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Abstract

This paper focuses on the problem of frequency estimation of noise-contaminated sinusoidal. A basic tool to solve
this problem is the interpolated discrete Fourier transform (DFT) algorithms, in which the influences of the spectral
leakage from negative frequency are often neglected, resulting in significant errors in estimation when the signals
contained small cycles. In this paper, analytic expressions of the interference due to the image component are
derived and its influences on the traditional two-point interpolated DFT algorithms are analyzed. Based on the
achieved expressions, the interpolated DFT algorithms are generalized and a novel frequency estimator with high
image component interference rejection is proposed. Simulation results show that the frequency errors returned by
the new algorithm are very small even though only one or two cycles are obtained. Comparative studies indicate
that the new algorithm also has a good performance in the noise condition. With the advantages of high precision
and strong robustness against additive noise, the proposed algorithm is a good choice for frequency estimation
when the negative frequency interference is the dominant error source.
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1 Introduction
Spectral analysis based on the discrete Fourier trans-
form (DFT) and implemented by the fast Fourier trans-
form (FFT) has been widely used in many fields for
several decades. However, there are two drawbacks in
the classic version: the spectral leakage effect (SLE)
caused by the lack of periodicity and the picket fence
effect (PFE) due to the frequency sampling [1]. These
effects will lead to significant errors in spectral analysis
such as parameter estimation [2, 3]. In order to obtain
accurate estimates of signal parameters, a lot of solu-
tions were proposed [4–14]. The interpolation discrete
Fourier transform (IpDFT) algorithm is one of the most
popular algorithms.

Early in 1970s, interpolation algorithms based on the
moduli of two FFT spectral bins were presented by Rife
et al. [4]. Various improved algorithms have been put
forward in the following decades, such as the weighted
interpolated DFT (WIDFT) proposed by Agrez [9] and
the multi-point interpolated DFT approach (WMlpDFT)
by Belega and Dallet [12]. Specifically, simple analytical
solutions can be obtained when the maximum sidelobe
decay windows (MSDW, also known as Rife–Vincent
class I windows) are adopted [11]. However, the algo-
rithms mentioned above are all established on a very im-
portant assumption that the leakage coming from the
image component plays a minor role and could be ig-
nored [11–13]. In fact, if signals contain a small number
of cycles, the negative frequency component usually will
exercise great influences on the estimators [15]. Al-
though the multi-point IpDFT methods can reduce the
sensitivity to some extent, frequency estimation errors
due to the spectral interference from the image compo-
nent still remain significant [15], especially for the
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signals with a few cycles. Furthermore, it should be em-
phasized that the reduction of systematic errors by the
weighted interpolated DFT or multi-point IpDFT methods
is at the expense of worse noise properties [9, 12]. In en-
gineering practice, noise properties usually are more im-
portant than systematic errors. The accuracy could be
improved with longer records as well, but the cost is in-
creased response time [16]. As a result, we often have to
make a tradeoff between the estimation accuracy and the
overall system responsiveness. Consequently, it is of great
significance to propose a new and simple algorithm by
which accurate parameter estimates can be achieved with
short intervals, especially for those fields where real-time
response is required [16–18].
Recently, Belega et al. proposed an improved three-

point IpDFT which exhibits a high rejection capability
with respect to the interference from negative fre-
quency [15]. In this paper, we proposed a novel fre-
quency estimator by which the leakage coming from
image component can be further reduced compared
with the algorithm proposed by Belega et al. More im-
portantly, it also keeps good noise properties due to a
two-point-based mechanism. The remaining parts are
organized as follows. In Section 2, we present a concise
summary of the traditional interpolation algorithms.
Symbols and basic equations used throughout the
paper are defined in this section as well. In Section 3,
the analytical expressions of the interference from the
negative frequency are derived. With the properties of the
derived expressions, we generalize the interpolation DFT
algorithms. In Section 4, the frequency estimators with
high interference rejection of image component are pro-
posed. In Section 5, some computer simulations are
carried out and the performance of the proposed algo-
rithms are compared with some other state-of-the-art
IpDFT methods. Finally, main conclusions are drawn in
Section 6.

2 Theoretical background
In order to explain the basis of the frequency-estimating
procedure, first, let xraw(n) be the samples of a discrete
cosine wave in the form

xraw nð Þ ¼ A0 cos 2πf 0nΔT þ φ0ð Þ n ¼ 0; 1; 2;…

ð1Þ

where A0, f0, and φ0 are the amplitude, frequency, and
phase, respectively. ΔT denotes the sampling interval
and n is the index of the samples. Sampling rate fs = 1/
ΔT is supposed to fulfill the Nyquist sampling theorem
so that aliasing of spectrum does not occur. When N
samples are acquired, f0 is normalized by the frequency
resolution Δf = fs/N and is expressed as

λ0 ¼ f 0
Δf

¼ f 0
f s=N

; ð2Þ

where λ0 is the normalized frequency expressed in bins
[12]. Usually, samples are weighted by a window func-
tion wN(n) before DFT

x nð Þ ¼ xraw nð ÞwN nð Þ ð3Þ

The DFT of N weighted samples at the spectral line k
is given by

X kð Þ ¼ A0

2
e jφ0WN k−λ0ð Þ þ A0

2
e−jφ0WN k þ λ0ð Þ; ð4Þ

where WN(·) denotes the DTFT of the window wN(n). If
the bin number with the largest magnitude is l , then the
largest magnitude is given by

X lð Þj j ¼ A0

2
ejφ0WN l−λ0ð Þ þ A0

2
e−jφ0WN l þ λ0ð Þ

����
����

ð5Þ

The second largest magnitude is given by

X l � 1ð Þj j ¼ A0

2
ejφ0WN l−λ0 � 1ð Þ þ A0

2
e−jφ0WN l þ λ0 � 1ð Þ

����
����;

ð6Þ

where it takes the negative if l − λ0 > 0 and the positive if
l − λ0 < 0. The second terms on the right in (5) and (6)
represent the image component in the spectrum. The
interference is very small compared with the first term
as long as l is far from zero frequency and Nyquist fre-
quency. In this situation, WN(l + λ0) can be ignored and
(5) is reduced to

X lð Þj j ¼ A0

2
WN l−λ0ð Þj j ð7Þ

Similarly, (6) can be rewritten as

X l � 1ð Þj j≅A0

2
WN l−λ0 � 1ð Þj j ð8Þ

For the two-point (2p) interpolation algorithm [6, 8,
11], we introduce α defined as the ratio of the two lar-
gest magnitudes

α ¼ X l � 1ð Þj j
X lð Þj j ≅

WN l−λ0 � 1ð Þ
WN l−λ0ð Þ ð9Þ

It can be clearly seen from Eq. (9) that the ratio α only
depends on the normalized frequency λ0 if the data win-
dow is already known. In particular, λ0 can be deter-
mined by simple and explicit forms when the maximum
sidelobe decay windows are used [11],

Luo et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:30 Page 2 of 11



λ0 ¼ l � Hα−H þ 1
αþ 1

ð10Þ

In (10), H denotes the number of terms in the max-
imum sidelobe decay window. For other windows, λ0
can be obtained by the polynomial approximation
method [13].
Similarly, with proper combination of three or more

spectral lines, a ratio α can be obtained which only de-
pends on the selected window and λ0 [9, 12]. Once the
data window is chosen, λ0 can be solely determined by α,

λ0 ¼ h αð Þ ð11Þ

If the maximum sidelobe decay windows are selected,
α can be obtained from (10). Once α is determined, the
normalized frequency can be computed and the fre-
quency can be worked out in Eq. (2).
As shown above, the second terms on the right in Eqs.

(5) and (6) representing the interferences from the image
component in the spectrum have been neglected. The
approximation will be reasonable if λ0 > 5 and λ0 <N/2
− 5. However, if λ0 were out of the specified ranges, sig-
nificant errors would be generated [15]. Therefore, it is
of great importance and necessary to deduce a simple al-
gorithm that is applicable even when λ0 is in the ex-
treme ranges.

3 Generalization of interpolation DFT algorithms
In Section 2, it was already known that

X lð Þ ¼ A0

2
e jφ0WN −δð Þ þ A0

2
e−jφ0WN 2l þ δð Þ; ð12Þ

where WN(·) is the DTFT of the window wN(n) and

δ ¼ λ0−l ð13Þ

It should be pointed out that due to the actual pro-
cessing requirements of causality, wN(n) is a time-
shifting window, where n = 0, 1 ⋅ ⋅ ⋅N − 1. It can be ob-
tained by

wN nð Þ ¼ w n−N=2ð Þ ð14Þ

w(n) is assumed to be a DFT-even window [2], which is
symmetric with respect to the origin. According to the
time-shifting property of DFT, we have

WN kð Þ ¼ W kð Þe−jkπ; ð15Þ

where W(k) is the DTFT of the window w(n) and the
complex exponential factor corresponds to the time
shift. W(k) is also symmetric and real because w(n) is
symmetric and real. Substituting Eq. (15) into Eq. (12),
X(l) can be rewritten as

X lð Þ ¼ A0

2
e j δπþφ0ð ÞW −δð Þ þ A0

2
e−j 2lπþδπþφ0ð ÞW 2l þ δð Þ

ð16aÞ
Because the period of the complex sinusoidal is 2π,

Eq. (16a) can be further expressed as

X lð Þ ¼ A0

2
e j δπþφ0ð ÞW −δð Þ þ A0

2
e−j δπþφ0ð ÞW 2l þ δð Þ

ð16bÞ
The real and imaginary parts are expressed as

XRðlÞ ¼ A0

2
cosðφ0 þ δπÞ½W ð−δÞ þW ð2l þ δÞ�; ð17aÞ

and

XI lð Þ ¼ A0

2
sin φ0 þ δπð Þ W −δð Þ−W 2l þ δð Þ½ �; ð17bÞ

respectively. Accordingly, we have

XR l � 1ð Þ ¼ −
A0

2
cos φ0 þ δπð Þ W −δ � 1ð Þ þW 2l þ δ � 1ð Þ½ �;

ð18aÞ
and

XI l þ 1ð Þ ¼ −
A0

2
sin φ0 þ δπð Þ W −δ � 1ð Þ−W 2l þ δ � 1ð Þ½ �

ð18bÞ
Now, we introduce two variables αR, αI defined as

αR ¼ XR l � 1ð Þ
XR lð Þ

����
���� ¼ W −δ � 1ð Þ þW 2l þ δ � 1ð Þ

W −δð Þ þW 2l þ δð Þ ;

ð19aÞ
and

αI ¼ XIðl � 1Þ
XIðlÞ

����
���� ¼ W ð−δ � 1Þ−W ð2l þ δ � 1Þ

W ð−δÞ−W ð2l þ δÞ
ð19bÞ

It is assumed, similar to that in Section 2, that λ0 is far
enough from the origin so that the leakage terms W(2l
+ δ) and W(2l + δ ± 1) are very small compared to W(−δ)
and W(−δ ± 1) and could be ignored. With this assump-
tion, we can get the following relationship

αR ≅αI ≅α≅
W −δ � 1ð Þ
W −δð Þ ð20Þ

The relationship indicates that the ratio of the real or
imaginary part can also be used for estimation if the inter-
ference from the image part can be neglected. Note that a
very important phenomenon is implied from Eqs. (19a)
and (19b) that the ratio is phase independent, i.e., the
phase does not affect the result of frequency estimation.
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In other words, the frequency estimate only depends on
the frequency itself.
We proceed to analyze the traditional algorithm without

making approximation. The moduli of X(l) and X(l ± 1)
can be obtained by the square roots of J(l) and J(l + 1), re-
spectively, according to the results in Eqs. (17a), (17b),
(18a), and (18b).

J lð Þ ¼ A2
0

4
W 2 −δð Þ þW 2 2l þ δð Þ� �

þ A2
0

2
cos 2φ0 þ 2δπð ÞW −δð ÞW 2l þ δð Þ

ð21aÞ

J l � 1ð Þ ¼ A2
0

4
W 2 −δ � 1ð Þ þW 2 2l þ δ � 1ð Þ� �

þ A2
0

2
cos 2φ0 þ 2δπð ÞW −δ � 1ð ÞW 2l þ δ � 1ð Þ

ð21bÞ
Without making approximation, Eq. (10) becomes

�α ¼ X l � 1ð Þj j
X lð Þj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J l � 1ð Þp
ffiffiffiffiffiffiffiffi
J lð Þp ð22Þ

Obviously, �α is phase dependent. Also, for Hanning
window, (namely two-term MSD window) it can be
proved that (see Appendix 1)

λR ≥ �λ ≥ λI ; ð23Þ
where λR, λI, and �λ are corresponding estimation values
by αR, αI and �α . If δ ≠ 0, the first equality sign is only
for φ0 + δπ = 0 or π and the second equality sign is only
for φ0 + δπ = ± π/2. Systematic error will be introduced
no matter which of the three ratios is used in formula
(11). The difference is that αR is only affected by the
real part of negative frequency and αI is only affected

by the imaginary part of the negative frequency compo-
nent, while �α is affected by both the real and imaginary
parts.
Inspired by modulus-based ratio, we can extend the

ratio to a more general notation. With a proper combin-
ation of the real and imaginary parts of X(l) and X(l ± 1),
we can get various kinds of ratios. For example, α̂ can be
defined as

α̂ ¼ XR l � 1ð Þ þj jXI l � 1ð Þj j
XR lð Þ þj jXI lð Þj j ð24Þ

Similar to �α, we have

α̂≅
W −δ � 1ð Þ
WN −δð Þ ; ð25Þ

and for Hanning window, we can also obtain

Fig. 1 Frequency estimation errors when Hanning window is
used (α = αR)

Fig. 2 Frequency estimation errors when Hanning window is
used (α = αI)

Fig. 3 Frequency estimation errors when Hanning window is
used (α ¼ �α)
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λR ≥ λ̂ ≥ λI ; ð26Þ
where λ̂ is estimation value by α̂ . It is indicated that a
new estimator can be obtained if α in formula (11) is
replaced by α̂ . The proof of Eq. (26) is similar to that of
Eq. (23). Frequency estimation errors of the four estima-
tors when 1 < λ0 < 2 (samples are weighted by Hanning
window) are shown in Figs. 1, 2, 3, and 4. In Figs. 1 and
2, it can be seen that for a certain frequency, the fre-
quency error is constant in spite of the variable phase. It
is confirmed that the frequency estimators, based on the
αR, αI separately, are independent of the signal phase,
while the estimators based on �α; α̂ are the functions of
both the frequency and the phase. Comparing the esti-
mated errors in Figs. 1, 2, 3, and 4, we can also see that
the simulation results coincide well with the theoretical
analysis in Eqs. (23) and (26). The difference between
the two estimators in Figs. 3 and 4 is that the developing
trend of errors in Fig. 3 is smoother than that in Fig. 4.
We now have to emphasize again that maximum abso-
lute errors are obtained when the phase and the offset
satisfy the relationship φ0 + δπ = 0 or φ0 + δπ = π/2. For a
certain offset, the maximum error is equal to the error

shown in Figs. 1 and 2. In addition, we can also construct
other types of ratio to create new estimators by combining
the real and imaginary parts of X(l) and X(l ± 1) properly.

4 Algorithms with high image component
interference rejection
As we can see in Figs. 1, 2, 3, and 4, the maximum error
due to negative frequency can reach as high as 0.04 for
all the estimators. Simulation results show that it can be
even up to nearly 0.1 for the rectangle window and up
to 0.2 for the three-term maximum decay window. As a
result, it is of great significance to reduce the interfer-
ence resulting from the negative frequency. A new inter-
polated algorithm which has strong resistance against
interference from the negative frequency component is
proposed in this section.

4.1 Simple algorithms with high image component
interference rejection
Recalling Eqs. (19a) and (19b) and observing Figs. 1
and 2, we can infer that there is nearly a complemen-
tary relationship between the two estimators. A proper
combination of the two estimators can probably result
in an intrinsic rejection of negative frequency leakage.
Hence, we introduce α1 defined as the arithmetic mean
value of αR and αI,

α1 ¼ αR þ αIð Þ=2

¼ W −δ � 1ð Þ−W 2l þ δ � 1ð ÞW 2l þ δð Þ=W −δð Þ
W −δð Þ−W 2 2l þ δð Þ=W −δð Þ

ð27aÞ

Now, the interference terms are W(2l + δ ± 1)W(2l + δ)/
W(−δ) and W2(2l + δ)/W(−δ), much smaller than the ori-
ginal terms W(2l + δ ± 1) and W(2l + δ). Most errors are
eliminated by a simple arithmetic average operation. Simi-
larly, we can also introduce α2, α3, and α4 defined as the
geometric mean value, the harmonic mean value, and the
quadratic mean of αR and αI, respectively, as indicated in

Fig. 4 Frequency estimation errors when Hanning window is
used (α ¼ α̂)

Fig. 5 Frequency estimation errors based on different means of αR and αI when Hanning window is used
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α2 ¼ ffiffiffiffiffiffiffiffiffiffi
αR αI

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2 −δ � 1ð Þ−W 2 2l þ δ � 1ð Þ

W 2 −δð Þ−W 2 2l þ δð Þ

s
;

ð27bÞ

α3 ¼ 2
1=αR þ 1=αI

¼ α22
α1

; ð27cÞ

and

α4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2R þ α2I
� �

=2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α21−α

2
2

q
ð27dÞ

Similar to α1, the interference terms of α2 become
much smaller as well. α3 and α4 can be written as simple
functions of α1 and α2, respectively. The values of the
four means are approximately equal. To demonstrate the
ability of negative frequency leakage rejection, the fre-
quency errors of the four estimators are displayed when
1 < λ0 < 2. Note that the four estimators are also phase
independent because no phase information is involved
in the ratios shown in Eqs. (27a)–(27d). Consequently,
the phase was just set to zero. Figures 5 and 6 show the

estimation results as a function of the frequency. It can
be seen that the frequency errors sharply decrease com-
pared with the modulus-based algorithms. In particular,
the remaining error for the one based on the harmonic
mean value is less than 10−3, which is small enough for
the engineering practice.

4.2 Further improved interpolation algorithms with
slide DFT
However, there is a serious defect in the above algo-
rithms in which the weighed ratio is used. The algo-
rithms may become quite vulnerable if cos(φ0 + δπ) ≈ 0
or sin(φ0 + δπ) ≈ 0. Under such two circumstances, the
imaginary parts or the real parts would be so small that
even a small disturbance would lead to a dramatic
change in αR or αI, resulting of significant errors in the
final frequency estimates. Theoretical cosine waves cor-
rupted by low-level random noise were generated to con-
firm the defect, and the vulnerability of two frequency
estimators based on αR and αI is shown in Figs. 7 and 8,
respectively. It is clearly shown that radical changes ap-
pear when cos(φ0 + δπ) ≈ 0 for αR and sin(φ0 + δπ) ≈ 0 for

Fig. 6 Frequency estimation errors based on different means of αR and αI when three-term MSD window is used

Fig. 7 The phenomenon of “Luo–arêtes” in the αR-based estimator
(Hanning window)

Fig. 8 The phenomenon of “Luo–arêtes” in the αI-based estimator
(Hanning window)
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αI. Sharp peaks along these lines are observed in the sur-
face of the frequency errors. They look like knife-edge
arêtes so we call them “Luo–arêtes.” In contrast, for the
frequencies that are not in the vicinity of these lines, er-
rors are very small and remain stable.
To avoid the “Luo–arêtes,” a further improved algo-

rithm has been proposed. The fact that αR and αI (in-
cluding various kinds of mean values of the two) are
phase independent and the change of phase has no in-
fluences on frequency estimates help us get a robust
ratio by time-shifting technique. Now, consider a
discrete sequence with N samples x(0), x(1) ⋅ ⋅ ⋅ x(N − 1)
and assume that its observed phase is φ1. After delaying
for L samples, we get a time-shifted sequence x(L), x(L +
1) ⋅ ⋅ ⋅ x(N + L − 1) and its observed phase φ2 can be
expressed as

φ2 ¼ φ1 þ 2πf 0LΔT ¼ φ1 þ 2πf 0L=f s ¼ φ1 þ 2πλ0L=N

ð28Þ

In the above equation, ΔT is the sampling interval, f0 is
the theoretical frequency and λ0 is the normalized fre-
quency scaled by frequency resolution. As λ0 is unknown,
we can use its largest bin number l, instead.

L≈N
φ2−φ1

2πl
ð29Þ

The actual observed phase of the time delay sequence
is φ ' 2 = φ1 + 2πlL/N and the phase error is

φ2
0−φ2 ¼ Δφ2 ¼ 2πδL=N ð30Þ

Generally, we have l > 1 and φ2 − φ1 < π/2 so that L/N
< 1/4. Considering δ ∈ [−0.5, 0.5), the absolute phase
error is less than π/4. For αR, if φ2 was set to 0 or π, φ ' 2
was limited in the range of (−π/4, π/4) or (3π/4, 5π/4).
For αI, if φ2 was set to π/2 or − π/2, φ ' 2 was limited in
the range of (π/4, 3π/4) or (−3π/4, − π/4). It is indicated
that we can adjust the observed phase by the time-
shifting technique so that we can get a robust ratio to
avoid the “Luo–arêtes.” In addition, we can obtain the
spectral lines l and l ± 1 of the time-delayed sequence by
means of the sliding discrete Fourier transform (SDFT)
[19, 20]. It will be more efficient compared with another
separate FFT or DFT.

5 Comparison with other state-of-the-art methods
In this section, some computer simulations were con-
ducted to verify the effectiveness and the accuracy of the
proposed algorithms. For conciseness, only the results of

Fig. 9 Maximum estimation error as a function of λ0 for different estimators without noise (Hanning window)

Fig. 10 Maximum estimation error as a function of λ0 for different estimators without noise (three-term MSD window)
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the algorithm based on the harmonic mean of αR and αI
were shown. All simulation results are returned by the al-
gorithm proposed in Section 4.2. In addition, the results of
the traditional IpDFT algorithm (2pIpDFT) [5, 8, 11], the
classical three-point IpDFT algorithm (3pIpDFT) [9, 12],
Quinn’s two-point-based estimator (Quinn1, only applic-
able for Hanning window), and Quinn’s three-point-based
optimal estimator (Quinn2, only applicable for Hanning
window) [21–23], the estimator proposed by Macleod
in 1998 (Macleod, only applicable for Hanning window)
[24], the three-point complex spectrum-based estima-
tor (Jacobsen, only applicable for Hanning window)
[25] referred by Jacobsen and Kootsookos in 2007, and
the improved three-point IpDFT algorithm with high
image frequency interference rejection capability re-
cently proposed by Belega (Belega14) [15], were also
displayed for comparison. In all the considered IpDFT-
based algorithms, both the two-term and three-term
MSD windows were adopted. For simplicity but without
loss of generality, parameters used in all the simulation
experiments were as follows, the amplitude of the cosine
wave A = 1, the number of samples N= 512, and the sam-
pling rate fs = 512. The results shown in this section were
scaled by frequency resolution and expressed in bins.

5.1 Theoretical cosine wave without noise
To demonstrate the excellent rejection capability against
the interference from negative frequency, theoretical sig-
nals contain a small number of cycles. The normalized
frequency λ0 is varied in the range (1, 11) with a step of
1/8. For each frequency, the phase θ is varied in the
range [−π, π) with a step of π/72. The maximum abso-
lute frequency errors |δ|max are shown in Figs. 9 and 10
as a function of λ0 for the two-term and three-term
MSD windows, respectively. It is clearly revealed that
the errors due to negative frequency interference are re-
markably reduced. In general, both the proposed method
and the improved three-point IpDFT method outperform
other estimators throughout the entire range of consid-
ered λ0. When the Hanning window is adopted, Jacobsen’s
estimator has the worst performance. The traditional
IpDFT algorithm, Quinn’s two-point-based estimator, and
Quinn’s three-point-based optimal estimator have similar
trend. The classical three-point IpDFT algorithm and
Macleod’s estimator provide better results than the above
three estimators. If λ0 < 4.5 (especially λ0 < 1.5) and δ > 0,
the new method provides better performance than the im-
proved three-point IpDFT and the opposite holds if δ < 0.
When λ0 > 4.5, the improved three-point IpDFT shows a

Fig. 11 RMSE for different algorithms (SNR = 30 dB, Hanning window)

Fig. 12 RMSE for different algorithms (SNR = 50 dB, Hanning window)
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small advantage than the proposed algorithm. When the
three-term MSD window is adopted, the new estimator
has overwhelming advantage over the rest. It should be
pointed out that regardless of the adopted window type
and the value of λ0, the maximum frequency error of the
new algorithm never goes above 10−3, even though only
one or two cycles are obtained.

5.2 Theoretical cosine wave corrupted by additive noise
In this subsection, we considered the ideal cosine wave
contaminated with the additive Gaussian noise. Similar
to [15], we investigated the RMSE of estimates returned
by the considered estimators as a function of λ0 for cer-
tain SNRs. For each frequency, 50,000 instances were
generated with a random phase. For conciseness, four
algorithms are considered, including the traditional
IpDFT algorithm (2pIpDFT), the classical three-point
IpDFT algorithm (3pIpDFT), the improved three-point
IpDFT algorithm with high image frequency interfer-
ence rejection capability (Belega14), and the proposed
algorithm. Results with SNR = 30 dB and 50 dB for
Hanning window and three-term MSD window were
shown in Figs. 11, 12, 13, and 14, respectively. The re-
sults for Hanning window agree well with those in [15].
As shown in Figs. 11 and 12, the estimated RMSE of the
proposed method is always in a low level with a small

fluctuation and essentially the novel method has no com-
petitor for λ0 < 3. When λ0 becomes larger, the estimated
RMSE of four estimators tend to be in a similar level and
it is interesting to find that the two-point-based algo-
rithms show a better performance at the worst incoherent
sampling condition (δ ≈ 0.5), while the three-point-based
algorithms provide better results when λ0 is close to inte-
ger values (δ ≈ 0).
When the three-term MSD window is adopted, the

overall trend is similar to that of Hanning window. For
λ0 < 2, the performance of the traditional 2pIpDFT and
3pIpDFT is worse than Hanning window due to the
wider mainlobe of the three-term MSD window. For
λ0 > 2, they have better performances because of the
faster sidelobe decay rate. For the same SNR, the RMSE
values of the two algorithms employing three-term MSD
window decrease faster than that employing Hanning win-
dow before reaching the ultimate stable level. Meanwhile,
the ultimate stable level is higher than that employing
Hanning window because of the worse noise properties of
the three-term MSD window. The performance of the
proposed algorithm maintains its superiority to the other
three algorithms for λ0 < 3. To sum up, the traditional
two-point- or three-point-based algorithms are very good
choices because of their simplicity when random noise
has a significant influence on the uncertainty of estimates.

Fig. 13 RMSE for different algorithms (SNR = 30 dB, three-term MSD window)

Fig. 14 RMSE for different algorithms (SNR = 50 dB, three-term MSD window)
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The proposed algorithm is strongly recommended when
the image frequency interference is the main error source
especially when a small number of cycles are contained in
samples.

6 Conclusions
Frequency estimation by the IpDFT method is studied in
this paper. We have quantitatively analyzed the influ-
ences of the interference from the image component
and generalized the interpolated DFT algorithms. Based
on the analysis, novel frequency estimators are proposed,
which have strong rejection against the high image com-
ponent interference. Accuracy of the novel algorithm
has been confirmed by simulations. Comparative studies
reveal that the proposed algorithm has a better perform-
ance than the traditional algorithms when the spectral
interference from negative frequency component is sig-
nificant, especially for the cycles less than one and a half.
This proposed algorithm is simple to understand, easy
to implement, and very suitable for real-time analysis.

7 Appendices
7.1 Appendix 1
According to the conclusion in Eq. (10), we can get the
frequency estimation by

λ ¼ l � 2α−1
αþ 1

; ðA1Þ

when Hanning window is used.
Accordingly, we can obtain frequency estimations

λR ¼ l � 2αR−1
αR þ 1

¼ l � 2−
3

αR þ 1

� 	
; ðA2aÞ

λI ¼ l � 2αI−1
αI þ 1

¼ l � 2−
3

αI þ 1

� 	
; ðA2bÞ

and

�λ ¼ l � 2�α−1
�α þ 1

¼ l � 2−
3

�α þ 1

� 	
; ðA2cÞ

by three kinds of ratio αR, αI, and �α, respectively.
Further, combining Eq. (A2a) with Eq. (A2c) and Eq.

(A2b) with Eq. (A2c), we get the following two equations

λ̂R−�λ ¼ � 3
�α þ 1

−
3

αR þ 1

� 	
¼ �3

αR−�α
�α þ 1ð Þ αR þ 1ð Þ

ðA3aÞ

and

λ̂I−�λ ¼ � 3
�α þ 1

−
3

αI þ 1

� 	
¼ �3

αI−�α
�α þ 1ð Þ αI þ 1ð Þ

ðA3bÞ
The above equations indicate the following conclusions.

(1)For δ > 0, since αR > �α, αI < �α (Appendix 2) and it

takes the positive in (A3a) and (A3b), we get λ̂R > �λ

and λ̂I < �λ.
(2)For δ < 0, since αR < �α, αI > �α (Appendix 2) and it

takes the negative in (A3a) and (A3b),we get λ̂R > �λ

and λ̂I < �λ.

Finally, for both δ > 0 and δ < 0, we have λ̂R > �λ and

λ̂I < �λ . Furthermore, if δ ≠ 0, when φ0 + δπ = 0 or π, we

have λ̂R ¼ �λ; and when φ0 + δπ = ± π/2, we have λ̂I ¼ �λ.

7.2 Appendix 2

It is already known that αR ¼ W 1þW 2lþ1
W 0þW 2l

, αI ¼ W 1−W 2lþ1
W 0−W 2l

,

�α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

1þW 2
2lþ1þ2μW 1W 2lþ1

W 2
0þW 2

2lþ2μW 0W 2l

r
from Section 3, where W0 =

W(−δ),W1 =W(−δ ± 1),W2l =W(2l + δ),W2l + 1 =W(2l
+ δ ± 1) and u = cos(2φ0 + 2δπ) according to Eqs. (19a),
(19b), and (22). We define

E ¼ α2R−�α
2

¼ W 2
1 þW 2

2lþ1 þ 2W 1W 2lþ1

W 2
0 þW 2

2l þ 2W 0W 2l
−
W 2

1 þW 2
2lþ1 þ 2uW 1W 2lþ1

W 2
0 þW 2

2l þ 2uW 0W 2l
;

ðB1aÞ
and

F ¼ α2I −�α
2

¼ W 2
1 þW 2

2lþ1−2W 1W 2lþ1

W 2
0 þW 2

2l−2W 0W 2l
−
W 2

1 þW 2
2lþ1 þ 2uW 1W 2lþ1

W 2
0 þW 2

2l þ 2uW 0W 2l

ðB1bÞ
After some algebraic manipulation, we obtain

E ¼ 2 1−uð Þ G

W 0 þW 2lð Þ2 W 2
0 þW 2

2l þ 2uW 0 W 2l
� � ;

ðB2aÞ
and

F ¼ 2 1þ uð Þ −G

W 0−W 2lð Þ2 W 2
0 þW 2

2l þ 2uW 0 W 2l
� � ;

ðB2bÞ
where G = (W0 W1 −W2lW2l + 1)(W0 W2l + 1 −W1 W2l).
When Hanning window is used, we know that W0 >
W1 > 0, W1 > > |W2l|, and W1 > > |W2l + 1|.
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(1)For δ > 0, we have W2l < 0 and W2l + 1 > 0 for Hanning
window, so G > 0. Then, we have αR > �α and αI < �α.

(2)For δ < 0, we have W2l > 0 and W2l + 1 < 0 for Hanning
window, so G < 0. Then, we have αR < �α and αI > �α.

It should be pointed that for δ ≠ 0, the requirement for
αR ¼ �α is that μ = 1 and the requirement for αI ¼ �α is
that μ = − 1. That means that φ0 + δπ = 0 or π for αR ¼ �α
and φ0 + δπ = ± π/2 for αI ¼ �α.
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