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Abstract

Conventional range-Doppler (RD) inverse synthetic aperture radar (ISAR) imaging method utilizes coherent
integration of consecutive pulses to achieve high cross-range resolution. It requires the radar to keep track of the
target during coherent processing intervals (CPI). This restricts the radar’s multi-target imaging ability, especially
when the targets appear simultaneously in different observing scenes. To solve this problem, this paper proposes a
multi-target ISAR imaging method for phased-array radar (PAR) based on compressed sensing (CS). This method
explores and exploits the agility of PAR without changing its structure. Firstly, the transmitted pulses are allocated
randomly to different targets, and the ISAR image of each target can be then reconstructed from limited echoes
using CS algorithm. A pulse allocation scheme is proposed based on the analysis of the target’s size and rotation
velocity, which can guarantee that every target gets enough pulses for effective CS imaging. Self-adaptive
mechanism is utilized to improve the robustness of the pulse allocation method. Simulation results are presented
to demonstrate the validity and feasibility of the proposed approach.

1 Introduction
Inverse synthetic aperture radar (ISAR) can generate im-
ages of targets with high resolution in two dimensions.
It usually transmits wideband waveform to obtain high-
range resolution and utilizes coherent integration of
multi-pulse to achieve high cross-range resolution [1].
This is the basic idea of range-Doppler (RD) imaging. It
requires both appropriate rotation angle (usually 3°–5°
for RD imaging) and consecutive pulses during coherent
processing intervals (CPI) [2].
To the best of our knowledge, most ISARs in practice

can only generate images one target at a time. Since the
RD imaging method requires consecutive echoes, the
radar must track the target for a long period. The ob-
serving scene of radar is always a limited region defined
by the radar’s receiving range gate and the beam width.
Therefore, the observing scene of ISAR must be focused
on the target during the CPI. In some applications, the
radar needs to observe several targets appearing in dif-
ferent observing scenes simultaneously, as shown in
Fig. 1. Such scenes are quite common for military air
defense radars or space surveillance radars. Modern PAR

with active electronically scanning phased-array antenna
can change the frequency and beam direction of signal
between pulses readily [3]. Therefore, PARs are widely
applied in multi-target radars, such as long-range air
defense radars and missile-tracking radars.
Although PAR can achieve multi-target detection and

tracking comfortably by allocating the pulses to each
target, there are still some challenges in imaging them
simultaneously. As is well known, the maximum pulse
repetition frequency (PRF) of radar is limited by the ob-
serving distance to prevent range ambiguity. Meanwhile,
the radar still needs to assign some pulses for target de-
tection, tracking, and other functions [4]. Hence, the
PAR’s pulses may be inadequate for the coherent inte-
gration of each target. This paper aims to exploit the
flexibility of PAR and to achieve better performance in
multi-target imaging.
Recently, CS has drawn great attention in data acquisi-

tion and signal processing. It suggests that the signal can
be sampled at sub-Nyquist rate and be reconstructed
correctly if the signal is sparse or compressive in some
basis or transform domain [5–9]. ISAR imaging based
on CS is also an active research area since the targets
often show sparse reflections and occupy only limited
pixels in the imaging results [10, 11]. It has been pro-
posed in [12] that ISAR image can be reconstructed
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using much fewer pulses than RD algorithm with ran-
dom pulse repetition interval (PRI). At present, most of
the research on CS imaging is aimed at a single target
and has achieved some research results [7–10, 12]. Con-
sidering the requirement of radar multi-target observa-
tion and imaging, this paper tries to use the CS imaging
method to improve the ability of simultaneous multi-
target radar imaging.
Inspired by CS and the flexibility of PAR, we allocate

the pulses randomly to multiple targets appearing in
different observing scenes. The radar illuminates one
target at one pulse and changes target from pulse to
pulse. The observing sequence is arranged randomly to
realize non-uniform sampling in the cross-range di-
mensions of each target. Such random sampling can
insure that the measurement matrix satisfies the re-
stricted isometry property (RIP), which is the sufficient
criterion for effective reconstruction in CS [13, 14]. An-
other major contribution of this paper is that we
propose a pulse allocating strategy based on detailed
analysis of CS ISAR imaging. Besides random sampling,
the sizes and rotation velocities of targets are also de-
termining factors for pulse allocation. This allocation of
pulse guarantees that every target obtains enough mea-
surements for effective CS reconstruction. The key
innovation of this method is fully utilizing the limited
resource of radar pulses to implement multi-target im-
aging, based on the image sparsity and CS algorithms.
After random observation, the measurement matrices
for the targets are different from each other; thus, the
images are reconstructed separately using CS algo-
rithms. Experiment results are provided to demonstrate
the validity of this observing strategy and imaging
method.

This paper is organized as follows. In Section 2, the
mathematic model of ISAR imaging is built and the CS
imaging method is presented. In Section 3, the multi-
target observing scheme and reconstructing method of
ISAR image are presented based on CS. The experiment
results and analysis are provided in Section 4, and con-
clusions are given in Section 5.

2 CS ISAR imaging using limited pulses
2.1 Model of range-Doppler ISAR imaging
Assume that the translational motion of the target
has been compensated using conventional methods
[15–17]. The target can be treated as a platform
which rotates around the center O, as shown in Fig. 2.
Suppose the transmitted linear frequency modulation
(LFM) signal is

ST tð Þ ¼ rect
t
TP

� �
exp j2π f ct þ

1
2
γt2

� �� �
ð1Þ

where rect uð Þ ¼ 1; uj j≤1=2
0; uj j > 1=2

�
, fc represents the cen-

ter frequency, Tp is the pulse width, γ is he frequency
modulation rate, and t is the fast time. The echo
reflected by the scattering point locating at P(x, y) after
matched filtering pulse compression can be written as

sR t; tsð Þ ¼ βsinc Tpγ t−
2R tsð Þ

c

� �� �
exp −j4π

R tsð Þ
λ

� �
ð2Þ

where β is the backward scattering intensity of P(x, y), λ
is the wavelength of signal, t is the fast time, and ts is
the slow time. R(ts) is the instantaneous distance from
P(x, y) to radar and at ts

R tsð Þ ¼ R0 þ y cosθ tsð Þ þ x sinθ tsð Þ ð3Þ

Target 1

Target 2

Target 3

Fig. 1 Scenario of multi-target for PAR ISAR radar
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where θ(ts) is the instantaneous rotation angle of the
mth pulse. Since the rotation angle is usually very small
in ISAR, the R(ts) can be approximated as

R tsð Þ≈ R0 þ yþ xθ tsð Þ ð4Þ
In Eq. (4), θ(ts) can be approximated by Taylor expan-

sion as

θ tsð Þ ≈ ωts þ 0:5α t2s þ σ t2s
� � ð5Þ

where ω and α are rotation velocity and acceleration,
respectively. Therefore, the echo can be approximated as

sR t; tsð Þ ≈ β sinc TPγ t−
2 Ro þ yð Þ

c

� �� �

exp −j4π
Ro þ yþ x ωts þ 0:5αt2s

� �
λ

� �� �

ð6Þ
Suppose the total number of range cells is M and there

are K scatters in the mth range cell. The rotational mo-
tion is assumed to be stationary. After neglecting the
constant term and high-order term, the signal of the
mth range cell can be denoted as

sm tsð Þ ≈
XK
k¼1

β sinc TPγ t−
2 R0 þ yð Þ
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where βk ¼ βsinc TPγ t− 2 R0þyð Þ
c

� �� �
exp −j4π R0þy

λ

� �� �
,

which denotes the kth scattering point’s intensity. In RD
imaging, the cross-range compression is achieved by ap-
plying a Fourier transform in the cross-range dimension.
Let f k ¼ 2xkω

λ denote the Doppler frequency of the kth
scatter, and we can achieve the compression result of the
mth range cell as

sm f dð Þ ¼
XK
k¼1

βkδ f d−f k
� � ð8Þ

Considering the sampling window in the cross-range
domain, the δ(•) function will be substituted by sin c(•).

If we build a dictionary Ψ and the ith column of Ψ is
ψi = exp[−j2πfd(i)ts], Eq. (7) can be rewritten in the
matrix form as

sm ¼ Ψβm þ n ð9Þ
where sm is the vector form of sm(ts), βm is the vector
which denotes the scatters distribution in the mth range
cell, and n is the measuring noise. The whole image of
the target is obtained after cross-range compression of
all M range cells.

2.2 CS ISAR imaging using random pulses
In most ISAR cases, there are only a few strong scatter-
ing points in one range cell, and the number of scatter-
ing centers is much smaller than the number of pulses.
Therefore, the vector β is sparse, and the echoes of
target are compressive in the cross-range dimension. CS
ISAR imaging method has been proposed in [12] to re-
construct the image using much fewer pulses than RD
algorithm with random PRI. In this paper, further study
about CS ISAR imaging is carried on and some condi-
tions are given for effective CS imaging.
First, to achieve effective reconstruction in CS, the

number of measurements must exceed the theoretical
minimal number [6].

M > O K ⋅ logNð Þ ð10Þ
where K is the sparse level and N is the length of the
measured sparse signal. In the context of CS ISAR im-
aging, the sparse level K is the number of cross-range
bins which are occupied by target in image, and Eq. (10)
determines the minimal number of transmitted pulses
for the target.
Second, the cross-range resolution in conventional RD

imaging is defined by the wavelength of transmitted sig-
nal λ and the target’s rotational angle Θ during the CPI,
which is denoted as

Δc ¼ λ

2Θ
ð11Þ

The rotation angle Θ is usually 3°–5° because the
smaller angle is inadequate for high resolution and the
migration through resolution cell (MTRC) will occur if
Θ is larger [18]. Moreover, the sampling rate in the
cross-range dimension, e.g., the PRF of radar, must be at
least twice the Doppler bandwidth of the target, which is
proportional to the target’s rotation velocity. Hence, tar-
gets with different rotation velocities need different PRFs
for equivalent cross-range resolution. Faster rotation
means that the CPI for one image is shorter and a higher
PRF is required. The reference [19] suggests that the ex-
pected resolution of CS reconstructed image is restricted
by the incoherency of the sensing matrix. In CS ISAR
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imaging, since the random pulses are the subset of
Nyquist-sampled pulses in RD imaging, Eq. (11) still de-
termines the cross-range resolution, and enough rotation
angle is also required for high resolution.
According to the above analysis, we give the following

two conditions that the random measurements must sat-
isfy to achieve effective CS ISAR imaging.

2.2.0.1 Condition 1. The number of random pulses M
is more than the minimal measurements needed by CS,
as (10).

2.2.0.2 Condition 2. The rotation angle of the target
during CPI is approximately 3°-5°, which is the same as
RD method. This guarantees the reconstructed image
own the same cross-range resolution as RD imaging
result.

3 CS multi-target simultaneous imaging
3.1 Basic idea of multi-target observation
Based on the CS ISAR imaging, a multi-target imaging
method is proposed for PAR in this section. As intro-
duced in Section 1, there may be multiple targets in dif-
ferent observing scenes, but the radar can only observe
one target at one pulse. Instead of illuminating one tar-
get during the whole CPI, the pulses can be allocated to
all the targets and the observing sequence is arranged
randomly. Therefore, the PRI for each target is non-
uniform and the measurements of every target are ran-
dom sampling, which coincides with the CS imaging
method condition for single target in [12].
Suppose there are four different targets, and Fig. 3

shows the sequence of transmitted pulses, which are al-
located randomly. As a simple example, the pulses are
allocated to four targets with equal proportion in Fig. 3,
e.g., the probability of being illuminated for each target
is equal. However, such an equal proportion is appar-
ently too simple for the practical applications. The em-
phasis of this section is to determine the allocating
proportions of pulses for different targets.
In the train of transmitted pulses, the illuminated

target of each pulse can be treated as an independent
and identically distributed (I.I.D.) random variable A.
A ∈ {0, 1, 2⋯ L}, where L is the number of targets.
Am = i(0 < i ≤ L) means the mth pulse illuminates the
ith target, while Am = 0 means no target is observed,
e.g., this pulse is not used in any target’s imaging.
The probability distribution of A determines the allo-
cation proportions of pulses for different targets.
To obtain effective CS measurements for each tar-

get, random allocation of pulses must ensure that the
measurements of every target satisfy the two condi-
tions presented in Section 2. Based on this, we

propose an algorithm to determine the probability
distribution of A.
For condition 1, the key problem is to determine

the sparse level of target, namely the size of target in
cross-range dimension. For coarse estimation, the tar-
get’s size can be estimated from the radar cross-
section (RCS) [20] and high-resolution range profiles
(HRRPs) of the targets. Although these methods can-
not provide accurate estimation of the cross-range
size of target, they can help to determine the sparse
level of target roughly. Together with the expected
resolution of ISAR image Δc, the sparse level of target
ki can be estimated by

Ki ¼ Di=Δc ð12Þ
where Di is the estimated size of target. Therefore, the
number of pulses Mi needed for each target can be cal-
culated in Eq. (10).
As for condition 2, the CPI of a target depends on

its rotation velocity ω with respect to the radar line
of sight. For space objects, the rotation velocity ω can
be estimated from the orbit information. While for
other non-cooperate targets, the ω can be estimated
from Doppler analysis of target’s echoes. Reference
[21] suggests that the received signal of range bin can
be approximated as cubic phase signals, and the ratio
of the third-order phase coefficient to the first-order
phase coefficient is just the square of the rotation vel-
ocity. We use this algorithm to estimate the rotation
velocity ωi of each target, and the CPI τi of target
can be obtained by

τi ¼
�Θ

ωi
ð13Þ

where �Θ is the typical rotation angle for ISAR imaging
and is set to be �Θ ¼ 4°.
Based on those estimations, the least number of pulses

and CPIs of each target are determined. We use �ρi to de-
note the equivalent average PRF for the ith target, and �ρi
is given as

�ρi ¼
Mi

τi
ð14Þ

It proposes that the allocating probability for different
target is proportional to the equivalent average PRF �ρi of
each target. The probability distribution of Am follows

P Am ¼ ið Þ ¼ �ρi
f PRF

ð15Þ

where fPRF is the actual PRF with Nyquist sampling rate
in the conventional RD imaging. Besides, the maximum
number of targets that the radar can observe simultan-
eously can be derived as
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Fig. 4 Flow chart of compressive measurement for multiple targets

Fig. 3 An example of random pulse allocation for four targets
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Fig. 5 Reflectivity distribution and conventional RD imaging results of three simulated targets. (a)-(c) are the point scattering models of the three
targets; (d)-(f) are the conventional RD imaging results of three simulated targets
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XL
i¼1

�ρi≤f PRF ð16Þ

If targets number L exceeds this limitation, the pulse
allocation cannot guarantee that enough measurements
are acquired for each target.
For the convenience of radar management, the estima-

tion of sparse level and rotation velocity can be obtained
as prior information for multi-target CS imaging. Specif-
ically, this can be done after the radar detection and
tracking process; then, the wideband pulses for imaging
are transmitted pseudo-randomly according to the esti-
mated probability density P(Am).

3.2 Adaptive pulse allocating method
The estimations of rotation velocity and target size are
very important for the multi-target CS imaging method.
However, the estimation results in practice are usually
inaccurate due to the influence of noise and clutters. Be-
sides, the prior measurements before imaging may be in-
sufficient or incorrect to determine the appropriate
pulse allocating proportions. Considering this, an im-
proved adaptive observing strategy for multiple targets is
introduced in this section. With the development of
digital processing, the modern radar systems can own
more powerful real-time processing ability. During CS
imaging, some real-time analysis can be carried out to
estimate the velocities and sizes of the targets. This al-
lows us to update the allocating proportions of pulses
during observation.
In three situations, we need to re-calculate the allocat-

ing proportions for different targets. (1) Some targets
disappear from the radar’s view and do not need imaging
anymore; then, it is eliminated from the targets list. (2)
A new target is detected and is added into the imaged
targets list. (3) The estimations of targets’ velocities and
sizes are considerably different from the current ones.
The self-adapting allocation proportions can improve

the robustness of the multi-target observing method. For
convenience of understanding, a flow chart is presented
to interpret the work mode of radar in the adaptive CS
imaging method, as shown in Fig. 4.
The sequence of pulses must be memorized in the

radar system because it is essential to build the measure-
ment matrices of each target, which will be discussed in
Section 3.3.
Limited by the real-time capability of the radar system

and the complexity of CS reconstructing algorithms, it is
difficult to realize real-time image reconstruction using
limited pulses. Once it is solved with faster algorithms,
the iterative method can be employed in the flow of
multi-target observation. Instead of estimating the sizes
and velocities of targets based on the RCS and HRRPs,

the quality of real-time imaging results can be employed
to evaluate whether the pulse allocation proportion is ef-
fective. In the following observation, more pulses will be
allocated to those targets with blurred images. The most
reasonable proportions will be established after several
iterations. This is the unsolved issue that we are investi-
gating in the future work.

3.3 Reconstruction images of multiple targets
In ISAR imaging, the non-cooperative motion of target
must be compensated to make the echoes consistent
with the model of rotated platform in Fig. 2. References
[22] and [23] suggest the method that minimizes entropy
of average range profile, and the eigenvector method can
be utilized to solve the range alignment and phase cor-
rection of random pulses. Reference [24] proposed a
method to solve the problem of motion compensation
when pulses are inconsecutive. Combining Eq. (9), the
echoes after compensation can be denoted as

ym ¼ ΦΨβm þ n ð17Þ

where matrix Φ is the random measurement matrix, and
vectors ym and n are the measurements of mth range
cell and the measured noise, respectively. The cross-
range image βm of mth range cell can be reconstructed
by solving

min β̂m

			 			
1

s:t: ym−ΦΨβk k2≤ε ð18Þ

where β̂m is the reconstruction of vector β and ε is the
noise level. It is the typical optimization problem in CS
and there are some algorithms to solve it, such as basis
pursuit (BP), orthogonal matching pursuit (OMP),
Bayesian algorithms [25], and smoothed ℓ0 algorithm
(SL0). The SL0 [26] has a good tradeoff between accur-
acy and complexity [27]. Different from most greedy al-
gorithms and BP algorithms, the sparsity level of an
original signal is not necessary for SL0 method. There-
fore, it is quite suitable for CS radar imaging, since the
number of scattering centers is unknown until the image
is obtained.
The first step of reconstructing multi-target images is

to build the measurement matrices for each target. In
conventional Nyquist sampling, the measurement matrix
is the identity matrix Ii, and the size Ni of matrix Ii is

Table 1 Parameter setting of three targets in simulation

Target Range (km) Rotation velocity 1 (°/s) Rotation velocity 2 (°/s)

Target 1 100 2.0 1.0

Target 2 120 2.0 2.5

Target 3 90 2.0 5.0
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Fig. 6 The pulse allocating proportion affected by the size of target. a–c Reconstructed images when pulses are allocated randomly to three
targets with the same probability. d–f Reconstructed images when the allocating proportions are decided by the size of targets
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Fig. 7 The pulse allocating proportion affected by the rotation velocity of target. a–c Reconstructed images when the pulses are allocated
without consideration of the different rotation velocities of targets. d–f CS reconstructed images when the pulses allocation proportion is
calculated according to both the sizes and the different rotation velocities of targets
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the number of pulses transmitted during corresponding
CPI τi, and

Ni ¼ f PRF � τi ð19Þ

In CS multi-target imaging, the pulses are randomly
allocated in CPI for each target. Hence, the measure-
ment matrix Φi of the ith target’s echo in Eq. (17) can be
obtained by selecting corresponding rows from Ii ac-
cording to the random sequence of pulses. The selected
indices of rows are determined by the indices of the
pulses that illuminate the ith target.
Then, the images can be reconstructed by solving

Eq. (18) for each target separately. The reconstructing
performance and analysis will be given in Section 4.

4 Simulation results
To verify the validity of the proposed observing strategy
and imaging method, some simulations are performed in
this section. Suppose the parameters of the transmitted
LFM signal are as follows. The bandwidth is B = 300 MHz,
the carrier frequency is fc = 10 GHz, the pulse width
is τc = 50 μs, and the PRF of radar is fPRF = 1000 Hz.
In the simulation, three aeroplanes with different sizes

are selected as the targets, which locate in different ob-
serving scenes. The point scattering models of the three
targets are given in Fig. 5. The parameters of the three
targets are presented in Table 1. As shown in Fig. 5, the
sizes of three targets are different, and the sparse level
Ki of target is determined by the number of scattering
points in the cross-range dimension. The simulations
are carried out in two steps.
In the first experiment, the simulation is carried out to

testify the effectiveness of target sizes on the allocation
proportions of pulses. The rotation velocities of three
targets are set to be the same, as shown in the third col-
umn of Table 1. If we allocate the radar pulses equally,
without considering the difference of target sizes, the re-
constructed images of three targets are shown in
Fig. 6a–c. As we can see, target 3 has the biggest size,
and the corresponding reconstructed image is blurred
seriously. However, the images of the other two targets
are well focused. Then, we use Eq. (15) to calculate the
allocating proportions for three targets, and the propor-
tion is about 2:3:4. As shown in Fig. 6d–f, all targets are
allocated with enough pulses, and thus, the images are
all well focused.
In the second experiment, the difference of rotation

velocities is considered and the rotation velocities of the
three targets are set as the fourth column of Table 1.
The CPIs of three targets can be calculated to be about
τ1 = 5.0 s, τ2 = 2 s, and τ3 = 1 s, respectively. First, the al-
locating probability is calculated by Eq. (15) without
considering the difference of rotation velocities. As

shown in Fig. 7a–c, the reconstructed images of targets
1 and 2 are blurred. The reason is that the two targets
rotate much faster than target 3 and the allocated pulses
are inadequate in their CPIs. Fig. 7d–f shows the recon-
structed images when the allocating proportions of
pulses are calculated according to both sizes and rota-
tion velocities of three targets. Images with better quality
are obtained for all targets.
The results of the simulations and comparison are

consistent with the theoretical analysis in this paper.
Hence, the proposed multi-target imaging method is
proved to be reasonable and effective.

5 Conclusions
In order to implement multi-target simultaneous ISAR
imaging, an observing strategy and CS imaging method
is proposed in this paper. The CS theory is introduced
into multi-target imaging, and a random pulse allocating
method is proposed based on the flexibility of PAR.
Multi-target simultaneous imaging is realized by control-
ling the beam directions of radar pulses, without chan-
ging the architecture and working mode of PARs. The
method can take full advantage of radar resources and
obtain images for multiple targets using much less
pulses than conventional RD method. Although every
target gets very limited pulses, the sparsity of ISAR
images and the theory of CS guarantee effective recon-
struction of images. The allocation proportion is calcu-
lated based on the sizes and rotation velocities of
targets. A self-adapting observing flow is designed for
practical radar applications, which improves the robust-
ness of the proposed method. SL0 algorithm is employed
to reconstruct images of targets from random pulses.
The simulation results testify the conclusion in this
paper and prove the feasibility of the proposed method.
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