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Abstract

An important characteristic of a cognitive radar is the capability to adjust its transmitted waveform to adapt to the
radar environment. The adaptation of the transmit waveform requires an effective framework to synthesize
waveforms sharing a desired ambiguity function (AF). With the volume-invariant property of AF, the integrated
sidelobe level (ISL) can only be minimized in a certain area on the time delay and Doppler frequency shift plane. In this
paper, we propose a new algorithm for unimodular sequence to minimize the ISL of an AF in a certain area based on
the phase-only conjugate gradient and phase-only Newton’s method. For improving detection performance of a
moving target detecting (MTD) radar system, slow-time ambiguity function (STAF) is defined, and the proposed
algorithm is presented to optimize the range-Doppler response. We also devise a cognitive approach for a MTD radar
by adaptively altering its sidelobe distribution of STAF. At the simulation stage, the performance of the proposed
algorithm is assessed to show their capability to properly shape the AF and STAF of the transmitted waveform.

Keywords: Cognitive radar, Unimodular sequence synthesis, Optimization algorithm, Ambiguity function, Slow-time
ambiguity function

1 Introduction
Cognitive radar (CR) is established by the notion of a cog-
nitive cycle, in which the two key aspects are perception
of the environment and control exercised on the envi-
ronment by virtue of feedback of the information that
was learnt through perception. Figure 1 summarizes the
essence of cognitive radar in its most basic forms. In cog-
nitive radar system, how the transmitted waveform adapts
in response to information about the radar environment is
a key enabling step [1]. Many of the research efforts have
been devoted to radar waveform optimization methods,
which have been developed based on different perfor-
mance objectives. For detecting a particular target in the
presence of additive signal-dependent noise, waveform
optimization method, developed by Guerci [2, 3], is evalu-
ated in terms of the signal-to-interference-plus-noise ratio
(SINR) under a particular model of the system, interfer-
ence, clutter, and targets. For estimating the parameters
of a target from a given ensemble, the radar waveform
should be designed to maximize the mutual information
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(MI) between the received signal and the target ensem-
ble [4]. Besides, exploiting a variety of knowledge sources,
the radar can locate the range-Doppler bins where strong
unwanted returns are predicted and synthesize a wave-
form whose ambiguity function (AF) exhibits low values
in those interfering bins. In the previous work in [5],
the idea of designing the slow-time ambiguity function
(STAF) of the transmit waveform in a CR system has been
discussed.
In radar systems, unimodular (i.e., constant modulus)

sequences are usually exploited and optimized for trans-
mission. The integrated sidelobe level (ISL) of the autocor-
relation function (ACF) is often used to express the good-
ness of the correlation properties of a given sequence. A
transmitted sequence with low ISL value reduces the risk
that the echo signal of the weak target of interest is drawn
in the sidelobes of the strong one or clutter interference
[6]. Additionally, the unimodular sequence has low peak-
to-average power ratio (PAR) which is especially desired
for the transmitter [7]. A lot of literature has been focused
on the topic of unimodular sequence synthesis with good
properties (in particular, the ACF with low ISL values) and
the many references included. These unimodular synthe-
sis methods can be summarized into two types. The first
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Fig. 1 Cognitive radar in its most basic form

is to use some famous sequences, such as the Golomb
sequence [8], Frank sequence [9], and a pseudo random
sequence, which have been proved with low sidelobes and
applied in the radar systems successfully. The second is to
synthesize the sequence with minimized ISLmetric by the
optimization algorithms [10–12]. Because the problem of
reducing the ISL metric may have multiple local min-
ima, the exhaustive search algorithm has been proposed in
[12]. The computational burden of this kind of algorithm
increases significantly as the sequence length increases.
Some optimization algorithms have been designed as the
local minimization algorithms to overcome this default
[13–17]. Most of these algorithms can obtain fast conver-
gence in descent gradient and provide quick solutions. It
is worthwhile to mention that the cyclic algorithms pro-
posed in [13] can design unimodular sequences that have
virtually zero autocorrelation sidelobes in a specified lag
interval and long sequences.
In this paper, wemainly consider the ambiguity function

synthesis problem for unimodular sequences. According
to Woodward’s definition, AF is a two-dimensional func-
tion defined on the time delay andDoppler frequency shift
plane. The AF is defined as follows:

χ(τ , fd) =
∫ ∞

−∞
s(t)s∗(t + τ)ej2π fdtdt, (1)

where τ and fd denote the time delay and Doppler fre-
quency shift, respectively, and s(t) is the radar waveform.
It describes the matched filter response to the target sig-
nature. The shape of AF indicates the range and Doppler
resolutions of the radar system. It also demonstrates the
matched filter output with respect to the interference pro-
duced by unwanted returns. It should come with no sur-
prise that extensive research on AF synthesis exists in the
literature [18–23]. Despite somuch effort on this problem,
fewmethods can synthesize the desired AF successfully. In
[22], the cross ambiguity function was considered instead
of AF. A pair of the waveform and receiving filter was
developed simultaneously. Aubry et al. [23] deal with the
design of phase-coded pulse train, which approximately
maximizes the detection performance. A similarity con-
straint between the ambiguity functions of the devised
waveform and the pulse train encoded with the prefixed
sequence is required. De Maio et al. [5] also discuss the
design problem of phase-coded pulse train. The average

value of the STAF of the transmitted signal over some
range-Doppler bins is minimized with prior information.
Note that the volume of a AF, which is defined as

V =
∫ ∞

−∞

∫ ∞

−∞
|χ(τ , fd)|2dτdfd (2)

is equal to the energy of s(t). The volume-invariant prop-
erty of AF prevents the synthesis of an ideal AF that has a
high narrow peak in the origin and zero sidelobes every-
where else. In this paper, we mainly focus on the synthesis
of an AF that has a clear area close to the origin or mini-
mized ISL in a certain area on the time delay and Doppler
frequency shift plane.
Additionally, it is known that a moving target detect-

ing (MTD) radar system is designed to observe the target
in range-Doppler bins [6]. Its detection performance is
considerably affected by the range-Doppler response of
the waveform used to illuminate the operation environ-
ment. Considering that a MTD radar transmits a burst of
pulses in slow time, the STAF is defined to evaluate the
range-Doppler response.
The main contribution of this paper is as follows:

(1) For optimizing the shape of an AF, the
optimization algorithm is proposed based on the
phase-only conjugate gradient (POCG) and
phase-only Newton’s method (PONM), which have
been successfully applied in optimizing the phased
array radar beam pattern.
(2) We extend the PCA and present an algorithm for
optimizing the shape of STAF.
(3) A cognitive approach for a MTD radar system is
also provided in this work. The radar system can
adaptively alternate its sidelobe distribution of STAF
according to the interested area and clutter
distribution on the time delay and Doppler frequency
shift plane. This scheme is especially attractive for
detecting a target with a small radar cross section
(RCS) in a heavy clutter scenario.

The rest of this work is organized as follows. Section 2
discusses the formulation of the ambiguity function syn-
thesis problem of unimodular sequence, and the optimiza-
tion method based on POCG and PONM are proposed.
Section 3 defines the STAF and extends the optimization
algorithm for optimizing the shape of STAF of a MTD
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radar system. A cognitive workflow is also given. Several
numerical examples are presented in Section 4. Finally,
concluding remarks and directions for future research are
presented in Section 5.

2 Ambiguity function synthesis
2.1 Problem formulation
We consider a monostatic radar that transmits a burst of
pulses. The transmit signal can be written as

s(t) =
N∑
k=1

skpk(t), (3)

where N denotes the number of subpulses, sk is the
sequence code of the kth subpulse, and pk(t) is the
pulse-shaping function. The typical form of pk(t) is
the rectangular pulse and can be expressed as

pk(t) = 1√
tp
rect

( t − (k − 1)tp
tp

)
, (4)

where tp is the time duration of subpulses and

rect(t) =
{
1, 0 ≤ t ≤ 1;
0, elsewhere. (5)

Under the above assumptions, the AF of the transmit
signal s(t) can be given by

χs
(
τ , fd

) =
∫ ∞

−∞
s(t)s∗(t + τ)ej2π fdtdt

=
N∑
k=1

N∑
l=1

sks∗l χ
(k,l)
p

(
τ , fd

)
,

(6)

where

χ(k,l)
p

(
τ , fd

) =
∫

pk(t)p∗
l (t + τ)ej2π fdtdt

= ejπ fd(2k−1)tp · tp − ∣∣τ − (k − l)tp
∣∣

tp

× sinπ fd
(
tp − ∣∣τ − (k − l)tp

∣∣)
π fd

(
tp − ∣∣τ − (k − l)tp

∣∣) ,

(k − l − 1)tp ≤ τ ≤ (k − l + 1)tp

(7)

denotes the cross ambiguity function (CAF) of the pulse-
shaping functions pk(t) and pl(t).
The AF χs(τ , fd) can be rewritten as

χs(τ , fd) = sHR(τ , fd)s, (8)

where s =[ s1, s2, . . . , sN ]T ∈ C
N , CN denotes the complex

N-space, (·)T and (·)H indicate transpose and conjugate
transpose of a vector or matrix, respectively, and

R(τ , fd) =

⎛⎜⎜⎝
χ

(1,1)
p (τ , fd) · · · χ

(1,N)
p (τ , fd)

...
...

χ
(N ,1)
p (τ , fd) · · · χ

(N ,N)
p (τ , fd)

⎞⎟⎟⎠ (9)

is the subpulse CAF matrix, which is fixed once the pulse-
shaping function and the number of subpulses N are
given. Therefore, the shape of the AF χs(τ , fd) is directly
determined by the sequence codes {sk}Nk=1 or the phase
variables {φk}Nk=1 of {sk}Nk=1.
For the convenience of simplification, the time delay and

Doppler frequency shift plane, i.e., τ − fd plane, is dis-
cretized into grids with sufficient precision. The spacing
of the grids is tp in the time-delay axis and 1/(Mtp) in the
Doppler frequency shift axis. By substituing τ = ntp and
fd = m/(Mtp) in Eq. (7), we have

χ(k,l)
p (n,m) =

{
ejπ(2k−1)m/M, k = l + n;
0, elsewhere (10)

and obtain the discretized AF (DAF), which can be
expressed as

χs(n,m) = sHUn,ms, (11)

where Un,m = R
(
ntp,m/(Mtp)

)
.

In this work, we aim at synthesizing the AF with a clear
area close to the origin or minimized ISL in a certain area
on τ − fd plane. Considering that the shape of AF can be
controlled by the shape of DAF, we exploit the ISL metric
of DAF, which is described as

ISL =
∑

(n,m)⊂I�

|χs(n,m)|2, (12)

where I� is the subset of the range and Doppler bins
(ntp,m/Mtp) on τ −fd plane. Additionally, the synthesized
sequence should have constant modulus, i.e.,

sk = ejφk , k = 1, . . . ,N (13)

where φk is the phase of the kth sequence code sk .
Therefore, we can think of synthesizing the unimodular
sequence s as minimizing the ISL metric in Eq. (12) over
the unimodular sequence set.
The ambiguity function synthesis problem in this paper

can be formulated as

min
∑

(n,m)⊂I�

|sHUn,ms|2

s.t. |sk| = 1, k = 1, 2, . . . ,N
(14)

The objective function in Eq. (14) is a quartic form, which
is relatively difficult to tackle. With the conclusions in
[24], the objective function is also a non-convex function.
Moreover, the constraint set is a non-convex set. Hence,
this problem is a non-convex optimization problem. The
paper [25] has suggested that maximum block improve-
ment (MBI) algorithms are capable of providing some
good-quality solutions to this kind of problem in polyno-
mial time. A simplified and more practical method relies
on the exploitation of a simpler criterion (in particular, a
quadratic function) to replace the quartic function [26].
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In general, constrained optimization problems such as
this one can be difficult to deal with because we must
simultaneously perform the optimization and satisfy the
constraint. It is worthwhile to point out that uncon-
strained gradient-based algorithms can be generalized to
the constant modular constraint case. Therefore, the con-
strained optimization problem can be transformed to be
unconstrained. With the derivatives of the objective func-
tion with respect to the phases, a local optimum can
be obtained by gradient-based algorithms, such as the
conjugate-gradient method and Newton’s method. How-
ever, a local minima can also be found in the gradient
equation by successive iterations if the Hessian matrix is
(semi) positive definite. Furthermore, the application of
the iterative algorithm is computational efficient and easy
to realize.
Based on the above considerations, accounting for the

complicated form of the objective function, we can obtain
the local optimum in the first-order and second-order
derivatives instead. Although the Hessian matrix is not
(semi) positive definite, we can exploit the diagonal load-
ing technique to make it so.

2.2 Optimization analysis
As already highlighted, a highly multi-modal optimization
objective inevitably appears in Eq. (14). It is hard for us to
obtain the global optimum by the analytical expression or
the optimizationmethod. In this section, we expect to find
the local optimum for the problem in Eq. (14) and propose
a computationally efficient approach.
The first-order and second-order derivatives of the

objective function in Eq. (14) can be respectively given by

∂ISL
∂φ

=
∑

(n,m)⊂I�

Re
[(
sHUn,ms

)∗ Im (
s∗ � Un,ms

)]
(15)

∂2ISL
∂φ∂φT =

∑
(n,m)⊂I�

Re
[(
sHUn,ms

)∗ Un,m � ssH
]

+ Im
(
s∗ � Un,ms

)
Im

(
s∗ � Un,ms

)H ,
(16)

where φ =[φ1,φ2, . . . ,φN ]T ∈ R
N , RN denotes real N-

space and Re(·) and Im(·) represent the real and imaginary
part of a complex number, respectively (see the derivation
in Appendix B).
The set of the local minimum (including its global

optima) is simply a subset of the stable points {̃s}, which
can be characterized by

∂ISL
∂φ

∣∣∣∣
s=̃s

= 0. (17)

Moreover, s̃ is also a local minimum if and only if

∂2ISL
∂φ∂φT

∣∣∣∣
s=̃s

≥ 0. (18)

Namely, the Hessian matrix of the ISL metric is required
to be (semi) positive definite. With the positive definite-
ness of ∂2ISL

∂φ∂φT , the stable points {̃s} form the set of the local
minimum.
In the following discussion, we express the Hessian

matrix in Eq. (18) as U‡. Note that this matrix can be
(semi) positive definite using the diagonal loading tech-
nique, which implies

U‡ + λN2I ≥ 0, (19)

where I is an identity matrix, λ is a constant coefficient,
which should satisfy λ + δmin(U‡)/N2 ≥ 0, and δmin(U‡)

denotes the smallest singular value of the Hessian matrix
U‡.
We also note that (see the proof in Appendix C)

sHU0,0s = N2I, (20)

and

Re[ (sHU0,0s)∗U0,0 � ssH ]
+ Im(s∗ � U0,0s)Im(s∗ � U0,0s)H = N2I,

(21)

where � denotes Hadamard (element-wise) product of
matrices, and U0,0 = I. Hence, the corresponding opti-
mization problem in (14) can be transformed to

min
∑

(n,m)⊂I�

ρ = ∣∣sHUn,ms
∣∣2 + λ

∣∣sHU0,0s
∣∣2

s.t. |sk| = 1, k = 1, 2, . . . ,N .
(22)

The first-order and second-order derivatives of the objec-
tive function in Eq. (14) can be respectively given by

∂ρ

∂φ
=

∑
(n,m)⊂I�

Re
[(
sHUn,ms

)∗ Im (
s∗ � Un,ms

)]
(23)

∂2ρ

∂φ∂φT =
∑

(n,m)⊂I�

Re
[(
sHUn,ms

)∗ Un,m � ssH
]

+ Im
(
s∗ � Un,ms

)
Im

(
s∗ � Un,ms

)H + λN2I.
(24)

Due to the fact that such a diagonal loading does not
change the solution of the equality function in Eq. (15), the
local minimum s can now be obtained by∑

(n,m)⊂I�

Re
[(
sHUn,ms

)∗ Im (
s∗ � Un,ms

)] = 0 (25)
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over the constantmodulus set. This equation is also equiv-
alent to the following expression as (see the proof in
Appendix D).∑

(n,m)⊂I�

Re
[
j
(
sHUn,ms

)∗ (s∗ � Un,ms
)] = 0. (26)

Consequently, a local minimum s can be characterized by∑
(n,m)⊂I�

(
sHUn,ms

)∗ Un,ms = vs (27)

or ∑
(n,m)⊂I�

(
sHUn,ms

)∗ Un,m = vI, (28)

where v is a real number.

2.3 Optimization method
The conjugate gradient method is used to compute the
optimizing value of a function defined on a vector space,
using only first derivation information. The only differ-
ence between the standard conjugate gradient method
and the phase-only conjugate gradientmethod is that lines
in Euclidean space must be replaced by lines on the N-
torus, i.e., for a phase-only vector s, direction hc = ∂ρ/∂φ,
and step size t

ejtDiag(hc)s → s + thc. (29)

Newton’s method can provide quadratic convergence to
an optimum solution. However, the Hessian matrix must
be computed at every step, and there is the possibility of
converging to a nonoptimum critical point. The experi-
ence of applying such algorithms is to first use the conju-
gate gradient method to get a close solution and then use
Newton’s method to achieve the solution within machine
accuracy. Newton’s iteration is obtained by moving in the
direction

hn = −
(

∂2ρ

∂φ∂φT

)−1
∂ρ

∂φ
= −U‡(−1)hc. (30)

Let si and si+1 be the sequence at the ith and (i + 1)th
iteration. The detailed steps incorporating the phase-only
conjugate gradient method and the phase-only Newton’s
method are given as follows:

1. Select φ0 ∈ RN , compute g0 = h0 = ∂ρ (s0) /∂φ, and
set i = 0.

2. For i = 0, 1, . . . ,Nc, compute ti such that

ρ
(
ejtiDiag(hi)si

)
> ρ

(
ejtDiag(hi)si

)
for all t > 0 (line optimization).

3. Set si+1 = ejtiDiag(hi)si.
4. Set

gi+1 = ∂ρ (si+1)

∂φ

hi+1 = gi+1 + γihi

γi = (gi+1 − gi)T gi+1
‖gi‖2 .

5. Set i = i + 1; if i < Nc, go to Step 2; or else, go to
Step 6.

6. Compute

U‡(si) = ∂2ρ(si)
∂φ∂φT

hi = −U‡(−1)(si)gi.
7. Set i = i+1; go to Step 6 until ‖ρ(si+1)−ρ(si)‖22 < ε,

where ε is a predefined parameter.

The algorithm of POCG requires on the order of 8
N2+

N real floating point operations (flops) to form the gra-
dient vector , where 
 is the number of samples available.
Per iteration, it requires 8
N2 + 
N flops to compute the
gradient, and 2N flops to compute the updated search
direction.
The algorithm of PONM requires on the order of

8
N2 + N2 flops to form the Hessian matrix, 2N3/3 +
N2/4+2N flops to performmatrix inversion, and 4N(N−
1) to perform the production of a matrix and a vector.

2.4 Selection of parameter λ

In optimization algorithms of POCG and PONM, the
local/gobal optimum is obtained by successive iterations.
It should be pointed out that the Hessian matrix U‡

varies with the synthesized sequence at the optimization
process, and the parameter λi should change with the
smallest singular value of U‡(si) to guarantee the positive
definiteness of the Hessian matrix.
Two methods can be used to make the Hessian matrix

positive definite. The first is to use a large-enough value
for λ, and this will make λ a constant value. The sec-
ond is to calculate the eigenvalues and eigenvector of
U‡(si) at every iteration. Note that the matrix inversion
of U‡(si) is also required at every iteration, and U‡(si) =∑wi

l=1 δlvlivlHi , where wi = rank(U‡(si)). The matrix inver-
sion of U‡(si) after diagonal loading by λi can be given by

U‡(−1)(si) =
wi∑
l=1

1
δl + λi

vlivlHi , (31)

where λi + δmin(U‡(si)) > 0.

3 Slow-time ambiguity function synthesis in
cognitive MTD radar

Motivated by higher performance requirements, the radar
system now can exploit different environmental informa-
tion, such as geographic information database, meteo-
rological data, previous scans and some electromagnetic
reflectivity, and spectral clutter models [27]. In this paper,
we consider a cognitive MTD radar system which can
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observe the range and Doppler bins where clutter or inter-
ference is foreseen. This radar can then transmit a burst of
waveforms whose STAF generates low sidelobe values in
those bins.

3.1 STAF optimization
Now, we consider a monostatic MTD radar system which
transmits a coherent burst of P slow-time pulses. The
transmitted pulses can be written as

x(t) =
P−1∑
i=0

s(t − iTr), (32)

where Tr is the pulse repetition interval, and Tr � Ntp.
From the viewpoint of matched filtering and MTD

processing, we define the slow-time ambiguity function
ϑ(τ , fd) as

ϑ(τ , fd) =
∫ ∞

−∞
x(t)x∗(t − τ)ej2π fdtdt

=
P−1∑
i=0

e−j2π ifdTr

∫ ∞

−∞
s(t)s∗(t − τ)ej2π fdtdt

=
P−1∑
i=0

e−j2π ifdTrχs(τ , fd),

− (Tr − Ntp) ≤ τ ≤ (Tr − Ntp).
(33)

Note that
P−1∑
i=0

e−j2π ifdTr = e−j2π(P−1)fdTr
sin

(
πPfdTr

)
sin

(
π fdTr

) . (34)

ϑ(τ , fd) can also be written as

ϑ
(
τ , fd

) = e−j2π(P−1)fdTr
sin

(
πPfdTr

)
sin

(
π fdTr

) χs(τ , fd). (35)

Hence, the STAF ϑ(τ , fd) can be regarded as the product
of the Doppler weighted function and the AF χs(τ , fd).
By substituting τ = ntp and fd = m/(Mtp), the

discretized form of ϑ(τ , fd) is given by

ϑ(n,m) =
P−1∑
i=0

e−j2π ifdTrχs(n,m)

= e−j2πm(P−1)Tr/Mtp sin(πmPTr/Mtp)
sin(πmTr/Mtp)

χs(n,m).

(36)

In this section, we intend to synthesize the STAF ϑ(n,m)

with minimized ISL in the range-Doppler bins where the
clutter exists. The ISL metric for STAF can be expressed
as

ISL =
∑

(n,m)⊂IC

|ϑ(n,m)|2 , (37)

where IC is the subset of the range and Doppler bins,
whose sidelobes are desired to be suppressed as much as
possible at the output of the MTD processor.
Interested and clutter areas are depicted on the dis-

cretized time delay and Doppler frequency shift plane,
respectively, in Fig. 2. Without loss of generality, the cen-
ter of the interested area can be assumed to be the origin
of the range-Doppler plane. This means that the matched
filter and MTD processing response of clutter returns
depend on the difference of its time delay and Doppler
frequency shift with respect to those of the center of the
interested area.
Taking into account that the synthesized waveform

should have constant module, the STAF optimization
problem for a MTD radar system can be summarized as

min
∑

(n,m)⊂IC

|ϑ(n,m)|2

s.t.|sk| = 1, k = 1, 2, . . . ,N .
(38)

(35) is equivalent to

min
∑

(n,m)⊂IC

|ρmχ(n,m)|2

s.t.|sk| = 1, k = 1, 2, . . . ,N ,
(39)

where

ρm = sin
(
πmPTr/Mtp

)
sin

(
πmTr/Mtp

) . (40)

Fig. 2 Interested area and clutter area on the time delay and Doppler
frequency shift plane
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With the derivation in the previous section, the formula-
tion can also be given by

min
∑

(n,m)⊂IC

∣∣∣ρms(t)HUn,ms(t)
∣∣∣2 + λ

∣∣∣s(t)HU0,0s(t)
∣∣∣2

s.t.|sk| = 1, k = 1, 2, . . . ,N .
(41)

The proposed optimization algorithm in Section 2.3 can
also be used to solve this problem.

3.2 Workflow of a cognitive MTD radar
In Fig. 3, the workflow of a cognitive MTD radar is given.
When theMTD radar begins to work, it utilizes some uni-
modular sequences with good AF or ACF properties for
transmission. Then, range-Doppler processing is carried
out for information extraction. With the extracted infor-
mation associated with the target and clutter, the radar

Fig. 3Workflow of a cognitive MTD radar system

system begins to synthesize the unimodular sequence by
our proposed algorithm. In the next coherent process-
ing interval (CPI), the MTD radar will transmit a new
designed sequence. The above process is repeated and the
MTD radar system can operate in a dynamic environment
with cognitive capability. This framework is especially
attractive for the confirmation process. Once a target has
been found by a standard radar waveform, detection can
be confirmed reliably by transmitting the optimized wave-
form, which is matched to the operation scenario of the
radar system.

4 Numerical examples
In order to verify the effectiveness of the proposed
algorithms, we will present several numerical examples,
including the AF synthesis, STAF synthesis, and detection
performance of a cognitive MTD radar. In the following
examples, we all assume that the unimodular sequence has
N = 100 subpulses with rectangular pulse-shaping. The
time duration of each subpulse is tp and that of the total
waveform is T = 100tp. The pulse repetition interval is
Tr = 10T , and the number of pulses in a CPI is P = 64. In
AF and STAF, the time delay axis τ is normalized by T and
the Doppler frequency axis f is normalized by 1/T . The
convergence of the proposed algorithm will be tested by
using randomly generated sequences in the initialization.
In the iteration process, the parameter ε is set to be 10−3.

4.1 AF synthesis
Suppose that � = {(τ , fd)||τ | < 0.2, |fd| < 0.01, τ fd �= 0}
is the interested area, which is near the origin but excludes
the origin on τ − fd plane. With randomly generated
sequence in the initialization, PCA is applied to minimize
the ISL metric of the AF of the synthesized sequence.
The AFs of the initialization sequence and synthesized

sequence are shown in Fig. 4a,b. The AF in Fig. 4a presents
high sidelobe values on the whole τ −fd plane. The desired
low sidelobes in the interested area of AF is obviously
obtained in Fig. 4b. Therefore, the synthesized sequence
has a good capability of separating and detecting closely
spaced targets.
Figure 4c,d gives the zero-Doppler range profile cut and

zero-delay Doppler profile cut of the AF in Fig. 4b. The
sidelobes in the interested area is suppressed to about
−40 dB in the time delay axis with |τ | < 0.2. Due to the
fact that the synthesized sequence has constant modulus,
the zero-delay Doppler profile cut is a sinc function.

4.2 STAF synthesis
STAF can also be optimized by the algorithm, which has
been suggested in Section 4. Two types of STAFs are both
examined in this example. The first type has a clear area
close to the origin on the time delay and Doppler fre-
quency shift plane and is especially attractive for detecting
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Fig. 4 AF synthesis for unimodular sequence. a The AF of the initialization sequence. b The AF of the synthesized unimodular sequence. c The
zero-Doppler range profile cut of AF. d The zero-delay Doppler profile cut of AF

closely spaced targets. The specified area can be described
as

�1 = {(
τ , fd

) ‖τ | < 0.1,
∣∣fd∣∣ < 5 × 10−4} . (42)

Figure 5a,b shows the desired and synthesized STAFs of
the first type in log scale. The ISL of STAF in �1 is mini-
mized and the averaged sidelobe of the obtained sequence
is suppressed to about −50 dB in Fig. 4b.
The seconde type has minimized ISL in a certain area,

which is given by

�2 = {(
τ , fd

) |0.3 < |τ | < 0.5,
4 × 10−4 < |fd| < 6 × 10−4} . (43)

The desired and synthesized STAFs of the seconde type
are plotted in Fig. 5c,d. The ISL of STAF in �2 is reduced

and the averaged sidelobe of the obtained sequence is
suppressed to about −70 dB in Fig. 5d.

4.3 STAF synthesis in a cognitive MTD radar system
In this example, a MTD radar system is designed as a
CR system. The target and clutter distributions within
the radar scene should be dynamically deciphered from
the received backscattered signal, and these deciphered
distributions over the STAF could then be used for the
proposed synthesis approach. In Fig. 6a, the clutter distri-
bution on the τ − fd plane is plotted and a strong clutter
block lies in

�C = {(τ , fd)|0.3 < |τ | < 0.5,
4 × 10−4 < |fd| < 6 × 10−4}. (44)
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Fig. 5 STAF synthesis for unimodular sequence

For ease of simulation, the clutter in every range-Doppler
bin can be treated as a stationary scattering point. Hence,
the whole clutter return is the superposition of all the
returns from every range-Doppler scattering point.
We also assume that the target distribution can be

described as

�T = {(τ , fd)||τ | < 0.1, |fd| < 5 × 10−4} (45)

and consider the underlying scintillation on RCS based on
different Swerling models for the moving target. The opti-
mized shape of STAF is plotted in Fig. 6b, in which a low
sidelobe is presented in the target and heavy clutter area.
According to the Swerling models, the RCS of a reflect-

ing target can be described by the chi-square probability

density function with specific degrees of freedom. In this
example, Swerling I and III models are used in order to
evaluate the detection performance of a cognitive MTD
radar system. Swerling I and III models indicate a target
whose magnitude of the backscattered signal is relatively
constant during the dwell time. The RCS is constant from
pulse to pulse but varies independently from scan to scan.
For Swerling I model, its RCS varies according to a chi-
square probability density function with two degrees of
freedom. The density of probability of the RCS is given by
the Rayleigh-Function

P(σ ) = 1
σaverage

· exp
{ −σ

σaverage

}
. (46)
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a b

c d

Fig. 6 Processing results for a cognitive MTD radar

The Swerling III model is described like Swerling I but
with four degrees of freedom. The scan-to-scan fluctua-
tion follows a density of probability

P(σ ) = 4σ(
σaverage

)2 · exp
{ −2σ

σaverage

}
. (47)

In Eqs. (46) and (47), σ is the value of RCS, and σaverage is
the mean value of RCS.
In order to evaluate the detection performance, signal-

to-clutter ratio (SCR) is defined as

SCR = PTrσ 2
average

Mtp
∫ ∫

C(τ , fd)dτdfd
, (48)

where C(τ , fd) is the clutter distribution. In this definition,
the average scattering power of the Swerling target model

is compared with the average power of all the clutter
scattering points.
In Fig. 6c,d, considering the radar scene in Fig. 6a,

the detection probability versus SCR is given for the
Swerling I and III target models, and the detection prob-
ability of the optimized Frank and Golomb sequences
are compared. As expected, the optimized sequence out-
performs Frank and Golomb sequences, showing the
performance of higher detection probability and sup-
pressing the interference of the clutter returns from
the output of MTD processing. Furthermore, as SCR
increases, the detection probability is raised accordingly
for both the Swerling I and III models. These two
figures highlight the capability of the proposed algo-
rithm to suitably shape the STAF of the transmitted
waveform.
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5 Conclusions
An algorithm was proposed to synthesize a unimodular
sequence by minimizing the sidelobe values of AF in cer-
tain areas on the time delay and Doppler frequency shift
plane. This algorithm can be convergent theoretically and
practically and has been shown to be useful for ISL mini-
mization of AF and STAF. The algorithm for synthesizing
the unimodular sequence with the desired AF and STAF
was built in this work.
A cognitive approach to devise waveforms for a MTD

radar system was also put forward in this work. With this
approach, the MTD radar system can adaptively optimize
the STAF of its transmit waveform by minimizing the ISL
metric of the interested area and clutter area on the time
delay and Doppler frequency shift plane. The numerical
example shows that better detection performance can be
achieved by our proposed approach.
We note further that computational efficiency of New-

ton’s method was limited by matrix inversion. This algo-
rithm is better for the sequence with a length no longer
than 104. Therefore, in the future work, we will try to find
a better approach and a computation-saving method.

Appendix
Subpulse cross ambiguity function
In order to verify the subpulse CAF in Eq. (7), we rewrite
the kth and lth subpulse CAF expressions as follows:

χ(k,l)
p (τ , fd) =

∫ ∞

−∞
pk(t)p∗

l (t + τ)ej2π fdtdt,

where

pk(t) = rect
( t − (k − 1)tp

tp

)
, (k − 1)tp ≤ t ≤ ktp

pl(t + τ) = rect
( t + τ − (l − 1)tp

tp

)
,

(l − 1)tp ≤ (t + τ) ≤ ltp.
Note that the two subsets of t overlap with each other only
when τ = (k − l)tp + τ ′, with |τ ′| ≤ tp. The integral in
Eq. (7) can be calculated in two cases.

Case 1. −tp ≤ τ ′ < 0

χ(k,l)
p (τ , fd) = 1

tp

∫ ktp+τ ′

(k−1)tp
ej2π fdtdt

= 1
tp

· e
j2π fdt

j2π fd

∣∣∣∣ktp+τ ′

(k−1)tp

= ejπ fd(2k−1)tpejπ fdτ
′ sinπ fd(tp + τ ′)

π fd(tp + τ ′)
tp + τ ′

tp
.

With fdτ ′ � 1, the above equation can be simplified to

χ(k,l)
p (τ , fd) = ejπ fd(2k−1)tp sinπ fd(tp + τ ′)

π fd(tp + τ ′)
tp + τ ′

tp
.

Case 2. 0 ≤ τ ′ ≤ tp

χ(k,l)
p (τ , fd) = ejπ fd(2k−1)tp sinπ fd(tp − τ ′)

π fd(tp − τ ′)
tp − τ ′

tp
.

Therefore, the subpulse CAF can be summarized with the
following expression as

χ(k,l)
p (τ , fd) =ejπ fd(2k−1)tp

· sinπ fd
(
tp − |τ − (k − l)tp|

)
π fd

(
tp − |τ − (k − l)tp|

)
· tp − |τ − (k − l)tp|

tp
,

(k − l − 1)tp ≤ τ ≤ (k − l + 1)tp.

Derivatives of ISL
It is assumed that s = (

ejφ1 , ejφ2 , . . . , ejφN
)T and noted that

ISL =
∑

(n,m)⊂I�

∣∣sHUn,ms
∣∣2

=
∑

(n,m)⊂I�

∑
k,l

∣∣∣Un,m(k, l)ej(φl−φk)
∣∣∣2 .

Let γn,m(s) = sHUn,ms and 1 ≤ k0 ≤ N , we have

∂ISL
∂φk0

=
∑

(n,m)⊂I�

{
∂γn,m(s)

∂φk0
γ ∗
n,m(s) + ∂γ ∗

n,m(s)
∂φk0

γn,m(s)
}

=
∑

(n,m)⊂I�

2Re
{

∂γn,m(s)
∂φk0

γ ∗
n,m(s)

}
,

where

∂γn,m(s)
∂φk0

= Im
(
e−jφk0

∑
l
Un,m(k0, l)ejφl

)
.

The first order derivative of ISL with respect to φ can be
given by

∂ISL
∂φ

=2
∑

(n,m)⊂I�

Re
{(
sHUn,ms

)∗ Im (
s∗ � Un,ms

)}
.

Similarly, the second order derivative can also be
obtained by

∂2ISL
∂φ∂φT =

∑
(n,m)⊂I�

{
∂2γn,m(s)
∂φ∂φT γ ∗

n,m(s) + ∂2γ ∗
n,m(s)

∂φ∂φT γn,m(s)

+∂γn,m(s)
∂φ

∂γ ∗
n,m(s)
∂φT + ∂γ ∗

n,m(s)
∂φ

∂γn,m(s)
∂φT

}
,

where

∂2γn,m(s)
∂φ∂φT = Un,m � ssH .
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It can be simplified to

∂2ISL
∂φ∂φT = 2

∑
(n,m)⊂I�

Re
[(
sHUn,ms

)∗ Un,m � ssH
]

+ Im
(
s∗ � Un,ms

)
Im

(
s∗ � Un,ms

)H .

Proof of Eq. (20)
With the definition of the matrix Un,m, we have

U0,0 = I

and

sHU0,0s = N2.

Hence, the first item in Eq. (20) can be simplified and
rewritten as

Re
[(
sHU0,0s

)∗ U0,0 � ssH
]

= N2I.

We also note that

s∗ � U0,0s = 1,

where 1 =[ 1, 1, . . . , 1]T . The second item in Eq. (20) can
also be expressed as

Im
(
s∗ � U0,0s

)
Im

(
s∗ � U0,0s

)H = 0.

With the above two equations, we can obtain the equal-
ity in Eq. (20), which is expressed as

Re
[(
sHU0,0s

)∗ U0,0 � ssH
]

+ Im
(
s∗ � U0,0s

)
Im

(
s∗ � U0,0s

)H = N2I.

Equality proof
As indicated in Section “Derivatives of ISL”, we have

∂γn,m(s)
∂φ

= −j
(
s∗ � Un,ms

) + j
(
s∗ � Un,ms

)∗
= Im

(
s∗ � Un,ms

)
.

Eq. (26) can be rewritten as∑
(n,m)⊂I�

Re
[(
sHUn,ms

)∗ Im (
s∗ � Un,ms

)]
=

∑
(n,m)⊂I�

{
−Re

[
j
(
sHUn,ms

)∗ (s∗ � Un,ms
)]

+Re
[
j
(
sHUn,ms

)∗ (s∗ � Un,ms
)∗]} = 0.

An equality can be obtained the above equation , and
expressed as∑

(n,m)⊂I�

∑
(n,m)⊂I�

Re
[
j
(
sHUn,ms

)∗ (s∗ � Un,ms
)]

=
∑

(n,m)⊂I�

Re
[
j
(
sHUn,ms

)∗ (s∗ � Un,ms
)∗] .

This expression can be expanded by the real and imagi-
nary part of sHUn,ms and s∗ � Un,ms, and given by∑

(n,m)⊂I�

−Im
[
sHUn,ms

]
Re

[
s∗ � Un,ms

]
+ Re

[
sHUn,ms

]
Im

[
s∗ � Un,ms

]
=

∑
(n,m)⊂I�

Im
[
sHUn,ms

]
Re

[
s∗ � Un,ms

]
+ Re

[
sHUn,ms

]
Im

[
s∗ � Un,ms

]
which implies∑

(n,m)⊂I�

Im
[
sHUn,ms

]
Re

[
s∗ � Un,ms

] = 0.

Note that from∑
(n,m)⊂I�

Re
[(
sHUn,ms

)∗ Im (
s∗ � Un,ms

)]
=

∑
(n,m)⊂I�

Re
[(
sHUn,ms

)∗] Im [(
s∗ � Un,ms

)] = 0,

we can obtain∑
(n,m)⊂I�

{
Im

[
sHUn,ms

]
Re

[
s∗ � Un,ms

]
+Re

[(
sHUn,ms

)∗] Im [(
s∗ � Un,ms

)]}
=

∑
(n,m)⊂I�

Re
[
j
(
sHUn,ms

)∗ (s∗ � Un,ms
)]

.
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