTE” col-
lection template reveals that 63 % of the searches achieved
a linear correlation above 70 %, with an average linear
correlation of 54 %. In total, 80 % of the “The INRIA
Holidays dataset” templates queries reached a linear cor-
relation above 70 %, with an average linear correlation of
78 %. The “Corel” template results were not as good as the
first two: only 12 % of the searches attained linear correla-
tion results above 70 %, with an average linear correlation
of only 5 %.
As previously stated, a satisfactory linear correlation

between F1 and silhouette coefficients is not always possi-
ble. However, the linear correlation between these metrics
may improve: the closer the decision criteria on the simi-
larity between images is to that used by experts and by the
system, the better the linear correlation between F1 and
the silhouette coefficient is. Thus, according to the results
obtained in this subsection, a lower efficacy is expected for
the “Corel” collection when using the proposed approach.

4.5 Proposed approach evaluation
To evaluate the proposed approach, the ASTS algorithm
was implemented and executed for the three collections

and for five defined similarity functions. The evaluation of
the retrieval process is the same for all datasets. The input
query image is randomly chosen from a given cluster and
the ground truth data are the other images that compose
the given cluster. The aim is having as high as possible
values for precision and recall, which leads to high F1
values.
In [5], the authors conducted a set of experiments to

evaluate the correlation between F1 and silhouette coef-
ficient metrics, using four similarity functions on six
datasets. These experiments demonstrated that, when the
silhouette coefficient is highly correlated with the F1, the
similarity threshold value that maximizes the F1, on a
pair dataset/similarity function, also maximizes the sil-
houette coefficient. Based on this result, we can say that
a high linear correlation between F1 and silhouette coeffi-
cientmetrics ensures efficiency in our proposed approach.
Therefore, for each collection searched, linear correlation
between these metrics was calculated. For all collections,
observations revealed both high and low/almost non-
linear correlation between the metrics. Only the “Corel”
collection obtained results where the linear correlation
was less than zero.
ASTS automatically estimated similarity thresholds for

each search with a different similarity threshold (δγ ) set
for each of those. Figure 6a, b, c shows this value and
an optimal δ. We therefore used the Manhattan distance
similarity function f, which performed better with fixed δ

(Table 2).
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Fig. 5 Linear correlation between F1 and the silhouette coefficient for
each template

Figure 6a, b shows that ASTS could estimate similarity
thresholds (δγ ) close to δ optimal values. Such behavior
often leads to high F1 values. Figure 6c shows that most of
ASTS searches estimated δγ values distant from optimal
δ (given the linear correlation observed in this collection;
see Section 4.4).
To assess result quality of the proposed approach, we

compared our cumulative F1 sums with those attained by
expert-set fixed similarity thresholds (baseline). Table 5
shows the cumulative F1 sum reached by ASTS, by
similarity function used, considering all searches of the
same collection. Table 2 presents the ASTS performance
achieved by the baseline, in which we present F1 mean,
F1 standard deviation, cumulative F1 for k-means and
cumulative F1 for k-means relative to a fixed delta.
Table 5 shows the collections where ASTS achieved

the best results (“CAPTE” and “The INRIA Holidays”
dataset). In the “CAPTE” collection, all ASTS-evaluated
similarity functions achieved performances greater than
70 % when compared with a cumulative F1 sum for a
fixed similarity threshold. In addition, in two other cases,
the sums resemble those obtained with a fixed similarity
threshold (99.5 and 94.4 %). “The INRIAHolidays dataset”
collection also obtained good results, except for the sim-
ilarity histogram intersection function, which achieved
only 55.2 % of what was achieved with this same func-
tion when using a fixed similarity threshold. However,
the remaining collection reveals performances superior to
60 %: two cases stood out with 86.0 % (for Euclidean dis-
tance) and 83.3 % (for Manhattan distance). Only one case
of the “Corel” collection achieved a performance superior
to 70 %.
The greatest contribution of this study is the achieve-

ment of automatic results, without specialist input,
matching the best results attained by expert-defined sim-
ilarity thresholds (baseline), for a given collection. Other
advantages of the proposed approach are as follows:
(i) scalability, (ii) resistance to changes in image con-
tent, (iii) change in the similarity function, (iv) inser-
tion and removal of new images in the collection, and
(v) no previous knowledge of the collection. Further-
more, the approach proposed hereby has the poten-
tial to achieve results superior to those obtained via
fixed similarity thresholds (because the dynamic set-
ting of a suitable value for this threshold increases
result effectiveness). Improvement of the linear correla-
tion between F1 and silhouette coefficients is required
though. As described above, expert F1 calculation pre-
supposes a template of desired queries, separating simi-
lar from dissimilar images. The criteria considered when
determining image similarity or dissimilarity depends on
experts. Silhouette coefficient calculation groups images
according to certain thresholds and similarity functions
with the similarity calculation performed on the image
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Fig. 6 δγ , δ fixed and δ optimal values with the Manhattan distance similarity function

signature. Therefore, the closer the criterion used by
specialists is to that used for similarity calculation by
similarity functions f, the greater is the linear corre-
lation between these measures and the better results
become.
We also investigate the computational costs per query.

The experiments were implemented in MATLAB and run
on a Intel Core i7 2.1 GHzwith 32 GB ofmemory. In Fig. 7,
we show the running time for each query as well as the
average for the CAPTE dataset2. As we can see, there is
variation on running time for each query.

4.6 Parameter sensitivity
In this section, we investigate the impacts of different
parameter settings on the overall performance of our
method. First, we discuss the sensitivity of the α param-
eter, which refers to the number of initial solutions to be
searched in the first step of our algorithm. Hence, we dis-
cuss the sensitivity of the β parameter, which refers to the
number of answers closer to the best solution found at a
given interaction.
Effect of α with fixed β . In Fig. 8, we present the resulting

performance costs of our ASTS algorithm when varying α
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Table 5 Cumulative F1 sum reached by ASTS for each similarity function

CAPTE

f Mean Standard deviation Cumulative F1 sum δγ compared to δfixo

Cosine of the θ angle 0.5263 0.3578 31.58 99.5 %

Pearson correlation coefficient 0.3591 0.3840 21.55 72.9 %

Histogram intersection 0.5244 0.3196 31.47 80.3 %

Euclidean distance 0.4995 0.3319 29.97 94.4 %

Manhattan distance 0.4913 0.3047 29.48 75.2 %

The INRIA Holidays dataset

f Mean Standard deviation Cumulative F1 sum δγ compared to δfixo

Cosine of the θ angle 0.5218 0.2330 164.90 77.8 %

Pearson correlation coefficient 0.4134 0.2923 130.64 63.0 %

Histogram intersection 0.2358 0.2262 74.54 55.2 %

Euclidean distance 0.5742 0.1498 181.47 86.0 %

Manhattan distance 0.5718 0.1467 180.70 83.3 %

Corel benchmark

f Mean Standard deviation Cumulative F1 sum δγ compared to δfixo

Cosine of the θ angle 0.3751 0.2078 12.00 58.0 %

Pearson correlation coeficcient 0.4520 0.2293 14.46 73.6 %

Histogram intersection 0.3318 0.1423 10.62 48.3 %

Euclidean distance 0.3310 0.1406 10.59 51.5 %

Manhattan distance 0.3310 0.1406 10.59 48.3 %

parameter. As we increase the α values from 0.1, the com-
putational costs also increase, because we are considering
more candidate solutions.
Effect of α and β combinations. In Fig. 9, we investi-

gate how different combinations of α and β parameters
affect computational performance of our ASTS algorithm.
When decreasing values of β leads to more computational
costs because we are considering a larger solution space.
The opposite is also valid, i.e. increasing β values leads to
less computational costs because we are considering more
restricted regions in solution space.

5 Conclusions
The main challenge of this study is the dynamic and auto-
matic setting of an appropriate similarity threshold value
to be used in searches of content-based visual informa-
tion retrieval systems. To accomplish this, we proposed
an approach using a metric silhouette coefficient in which
basic principles were implemented through an ASTS algo-
rithm (also adopted here).
Performed tests revealed promising ASTS results. For

example, the “CAPTE” and “The INRIA Holidays dataset”
collections (with the greatest number of images) showed

performance close to 100 %, obtained automatically (with
cumulative F1 sums of the proposed approach compared
with the baseline cumulative F1 sum). Notably, however,
the templates of each collection contained semantically
similar images (simple image signature techniques com-
bined with similarity functions appropriate to this type of
signature), thus producing good results. The techniques
used on the “Corel” collection were not sufficient for the
image descriptors to properly represent the characteristics
that determine image resemblance, thus being irrelevant
to the proposed approach.
In general, our approach achieved good results, often

reaching high performances very close to those achieved
by fixed specialist set similarity thresholds. Such results
encourage the continuation of this work, to solve a ques-
tion that significantly enhances the quality of content-
based visual information retrieval systems.
We believe that pairing more robust image signa-

tures with appropriate similarity functions to compare
the first will lead to better results and a more efficient
approach. The computational cost of signature calcula-
tion and comparison must be accounted for in proposals
seeking to automatically determine similarity thresholds
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Fig. 7 Computational costs per query for CAPTE dataset

online. Image signatures used hereby are classic models.
They work with global characteristic descriptors, describ-
ing images with a single vector (with low computational
cost for both signature calculation and for its comparison
through similarity functions). However, such signatures

may not be so effective to describe image signatures work-
ing with local features. On the other hand, signature
calculation on the basis of local characteristics and the
calculation of its similarity (comparison of a set of vec-
tors rather than a single vector) have high computational

Fig. 8 Computational costs of ASTS algorithm varying α parameter with β parameter equals to 0.01
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Fig. 9 Computational costs of ASTS algorithm varying α and β parameters

cost, particularly when compared to techniques working
with global characteristics. It is therefore necessary to pre-
vent silhouette coefficient computational cost increases,
rendering the proposed approach unfeasible.
As future work, we plan to investigate better image rep-

resentation as well as appropriate similarity functions to
compare their signatures. Such way of representation and
comparison directly impacts this proposal’s effectiveness
and efficiency. A balance between these two characteris-
tics (or the predominance of one over the other) depends
on what is expected of the system to which the proposed
approach is applied. The improvement of such techniques
aims to produce high linear correlation between silhou-
ette coefficients and F1s, which will help to generate good
results in the information retrieval process.

Endnotes
1Figures concerning the linear correlation for “CAPTE”

and “The INRIA Holidays dataset” collection searches
present only a data sample.

2Since results for Corel and INRIA datasets are similar,
we omit these results.
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